/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include #include #include "MEM_guardedalloc.h" #include "nla.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_object_types.h" #include "DNA_action_types.h" #include "DNA_curve_types.h" #include "DNA_scene_types.h" #include "BKE_utildefines.h" #include "BKE_action.h" #include "BKE_anim.h" // for the curve calculation part #include "BKE_armature.h" #include "BKE_blender.h" #include "BKE_constraint.h" #include "BKE_displist.h" #include "BKE_object.h" #include "BKE_ipo.h" #include "BKE_global.h" #include "BKE_library.h" #include "blendef.h" #ifdef HAVE_CONFIG_H #include #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif /* used by object.c */ void Mat4BlendMat4(float [][4], float [][4], float [][4], float ); /* Local function prototypes */ /* ********************* Data level ****************** */ void free_constraint_data (bConstraint *con) { if (con->data) { /* any constraint-type specific stuff here */ MEM_freeN(con->data); } } void free_constraints (ListBase *conlist) { bConstraint *con; /* Do any specific freeing */ for (con=conlist->first; con; con=con->next) { free_constraint_data(con); } /* Free the whole list */ BLI_freelistN(conlist); } void free_constraint_channels (ListBase *chanbase) { bConstraintChannel *chan; for (chan=chanbase->first; chan; chan=chan->next) { if (chan->ipo) { chan->ipo->id.us--; } } BLI_freelistN(chanbase); } void relink_constraints (struct ListBase *list) { bConstraint *con; for (con = list->first; con; con=con->next) { switch (con->type) { case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_MINMAX: { bMinMaxConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_SIZELIKE: { bSizeLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_RIGIDBODYJOINT: { bRigidBodyJointConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_CLAMPTO: { bClampToConstraint *data; data = con->data; ID_NEW(data->tar); } break; } } } void copy_constraint_channels (ListBase *dst, ListBase *src) { bConstraintChannel *dchan, *schan; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) { dchan->ipo = copy_ipo(schan->ipo); } } void clone_constraint_channels (ListBase *dst, ListBase *src) { bConstraintChannel *dchan, *schan; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) { id_us_plus((ID *)dchan->ipo); } } void copy_constraints (ListBase *dst, ListBase *src) { bConstraint *con; dst->first= dst->last= NULL; duplicatelist (dst, src); for (con = dst->first; con; con=con->next) { con->data = MEM_dupallocN (con->data); } } /* **************** Editor Functions **************** */ char constraint_has_target (bConstraint *con) { switch (con->type) { case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_SIZELIKE: { bSizeLikeConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_MINMAX: { bMinMaxConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; if (data->tar) return 1; } case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_RIGIDBODYJOINT: { bRigidBodyJointConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_CLAMPTO: { bClampToConstraint *data = con->data; if (data->tar) return 1; } break; } // Unknown types or CONSTRAINT_TYPE_NULL or no target return 0; } Object *get_constraint_target(bConstraint *con, char **subtarget) { /* If the target for this constraint is target, return a pointer * to the name for this constraints subtarget ... NULL otherwise */ switch (con->type) { case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_SIZELIKE: { bSizeLikeConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_MINMAX: { bMinMaxConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; *subtarget= NULL; return data->tar; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; *subtarget= data->subtarget; return (data->tar); } break; case