/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include #include #include "MEM_guardedalloc.h" #include "nla.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_object_types.h" #include "DNA_action_types.h" #include "DNA_curve_types.h" #include "DNA_scene_types.h" #include "BKE_utildefines.h" #include "BKE_action.h" #include "BKE_anim.h" // for the curve calculation part #include "BKE_armature.h" #include "BKE_blender.h" #include "BKE_constraint.h" #include "BKE_object.h" #include "BKE_ipo.h" #include "BKE_global.h" #include "BKE_library.h" #include "blendef.h" #ifdef HAVE_CONFIG_H #include #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif /* used by object.c */ void Mat4BlendMat4(float [][4], float [][4], float [][4], float ); /* Local function prototypes */ /* Functions */ char constraint_has_target (bConstraint *con) { switch (con->type){ case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; if (data->tar) return 1; } case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; if (data->tar) return 1; } break; } // Unknown types or CONSTRAINT_TYPE_NULL or no target return 0; } Object *get_constraint_target(bConstraint *con) { /* * If the target for this constraint is target, return a pointer * to the name for this constraints subtarget ... NULL otherwise */ switch (con->type) { case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; return data->tar; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; return data->tar; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; return data->tar; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; return data->tar; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; return data->tar; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; return data->tar; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; return data->tar; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; return (data->tar); } break; } return NULL; } void unique_constraint_name (bConstraint *con, ListBase *list){ char tempname[64]; int number; char *dot; int exists = 0; bConstraint *curcon; /* See if we even need to do this */ for (curcon = list->first; curcon; curcon=curcon->next){ if (curcon!=con){ if (!strcmp(curcon->name, con->name)){ exists = 1; break; } } } if (!exists) return; /* Strip off the suffix */ dot=strchr(con->name, '.'); if (dot) *dot=0; for (number = 1; number <=999; number++){ sprintf (tempname, "%s.%03d", con->name, number); exists = 0; for (curcon=list->first; curcon; curcon=curcon->next){ if (con!=curcon){ if (!strcmp (curcon->name, tempname)){ exists = 1; break; } } } if (!exists){ strcpy (con->name, tempname); return; } } } void *new_constraint_data (short type) { void *result; switch (type){ case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint"); data->tolerance = (float)0.001; data->iterations = 500; result = data; } break; case CONSTRAINT_TYPE_NULL: { result = NULL; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint"); data->reserved1 = TRACK_Y; data->reserved2 = UP_Z; result = data; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = MEM_callocN(sizeof(bRotateLikeConstraint), "rotlikeConstraint"); result = data; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = MEM_callocN(sizeof(bLocateLikeConstraint), "loclikeConstraint"); data->flag |= LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z; result = data; } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; data = MEM_callocN(sizeof(bActionConstraint), "actionConstraint"); result = data; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint"); data->trackflag = TRACK_Y; data->lockflag = LOCK_Z; result = data; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint"); data->trackflag = TRACK_Y; data->upflag = UP_Z; data->offset = 0; data->followflag = 0; result = data; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint"); data->volmode = 0; data->plane = 0; data->orglength = 0.0; data->bulge = 1.0; result = data; } break; default: result = NULL; break; } return result; } bConstraintChannel *find_constraint_channel (ListBase *list, const char *name){ bConstraintChannel *chan; for (chan = list->first; chan; chan=chan->next){ if (!strcmp(name, chan->name)){ return chan; } } return NULL; } void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime) { bConstraint *con; bConstraintChannel *chan; IpoCurve *icu; for (con=conbase->first; con; con=con->next){ chan = find_constraint_channel(chanbase, con->name); if (chan && chan->ipo){ calc_ipo(chan->ipo, ctime); for (icu=chan->ipo->curve.first; icu; icu=icu->next){ switch (icu->adrcode){ case CO_ENFORCE: con->enforce = icu->curval; if (con->enforce<0) con->enforce=0; else if (con->enforce>1) con->enforce=1; break; } } } } } void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight) { float squat[4], dquat[4], fquat[4]; float ssize[3], dsize[3], fsize[4]; float sloc[3], dloc[3], floc[3]; float mat3[3][3], dstweight; float qmat[3][3], smat[3][3]; int i; dstweight = 1.0F-srcweight; Mat3CpyMat4(mat3, dst); Mat3ToQuat(mat3, dquat); Mat3ToSize(mat3, dsize); VECCOPY (dloc, dst[3]); Mat3CpyMat4(mat3, src); Mat3ToQuat(mat3, squat); Mat3ToSize(mat3, ssize); VECCOPY (sloc, src[3]); /* Do the actual blend */ for (i=0; i<3; i++){ floc[i] = (dloc[i]*dstweight) + (sloc[i]*srcweight); fsize[i] = 1.0f + ((dsize[i]-1.0f)*dstweight) + ((ssize[i]-1.0f)*srcweight); fquat[i+1] = (dquat[i+1]*dstweight) + (squat[i+1]*srcweight); } /* Do one more iteration for the quaternions only and normalize the quaternion if needed */ fquat[0] = 1.0f + ((dquat[0]-1.0f)*dstweight) + ((squat[0]-1.0f)*srcweight); NormalQuat (fquat); QuatToMat3(fquat, qmat); SizeToMat3(fsize, smat); Mat3MulMat3(mat3, qmat, smat); Mat4CpyMat3(out, mat3); VECCOPY (out[3], floc); } static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3], float ctime) { /* Update the location of the target object */ //where_is_object_time (ob, ctime); /* Case OBJECT */ if (!strlen(substring)){ Mat4CpyMat4 (mat, ob->obmat); VECCOPY (size, ob->size); return; } /* Case BONE */ else { bArmature *arm; Bone *bone; float bmat[4][4]; float bsize[3]={1, 1, 1}; arm = get_armature(ob); /** * Locate the bone (if there is one) * Ensures that the bone's transformation is fully constrained * (Cyclical relationships are disallowed elsewhere) */ bone = get_named_bone(arm, substring); if (bone){ where_is_bone_time(ob, bone, ctime); get_objectspace_bone_matrix(bone, bmat, 1, 1); VECCOPY(bsize, bone->size); } else Mat4One (bmat); /** * Multiply the objectspace bonematrix by the skeletons's global * transform to obtain the worldspace transformation of the target */ VECCOPY(size, bsize); Mat4MulMat4 (mat, bmat, ob->obmat); return; } } void clear_object_constraint_status (Object *ob) { bConstraint *con; if (!ob) return; /* Clear the object's constraints */ for (con = ob->constraints.first; con; con=con->next){ con->flag &= ~CONSTRAINT_DONE; } /* Clear the object's subdata constraints */ switch (ob->type){ case OB_ARMATURE: { clear_pose_constraint_status (ob); } break; default: break; } } void clear_all_constraints(void) { Base *base; /* Clear the constraint "done" flags -- this must be done * before displists are calculated for objects that are * deformed by armatures */ for (base = G.scene->base.first; base; base=base->next){ clear_object_constraint_status(base->object); } } void rebuild_all_armature_displists(void) { Base *base; for (base = G.scene->base.first; base; base=base->next){ clear_object_constraint_status(base->object); make_displists_by_armature(base->object); } } short get_constraint_target_matrix (bConstraint *con, short ownertype, void* ownerdata, float mat[][4], float size[3], float ctime) { short valid=0; switch (con->type){ case CONSTRAINT_TYPE_NULL: { Mat4One(mat); } break; case CONSTRAINT_TYPE_ACTION: { if (ownertype == TARGET_BONE){ bActionConstraint *data = (bActionConstraint*)con->data; bPose *pose=NULL; bPoseChannel *pchan=NULL; float tempmat[4][4], imat[4][4], ans[4][4], restmat[4][4], irestmat[4][4]; float tempmat3[3][3]; float eul[3], size[3]; float s,t; Bone *curBone; Bone tbone; int i; curBone = (Bone*)ownerdata; if (data->tar){ /* Update the location of the target object */ where_is_object_time (data->tar, ctime); constraint_target_to_mat4(data->tar, data->subtarget, tempmat, size, ctime); valid=1; } else Mat4One (tempmat); /* If this is a bone, undo parent transforms */ if (strlen(data->subtarget)){ Bone* bone; Mat4Invert(imat, data->tar->obmat); bone = get_named_bone(get_armature(data->tar), data->subtarget); if (bone){ get_objectspace_bone_matrix(bone, restmat, 1, 0); Mat4Invert(irestmat, restmat); } } else{ Mat4One(imat); Mat4One(irestmat); } Mat4MulSerie(ans, imat, tempmat, irestmat, NULL, NULL, NULL, NULL, NULL); Mat3CpyMat4(tempmat3, ans); Mat3ToEul(tempmat3, eul); eul[0]*=(float)(180.0/M_PI); eul[1]*=(float)(180.0/M_PI); eul[2]*=(float)(180.0/M_PI); /* Target is the animation */ s = (eul[data->type]-data->min)/(data->max-data->min); if (s<0) s=0; if (s>1) s=1; t = ( s * (data->end-data->start)) + data->start; /* Get the appropriate information from the action */ pose = MEM_callocN(sizeof(bPose), "pose"); verify_pose_channel(pose, curBone->name); get_pose_from_action (&pose, data->act, t); /* Find the appropriate channel */ pchan = get_pose_channel(pose, curBone->name); if (pchan){ memset(&tbone, 0x00, sizeof(Bone)); VECCOPY (tbone.loc, pchan->loc); VECCOPY (tbone.size, pchan->size); for (i=0; i<4; i++) tbone.quat[i]=pchan->quat[i]; bone_to_mat4(&tbone, mat); } else{ Mat4One(mat); } /* Clean up */ clear_pose(pose); MEM_freeN(pose); } } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data; if (data->tar){ /* Update the location of the target object */ where_is_object_time (data->tar, ctime); constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = (bRotateLikeConstraint*)con->data; if (data->tar){ /* Update the location of the target object */ where_is_object_time (data->tar, ctime); constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = (bTrackToConstraint*)con->data; if (data->tar){ // Refresh the object if it isn't a constraint loop if (!(con->flag & CONSTRAINT_NOREFRESH)) where_is_object_time (data->tar, ctime); constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_KINEMATIC: { bTrackToConstraint *data; data = (bTrackToConstraint*)con->data; if (data->tar){ /* Update the location of the target object */ where_is_object_time (data->tar, ctime); constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = (bLockTrackConstraint*)con->data; if (data->tar){ // Refresh the object if it isn't a constraint loop if (!(con->flag & CONSTRAINT_NOREFRESH)) where_is_object_time (data->tar, ctime); constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = (bFollowPathConstraint*)con->data; if (data->tar){ short OldFlag; Curve *cu; float q[4], vec[4], dir[3], *quat, x1, totmat[4][4]; float curvetime; where_is_object_time (data->tar, ctime); Mat4One (totmat); Mat4One (mat); cu= data->tar->data; OldFlag = cu->flag; if(data->followflag) { if(!(cu->flag & CU_FOLLOW)) cu->flag += CU_FOLLOW; } else { if(cu->flag & CU_FOLLOW) cu->flag -= CU_FOLLOW; } if(!(cu->flag & CU_PATH)) cu->flag += CU_PATH; if(cu->path==NULL || cu->path->data==NULL) calc_curvepath(data->tar); if(cu->path && cu->path->data) { curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset; if(calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) { curvetime /= cu->pathlen; CLAMP(curvetime, 0.0, 1.0); } if(where_on_path(data->tar, curvetime, vec, dir) ) { if(data->followflag){ quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag); Normalise(dir); q[0]= (float)cos(0.5*vec[3]); x1= (float)sin(0.5*vec[3]); q[1]= -x1*dir[0]; q[2]= -x1*dir[1]; q[3]= -x1*dir[2]; QuatMul(quat, q, quat); QuatToMat4(quat, totmat); } VECCOPY(totmat[3], vec); Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL); } } cu->flag = OldFlag; valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = (bStretchToConstraint*)con->data; if (data->tar){ where_is_object_time (data->tar, ctime); constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid = 1; } else Mat4One (mat); } break; default: Mat4One(mat); break; } return valid; } void