CONSTRAINT_TYPE_RIGIDBODYJOINT: { bRigidBodyJointConstraint *data = con->data; *subtarget= NULL; return data->tar; } break; case CONSTRAINT_TYPE_CLAMPTO: { bClampToConstraint *data = con->data; *subtarget= NULL; return data->tar; } break; default: *subtarget= NULL; break; } return NULL; } void set_constraint_target(bConstraint *con, Object *ob, char *subtarget) { /* Set the target for this constraint */ switch (con->type) { case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_SIZELIKE: { bSizeLikeConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_RIGIDBODYJOINT: { bRigidBodyJointConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_MINMAX: { bMinMaxConstraint *data = (bMinMaxConstraint*)con->data; data->tar= ob; if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32); } break; case CONSTRAINT_TYPE_CLAMPTO: { bClampToConstraint *data = con->data; data->tar= ob; } break; } } void unique_constraint_name (bConstraint *con, ListBase *list) { char tempname[64]; int number; char *dot; int exists = 0; bConstraint *curcon; /* See if we are given an empty string */ if (con->name[0] == '\0') { /* give it default name first */ strcpy (con->name, "Const"); } /* See if we even need to do this */ for (curcon = list->first; curcon; curcon=curcon->next){ if (curcon!=con){ if (!strcmp(curcon->name, con->name)){ exists = 1; break; } } } if (!exists) return; /* Strip off the suffix */ dot=strchr(con->name, '.'); if (dot) *dot=0; for (number = 1; number <=999; number++){ sprintf (tempname, "%s.%03d", con->name, number); exists = 0; for (curcon=list->first; curcon; curcon=curcon->next){ if (con!=curcon){ if (!strcmp (curcon->name, tempname)){ exists = 1; break; } } } if (!exists){ strcpy (con->name, tempname); return; } } } void *new_constraint_data (short type) { void *result; switch (type) { case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint"); data->weight= (float)1.0; data->orientweight= (float)1.0; data->iterations = 500; data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS; result = data; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint"); data->reserved1 = TRACK_Y; data->reserved2 = UP_Z; result = data; } break; case CONSTRAINT_TYPE_MINMAX: { bMinMaxConstraint *data; data = MEM_callocN(sizeof(bMinMaxConstraint), "minmaxConstraint"); data->minmaxflag = TRACK_Z; data->offset = 0.0f; data->cache[0] = data->cache[1] = data->cache[2] = 0.0f; data->flag = 0; result = data; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = MEM_callocN(sizeof(bRotateLikeConstraint), "rotlikeConstraint"); data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z; result = data; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = MEM_callocN(sizeof(bLocateLikeConstraint), "loclikeConstraint"); data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z; result = data; } break; case CONSTRAINT_TYPE_SIZELIKE: { bSizeLikeConstraint *data; data = MEM_callocN(sizeof(bLocateLikeConstraint), "sizelikeConstraint"); data->flag |= SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z; result = data; } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; data = MEM_callocN(sizeof(bActionConstraint), "actionConstraint"); data->local= 1; result = data; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint"); data->trackflag = TRACK_Y; data->lockflag = LOCK_Z; result = data; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint"); data->trackflag = TRACK_Y; data->upflag = UP_Z; data->offset = 0; data->followflag = 0; result = data; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint"); data->volmode = 0; data->plane = 0; data->orglength = 0.0; data->bulge = 1.0; result = data; } break; case CONSTRAINT_TYPE_LOCLIMIT: { bLocLimitConstraint *data; data = MEM_callocN(sizeof(bLocLimitConstraint), "LocLimitConstraint"); result = data; } break; case CONSTRAINT_TYPE_ROTLIMIT: { bRotLimitConstraint *data; data = MEM_callocN(sizeof(bRotLimitConstraint), "RotLimitConstraint"); result = data; } break; case CONSTRAINT_TYPE_SIZELIMIT: { bSizeLimitConstraint *data; data = MEM_callocN(sizeof(bSizeLimitConstraint), "SizeLimitConstraint"); result = data; } break; case CONSTRAINT_TYPE_RIGIDBODYJOINT: { bRigidBodyJointConstraint *data; int i; Base *base_iter; data = MEM_callocN(sizeof(bRigidBodyJointConstraint), "RigidBodyToConstraint"); base_iter = G.scene->base.first; while( base_iter && !data->tar ) { if( ( ( base_iter->flag & SELECT ) && // ( base_iter->lay & G.vd->lay ) ) && ( base_iter != G.scene->basact ) ) ) data->tar=base_iter->object; base_iter = base_iter->next; } data->type=1; data->pivX=0.0; data->pivY=0.0; data->pivZ=0.0; data->axX=0.0; data->axY=0.0; data->axZ=0.0; for (i=0;i<6;i++) { data->minLimit[i]=0.0; data->maxLimit[i]=0.0; } data->extraFz=0.0; result = data; } break; case CONSTRAINT_TYPE_CLAMPTO: { bClampToConstraint *data; data = MEM_callocN(sizeof(bClampToConstraint), "ClampToConstraint"); result = data; } break; default: result = NULL; break; } return result; } bConstraintChannel *get_constraint_channel (ListBase *list, const char *name) { bConstraintChannel *chan; for (chan = list->first; chan; chan=chan->next) { if (!strcmp(name, chan->name)) { return chan; } } return NULL; } /* finds or creates new constraint channel */ bConstraintChannel *verify_constraint_channel (ListBase *list, const char *name) { bConstraintChannel *chan; chan= get_constraint_channel (list, name); if(chan==NULL) { chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint chan"); BLI_addtail(list, chan); strcpy(chan->name, name); } return chan; } /* ***************** Evaluating ********************* */ /* does ipos only */ void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime) { bConstraint *con; bConstraintChannel *chan; IpoCurve *icu=NULL; for (con=conbase->first; con; con=con->next) { chan = get_constraint_channel(chanbase, con->name); if (chan && chan->ipo){ calc_ipo(chan->ipo, ctime); for (icu=chan->ipo->curve.first; icu; icu=icu->next){ switch (icu->adrcode){ case CO_ENFORCE: con->enforce = icu->curval; if (con->enforce<0.0f) con->enforce= 0.0f; else if (con->enforce>1.0f) con->enforce= 1.0f; break; } } } } } void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight) { float squat[4], dquat[4], fquat[4]; float ssize[3], dsize[3], fsize[4]; float sloc[3], dloc[3], floc[3]; float mat3[3][3], dstweight; float qmat[3][3], smat[3][3]; int i; dstweight = 1.0F-srcweight; Mat3CpyMat4(mat3, dst); Mat3ToQuat(mat3, dquat); Mat3ToSize(mat3, dsize); VECCOPY (dloc, dst[3]); Mat3CpyMat4(mat3, src); Mat3ToQuat(mat3, squat); Mat3ToSize(mat3, ssize); VECCOPY (sloc, src[3]); /* Do the actual blend */ for (i=0; i<3; i++){ floc[i] = (dloc[i]*dstweight) + (sloc[i]*srcweight); fsize[i] = 1.0f + ((dsize[i]-1.0f)*dstweight) + ((ssize[i]-1.0f)*srcweight); fquat[i+1] = (dquat[i+1]*dstweight) + (squat[i+1]*srcweight); } /* Do one more iteration for the quaternions only and normalize the quaternion if needed */ fquat[0] = 1.0f + ((dquat[0]-1.0f)*dstweight) + ((squat[0]-1.0f)*srcweight); NormalQuat (fquat); QuatToMat3(fquat, qmat); SizeToMat3(fsize, smat); Mat3MulMat3(mat3, qmat, smat); Mat4CpyMat3(out, mat3); VECCOPY (out[3], floc); } static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3]) { /* Case OBJECT */ if (!strlen(substring)) { Mat4CpyMat4 (mat, ob->obmat); VECCOPY (size, ob->size); // whats this for, hack! (ton) } /* Case BONE */ else { bPoseChannel *pchan; float bsize[3]={1, 1, 1}; pchan = get_pose_channel(ob->pose, substring); if (pchan){ /** * Multiply the objectspace bonematrix by the skeletons's global * transform to obtain the worldspace transformation of the target */ Mat4MulMat4 (mat, pchan->pose_mat, ob->obmat); } else Mat4CpyMat4 (mat, ob->obmat); VECCOPY(size, bsize); // whats this for, hack! (ton) } } /* stupid little cross product function, 0:x, 1:y, 2:z axes */ static int basis_cross(int n, int m) { if(n-m == 1) return 1; if(n-m == -1) return -1; if(n-m == 2) return -1; if(n-m == -2) return 1; else return 0; } static void vectomat(float *vec, float *target_up, short axis, short upflag, short flags, float m[][3]) { float n[3]; float u[3]; /* vector specifying the up axis */ float proj[3]; float right[3]; float neg = -1; int right_index; VecCopyf(n, vec); if(Normalize(n) == 0.0) { n[0] = 0.0; n[1] = 0.0; n[2] = 1.0; } if(axis > 2) axis -= 3; else VecMulf(n,-1); /* n specifies the transformation of the track axis */ if(flags & TARGET_Z_UP) { /* target Z axis is the global up axis */ u[0] = target_up[0]; u[1] = target_up[1]; u[2] = target_up[2]; } else { /* world Z axis is the global up axis */ u[0] = 0; u[1] = 0; u[2] = 1; } /* project the up vector onto the plane specified by n */ Projf(proj, u, n); /* first u onto n... */ VecSubf(proj, u, proj); /* then onto the plane */ /* proj specifies the transformation of the up axis */ if(Normalize(proj) == 0.0) { /* degenerate projection */ proj[0] = 0.0; proj[1] = 1.0; proj[2] = 0.0; } /* Normalized cross product of n and proj specifies transformation of the right axis */ Crossf(right, proj, n); Normalize(right); if(axis != upflag) { right_index = 3 - axis - upflag; neg = (float) basis_cross(axis, upflag); /* account for up direction, track direction */ m[right_index][0] = neg * right[0]; m[right_index][1] = neg * right[1]; m[right_index][2] = neg * right[2]; m[upflag][0] = proj[0]; m[upflag][1] = proj[1]; m[upflag][2] = proj[2]; m[axis][0] = n[0]; m[axis][1] = n[1]; m[axis][2] = n[2]; } else { m[0][0]= m[1][1]= m[2][2]= 1.0; m[0][1]= m[0][2]= m[0][3]= 0.0; m[1][0]= m[1][2]= m[1][3]= 0.0; m[2][0]= m[2][1]= m[2][3]= 0.0; } } /* called during solve_constraints */ /* also for make_parent, to find correct inverse of "follow path" */ /* warning, ownerdata is void... is not Bone anymore, but PoseChannel or Object */ /* ctime is global time, uncorrected for local bsystem_time */ short get_constraint_target_matrix (bConstraint *con, short ownertype, void* ownerdata, float mat[][4], float size[3], float ctime) { short valid=0; switch (con->type){ case CONSTRAINT_TYPE_NULL: { Mat4One(mat); } break; case CONSTRAINT_TYPE_ACTION: { if (ownertype == TARGET_BONE) { extern void chan_calc_mat(bPoseChannel *chan); bActionConstraint *data = (bActionConstraint*)con->data; bPose *pose; bPoseChannel *pchan, *tchan; float tempmat3[3][3]; float eul[3]; float s,t; Mat4One(mat); // return mat if (data->tar==NULL) return 0; /* need proper check for bone... */ if(data->subtarget[0]) { pchan = get_pose_channel(data->tar->pose, data->subtarget); if (pchan) { float arm_mat[3][3], pose_mat[3][3]; /* arm mat should be bone mat! bug... */ Mat3CpyMat4(arm_mat, pchan->bone->arm_mat); Mat3CpyMat4(pose_mat, pchan->pose_mat); /* new; true local rotation constraint */ if(data->local) { float diff_mat[3][3], par_mat[3][3], ipar_mat[3][3]; /* we need the local rotation = current rotation - (parent rotation + restpos) */ if (pchan->parent) { Mat3CpyMat4(par_mat, pchan->parent->pose_mat); Mat3MulMat3(diff_mat, par_mat, arm_mat); Mat3Inv(ipar_mat, diff_mat); } else { Mat3Inv(ipar_mat, arm_mat); } Mat3MulMat3(tempmat3, ipar_mat, pose_mat); } else { /* we use the deform mat, for backwards compatibility */ float imat[3][3]; Mat3Inv(imat, arm_mat); Mat3MulMat3(tempmat3, pose_mat, imat); } } else Mat3One(tempmat3); } else { float ans[4][4]; constraint_target_to_mat4(data->tar, data->subtarget, ans, size); /* extract