relink_constraints (struct ListBase *list) { bConstraint *con; for (con = list->first; con; con=con->next){ switch (con->type){ case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_NULL: { } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = con->data; ID_NEW(data->tar); } break; } } } void *copy_constraint_channels (ListBase *dst, ListBase *src) { bConstraintChannel *dchan, *schan; bConstraintChannel *newact=NULL; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){ dchan->ipo = copy_ipo(schan->ipo); } return newact; } bConstraintChannel *clone_constraint_channels (ListBase *dst, ListBase *src, bConstraintChannel *oldact) { bConstraintChannel *dchan, *schan; bConstraintChannel *newact=NULL; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){ id_us_plus((ID *)dchan->ipo); if (schan==oldact) newact=dchan; } return newact; } void copy_constraints (ListBase *dst, ListBase *src) { bConstraint *con; dst->first=dst->last=NULL; duplicatelist (dst, src); /* Update specific data */ if (!dst->first) return; for (con = dst->first; con; con=con->next){ switch (con->type){ case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; con->data = MEM_dupallocN (con->data); data = (bActionConstraint*) con->data; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; con->data = MEM_dupallocN (con->data); data = (bLocateLikeConstraint*) con->data; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; con->data = MEM_dupallocN (con->data); data = (bRotateLikeConstraint*) con->data; } break; case CONSTRAINT_TYPE_NULL: { con->data = NULL; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; con->data = MEM_dupallocN (con->data); data = (bTrackToConstraint*) con->data; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; con->data = MEM_dupallocN (con->data); data = (bLockTrackConstraint*) con->data; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; con->data = MEM_dupallocN (con->data); data = (bKinematicConstraint*) con->data; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; con->data = MEM_dupallocN (con->data); data = (bFollowPathConstraint*) con->data; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; con->data = MEM_dupallocN (con->data); data = (bStretchToConstraint*) con->data; } break; default: con->data = MEM_dupallocN (con->data); break; } } } void evaluate_constraint (bConstraint *constraint, Object *ob, short ownertype, void *ownerdata, float targetmat[][4]) /* ob is likely to be a workob */ { float M_oldmat[4][4]; float M_identity[4][4]; if (!constraint || !ob) return; Mat4One (M_identity); /* We've already been calculated */ if (constraint->flag & CONSTRAINT_DONE){ return; } switch (constraint->type){ case CONSTRAINT_TYPE_ACTION: { float temp[4][4]; bActionConstraint *data; data = constraint->data; Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4(ob->obmat, targetmat, temp); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = constraint->data; if (data->flag & LOCLIKE_X) ob->obmat[3][0] = targetmat[3][0]; if (data->flag & LOCLIKE_Y) ob->obmat[3][1] = targetmat[3][1]; if (data->flag & LOCLIKE_Z) ob->obmat[3][2] = targetmat[3][2]; } break; case CONSTRAINT_TYPE_ROTLIKE: { float tmat[4][4]; float size[3]; Mat4ToSize(ob->obmat, size); Mat4CpyMat4 (tmat, targetmat); Mat4Ortho(tmat); ob->obmat[0][0] = tmat[0][0]*size[0]; ob->obmat[0][1] = tmat[0][1]*size[1]; ob->obmat[0][2] = tmat[0][2]*size[2]; ob->obmat[1][0] = tmat[1][0]*size[0]; ob->obmat[1][1] = tmat[1][1]*size[1]; ob->obmat[1][2] = tmat[1][2]*size[2]; ob->obmat[2][0] = tmat[2][0]*size[0]; ob->obmat[2][1] = tmat[2][1]*size[1]; ob->obmat[2][2] = tmat[2][2]*size[2]; } break; case CONSTRAINT_TYPE_NULL: { } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; float size[3]; float *quat; float vec[3]; float totmat[3][3]; float tmat[4][4]; data=(bTrackToConstraint*)constraint->data; if (data->tar){ /* Get size property, since ob->size is only the object's own relative size, not its global one */ Mat4ToSize (ob->obmat, size); Mat4CpyMat4 (M_oldmat, ob->obmat); // Clear the object's rotation ob->obmat[0][0]=size[0]; ob->obmat[0][1]=0; ob->obmat[0][2]=0; ob->obmat[1][0]=0; ob->obmat[1][1]=size[1]; ob->obmat[1][2]=0; ob->obmat[2][0]=0; ob->obmat[2][1]=0; ob->obmat[2][2]=size[2]; VecSubf(vec, ob->obmat[3], targetmat[3]); quat= vectoquat(vec, (short)data->reserved1, (short)data->reserved2); QuatToMat3(quat, totmat); Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat34(ob->obmat, totmat, tmat); } } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; float imat[4][4]; float temp[4][4]; float totmat[4][4]; data=(bKinematicConstraint*)constraint->data; if (data->tar && ownertype==TARGET_BONE && ownerdata){ Bone *curBone = (Bone*)ownerdata; PoseChain *chain; Object *armob; /* Retrieve the owner armature object from the workob */ armob = ob->parent; /* Make an IK chain */ chain = ik_chain_to_posechain(armob, curBone); if (!chain) return; chain->iterations = data->iterations; chain->tolerance = data->tolerance; { float parmat[4][4]; /* Take the obmat to objectspace */ Mat4CpyMat4 (temp, curBone->obmat); Mat4One (curBone->obmat); get_objectspace_bone_matrix(curBone, parmat, 1, 1); Mat4CpyMat4 (curBone->obmat, temp); Mat4MulMat4 (totmat, parmat, ob->parent->obmat); Mat4Invert (imat, totmat); Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4 (ob->obmat, temp, imat); } /* Solve it */ if (chain->solver){ VECCOPY (chain->goal, targetmat[3]); solve_posechain(chain); } free_posechain(chain); { float parmat[4][4]; /* Take the obmat to worldspace */ Mat4CpyMat4 (temp, curBone->obmat); Mat4One (curBone->obmat); get_objectspace_bone_matrix(curBone, parmat, 1, 1); Mat4CpyMat4 (curBone->obmat, temp); Mat4MulMat4 (totmat, parmat, ob->parent->obmat); Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4 (ob->obmat, temp, totmat); } } } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; float vec[3],vec2[3]; float totmat[3][3]; float tmpmat[3][3]; float invmat[3][3]; float tmat[4][4]; float mdet; data=(bLockTrackConstraint*)constraint->data; if (data->tar){ Mat4CpyMat4 (M_oldmat, ob->obmat); /* Vector object -> target */ VecSubf(vec, targetmat[3], ob->obmat[3]); switch (data->lockflag){ case LOCK_X: /* LOCK X */ { switch (data->trackflag){ case TRACK_Y: /* LOCK X TRACK Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_Z: /* LOCK X TRACK Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_nY: /* LOCK X TRACK -Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); VecMulf(totmat[1],-1); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_nZ: /* LOCK X TRACK -Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); VecMulf(totmat[2],-1); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; case LOCK_Y: /* LOCK Y */ { switch (data->trackflag){ case TRACK_X: /* LOCK Y TRACK X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_Z: /* LOCK Y TRACK Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; case TRACK_nX: /* LOCK Y TRACK -X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); VecMulf(totmat[0],-1); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_nZ: /* LOCK Y TRACK -Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); VecMulf(totmat[2],-1); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; case LOCK_Z: /* LOCK Z */ { switch (data->trackflag){ case TRACK_X: /* LOCK Z TRACK X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_Y: /* LOCK Z TRACK Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; case TRACK_nX: /* LOCK Z TRACK -X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); VecMulf(totmat[0],-1); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_nY: /* LOCK Z TRACK -Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); VecMulf(totmat[1],-1); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } /* Block to keep matrix heading */ tmpmat[0][0] = ob->obmat[0][0];tmpmat[0][1] = ob->obmat[0][1];tmpmat[0][2] = ob->obmat[0][2]; tmpmat[1][0] = ob->obmat[1][0];tmpmat[1][1] = ob->obmat[1][1];tmpmat[1][2] = ob->obmat[1][2]; tmpmat[2][0] = ob->obmat[2][0];tmpmat[2][1] = ob->obmat[2][1];tmpmat[2][2] = ob->obmat[2][2]; Normalise(tmpmat[0]); Normalise(tmpmat[1]); Normalise(tmpmat[2]); Mat3Inv(invmat,tmpmat); Mat3MulMat3(tmpmat,totmat,invmat); totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2]; totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2]; totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2]; Mat4CpyMat4(tmat, ob->obmat); mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2], totmat[1][0],totmat[1][1],totmat[1][2], totmat[2][0],totmat[2][1],totmat[2][2]); if (mdet==0) { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } /* apply out transformaton to the object */ Mat4MulMat34(ob->obmat, totmat, tmat); } } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; float obmat[4][4]; data=(bFollowPathConstraint*)constraint->data; if (data->tar) { object_to_mat4(ob, obmat); Mat4MulSerie(ob->obmat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL); } } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; float size[3],scale[3],vec[3],xx[3],zz[3],orth[3]; float totmat[3][3]; float tmat[4][4]; float dist; data=(bStretchToConstraint*)constraint->data; Mat4ToSize (ob->obmat, size); if (data->tar){ /* store X orientation before destroying obmat */ xx[0] = ob->obmat[0][0]; xx[1] = ob->obmat[0][1]; xx[2] = ob->obmat[0][2]; Normalise(xx); /* store Z orientation before destroying obmat */ zz[0] = ob->obmat[2][0]; zz[1] = ob->obmat[2][1]; zz[2] = ob->obmat[2][2]; Normalise(zz); VecSubf(vec, ob->obmat[3], targetmat[3]); vec[0] /= size[0]; vec[1] /= size[1]; vec[2] /= size[2]; dist = Normalise(vec); //dist = VecLenf( ob->obmat[3], targetmat[3]); if (data->orglength == 0) data->orglength = dist; if (data->bulge ==0) data->bulge = 1.0; scale[1] = dist/data->orglength; switch (data->volmode){ /* volume preserving scaling */ case VOLUME_XZ : scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist)); scale[2] = scale[0]; break; case VOLUME_X: scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1); scale[2] = 1.0; break; case VOLUME_Z: scale[0] = 1.0; scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1); break; /* don't care for volume */ case NO_VOLUME: scale[0] = 1.0; scale[2] = 1.0; break; default: /* should not happen, but in case*/ return; } /* switch (data->volmode) */ /* Clear the object's rotation and scale */ ob->obmat[0][0]=size[0]*scale[0]; ob->obmat[0][1]=0; ob->obmat[0][2]=0; ob->obmat[1][0]=0; ob->obmat[1][1]=size[1]*scale[1]; ob->obmat[1][2]=0; ob->obmat[2][0]=0; ob->obmat[2][1]=0; ob->obmat[2][2]=size[2]*scale[2]; VecSubf(vec, ob->obmat[3], targetmat[3]); Normalise(vec); /* new Y aligns object target connection*/ totmat[1][0] = -vec[0]; totmat[1][1] = -vec[1]; totmat[1][2] = -vec[2]; switch (data->plane){ case PLANE_X: /* build new Z vector */ /* othogonal to "new Y" "old X! plane */ Crossf(orth, vec, xx); Normalise(orth); /* new Z*/ totmat[2][0] = orth[0]; totmat[2][1] = orth[1]; totmat[2][2] = orth[2]; /* we decided to keep X plane*/ Crossf(xx,orth, vec); Normalise(xx); totmat[0][0] = xx[0]; totmat[0][1] = xx[1]; totmat[0][2] = xx[2]; break; case PLANE_Z: /* build new X vector */ /* othogonal to "new Y" "old Z! plane */ Crossf(orth, vec, zz); Normalise(orth); /* new X*/ totmat[0][0] = -orth[0]; totmat[0][1] = -orth[1]; totmat[0][2] = -orth[2]; /* we decided to keep Z */ Crossf(zz,orth, vec); Normalise(zz); totmat[2][0] = zz[0]; totmat[2][1] = zz[1]; totmat[2][2] = zz[2]; break; } /* switch (data->plane) */ Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat34(ob->obmat, totmat, tmat); } } break; default: printf ("Error: Unknown constraint type\n"); break; } } void free_constraint_data (bConstraint *con) { if (con->data){ switch (con->type){ default: break; }; MEM_freeN (con->data); } } void free_constraints (ListBase *conlist) { bConstraint *con; /* Do any specific freeing */ for (con=conlist->first; con; con=con->next) { free_constraint_data (con); }; /* Free the whole list */ BLI_freelistN(conlist); } void free_constraint_channels (ListBase *chanbase) { bConstraintChannel *chan; for (chan=chanbase->first; chan; chan=chan->next) { if (chan->ipo){ chan->ipo->id.us--; } } BLI_freelistN(chanbase); }