rotation, is in global world coordinates */ Mat3CpyMat4(tempmat3, ans); } Mat3ToEul(tempmat3, eul); eul[0]*=(float)(180.0/M_PI); eul[1]*=(float)(180.0/M_PI); eul[2]*=(float)(180.0/M_PI); /* Target defines the animation */ s = (eul[data->type]-data->min)/(data->max-data->min); if (s<0) s=0; if (s>1) s=1; t = ( s * (data->end-data->start)) + data->start; /* Get the appropriate information from the action, we make temp pose */ pose = MEM_callocN(sizeof(bPose), "pose"); pchan = ownerdata; tchan= verify_pose_channel(pose, pchan->name); extract_pose_from_action (pose, data->act, t); chan_calc_mat(tchan); Mat4CpyMat4(mat, tchan->chan_mat); /* Clean up */ free_pose_channels(pose); MEM_freeN(pose); } } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data; Object *ob= data->tar; if (data->tar) { if (strlen(data->subtarget)) { bPoseChannel *pchan; float tmat[4][4]; float bsize[3]={1, 1, 1}; pchan = get_pose_channel(ob->pose, data->subtarget); if (pchan) { Mat4CpyMat4(tmat, pchan->pose_mat); if (data->flag & LOCLIKE_TIP) VECCOPY(tmat[3], pchan->pose_tail); Mat4MulMat4 (mat, tmat, ob->obmat); } else Mat4CpyMat4 (mat, ob->obmat); VECCOPY(size, bsize); // what's this hack for? } else { Mat4CpyMat4 (mat, ob->obmat); VECCOPY(size, data->tar->size); // what's this hack for? } valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_MINMAX: { bMinMaxConstraint *data = (bMinMaxConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = (bRotateLikeConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_SIZELIKE: { bSizeLikeConstraint *data; data = (bSizeLikeConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = (bTrackToConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = (bKinematicConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size); valid=1; } else if (data->flag & CONSTRAINT_IK_AUTO) { Object *ob= ownerdata; if(ob==NULL) Mat4One(mat); else { float vec[3]; /* move grabtarget into world space */ VECCOPY(vec, data->grabtarget); Mat4MulVecfl(ob->obmat, vec); Mat4CpyMat4(mat, ob->obmat); VECCOPY(mat[3], vec); } } else Mat4One (mat); } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = (bLockTrackConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = (bFollowPathConstraint*)con->data; if (data->tar){ Curve *cu; float q[4], vec[4], dir[3], *quat, x1, totmat[4][4]; float curvetime; Mat4One (totmat); Mat4One (mat); cu= data->tar->data; /* note; when creating constraints that follow path, the curve gets the CU_PATH set now, currently for paths to work it needs to go through the bevlist/displist system (ton) */ if(cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */ makeDispListCurveTypes(data->tar, 0); if(cu->path && cu->path->data) { curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset; if(calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) { curvetime /= cu->pathlen; CLAMP(curvetime, 0.0, 1.0); } if(where_on_path(data->tar, curvetime, vec, dir) ) { if(data->followflag){ quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag); Normalize(dir); q[0]= (float)cos(0.5*vec[3]); x1= (float)sin(0.5*vec[3]); q[1]= -x1*dir[0]; q[2]= -x1*dir[1]; q[3]= -x1*dir[2]; QuatMul(quat, q, quat); QuatToMat4(quat, totmat); } VECCOPY(totmat[3], vec); Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL); } } valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = (bStretchToConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size); valid = 1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_CLAMPTO: { bClampToConstraint *data; data = (bClampToConstraint*)con->data; if (data->tar) { Curve *cu= data->tar->data; /* note; when creating constraints that follow path, the curve gets the CU_PATH set now, currently for paths to work it needs to go through the bevlist/displist system (ton) */ if(cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */ makeDispListCurveTypes(data->tar, 0); } Mat4One (mat); } break; default: Mat4One(mat); break; } return valid; } /* only called during solve_constraints */ /* bone constraints create a fake object to work on, then ob is a workob */ /* if ownerdata is set, it's the posechannel */ void evaluate_constraint (bConstraint *constraint, Object *ob, short ownertype, void *ownerdata, float targetmat[][4]) { float M_oldmat[4][4]; float M_identity[4][4]; if (!constraint || !ob) return; Mat4One (M_identity); switch (constraint->type) { case CONSTRAINT_TYPE_NULL: case CONSTRAINT_TYPE_KINEMATIC: /* removed */ break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; float temp[4][4]; data = constraint->data; Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4(ob->obmat, targetmat, temp); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; float offset[3] = {0.0f, 0.0f, 0.0f}; data = constraint->data; if (data->flag & LOCLIKE_OFFSET) VECCOPY(offset, ob->obmat[3]); if (data->flag & LOCLIKE_X) { ob->obmat[3][0] = targetmat[3][0]; if(data->flag & LOCLIKE_X_INVERT) ob->obmat[3][0] *= -1; ob->obmat[3][0] += offset[0]; } if (data->flag & LOCLIKE_Y) { ob->obmat[3][1] = targetmat[3][1]; if(data->flag & LOCLIKE_Y_INVERT) ob->obmat[3][1] *= -1; ob->obmat[3][1] += offset[1]; } if (data->flag & LOCLIKE_Z) { ob->obmat[3][2] = targetmat[3][2]; if(data->flag & LOCLIKE_Z_INVERT) ob->obmat[3][2] *= -1; ob->obmat[3][2] += offset[2]; } } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; float loc[3]; float eul[3], obeul[3]; float size[3]; data = constraint->data; VECCOPY(loc, ob->obmat[3]); Mat4ToSize(ob->obmat, size); Mat4ToEul(targetmat, eul); Mat4ToEul(ob->obmat, obeul); if(data->flag != (ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z)) { if(!(data->flag & ROTLIKE_X)) { eul[0]= obeul[0]; } if(!(data->flag & ROTLIKE_Y)) { eul[1]= obeul[1]; } if(!(data->flag & ROTLIKE_Z)) { eul[2]= obeul[2]; } compatible_eul(eul, obeul); } if((data->flag & ROTLIKE_X) && (data->flag & ROTLIKE_X_INVERT)) eul[0]*=-1; if((data->flag & ROTLIKE_Y) && (data->flag & ROTLIKE_Y_INVERT)) eul[1]*=-1; if((data->flag & ROTLIKE_Z) && (data->flag & ROTLIKE_Z_INVERT)) eul[2]*=-1; LocEulSizeToMat4(ob->obmat, loc, eul, size); } break; case CONSTRAINT_TYPE_SIZELIKE: { bSizeLikeConstraint *data; float obsize[3], size[3]; data = constraint->data; Mat4ToSize(targetmat, size); Mat4ToSize(ob->obmat, obsize); if (data->flag & SIZELIKE_X && obsize[0] != 0) VecMulf(ob->obmat[0], size[0] / obsize[0]); if (data->flag & SIZELIKE_Y && obsize[1] != 0) VecMulf(ob->obmat[1], size[1] / obsize[1]); if (data->flag & SIZELIKE_Z && obsize[2] != 0) VecMulf(ob->obmat[2], size[2] / obsize[2]); } break; case CONSTRAINT_TYPE_MINMAX: { bMinMaxConstraint *data; float val1, val2; int index; float obmat[4][4],imat[4][4],tarmat[4][4],tmat[4][4]; data = constraint->data; Mat4CpyMat4(obmat,ob->obmat); Mat4CpyMat4(tarmat,targetmat); if (data->flag&MINMAX_USEROT) { /* take rotation of target into account by doing the transaction in target's localspace */ Mat4Invert(imat,tarmat); Mat4MulMat4(tmat,obmat,imat); Mat4CpyMat4(obmat,tmat); Mat4One(tarmat); } switch (data->minmaxflag) { case TRACK_Z: val1 = tarmat[3][2]; val2 = obmat[3][2]-data->offset; index = 2; break; case TRACK_Y: val1 = tarmat[3][1]; val2 = obmat[3][1]-data->offset; index = 1; break; case TRACK_X: val1 = tarmat[3][0]; val2 = obmat[3][0]-data->offset; index = 0; break; case TRACK_nZ: val2 = tarmat[3][2]; val1 = obmat[3][2]-data->offset; index = 2; break; case TRACK_nY: val2 = tarmat[3][1]; val1 = obmat[3][1]-data->offset; index = 1; break; case TRACK_nX: val2 = tarmat[3][0]; val1 = obmat[3][0]-data->offset; index = 0; break; default: return; } if (val1 > val2) { obmat[3][index] = tarmat[3][index] + data->offset; if (data->flag & MINMAX_STICKY) { if (data->flag & MINMAX_STUCK) { VECCOPY(obmat[3], data->cache); } else { VECCOPY(data->cache, obmat[3]); data->flag|=MINMAX_STUCK; } } if (data->flag & MINMAX_USEROT) { /* get out of localspace */ Mat4MulMat4(tmat,obmat,targetmat); Mat4CpyMat4(ob->obmat,tmat); } else { VECCOPY(ob->obmat[3],obmat[3]); } } else { data->flag&=~MINMAX_STUCK; } } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; float size[3]; float vec[3]; float totmat[3][3]; float tmat[4][4]; data=(bTrackToConstraint*)constraint->data; if (data->tar) { /* Get size property, since ob->size is only the object's own relative size, not its global one */ Mat4ToSize (ob->obmat, size); Mat4CpyMat4 (M_oldmat, ob->obmat); // Clear the object's rotation ob->obmat[0][0]=size[0]; ob->obmat[0][1]=0; ob->obmat[0][2]=0; ob->obmat[1][0]=0; ob->obmat[1][1]=size[1]; ob->obmat[1][2]=0; ob->obmat[2][0]=0; ob->obmat[2][1]=0; ob->obmat[2][2]=size[2]; VecSubf(vec, ob->obmat[3], targetmat[3]); vectomat(vec, targetmat[2], (short)data->reserved1, (short)data->reserved2, data->flags, totmat); Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat34(ob->obmat, totmat, tmat); } } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; float vec[3],vec2[3]; float totmat[3][3]; float tmpmat[3][3]; float invmat[3][3]; float tmat[4][4]; float mdet; data=(bLockTrackConstraint*)constraint->data; if (data->tar) { Mat4CpyMat4 (M_oldmat, ob->obmat); /* Vector object -> target */ VecSubf(vec, targetmat[3], ob->obmat[3]); switch (data->lockflag){ case LOCK_X: /* LOCK X */ { switch (data->trackflag){ case TRACK_Y: /* LOCK X TRACK Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[1], vec, vec2); Normalize(totmat[1]); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalize(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_Z: /* LOCK X TRACK Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[2], vec, vec2); Normalize(totmat[2]); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalize(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_nY: /* LOCK X TRACK -Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[1], vec, vec2); Normalize(totmat[1]); VecMulf(totmat[1],-1); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalize(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_nZ: /* LOCK X TRACK -Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[2], vec, vec2); Normalize(totmat[2]); VecMulf(totmat[2],-1); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalize(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; case LOCK_Y: /* LOCK Y */ { switch (data->trackflag){ case TRACK_X: /* LOCK Y TRACK X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[0], vec, vec2); Normalize(totmat[0]); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalize(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_Z: /* LOCK Y TRACK Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[2], vec, vec2); Normalize(totmat[2]); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalize(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; case TRACK_nX: /* LOCK Y TRACK -X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[0], vec, vec2); Normalize(totmat[0]); VecMulf(totmat[0],-1); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalize(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_nZ: /* LOCK Y TRACK -Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[2], vec, vec2); Normalize(totmat[2]); VecMulf(totmat[2],-1); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalize(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; case LOCK_Z: /* LOCK Z */ { switch (data->trackflag){ case TRACK_X: /* LOCK Z TRACK X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[0], vec, vec2); Normalize(totmat[0]); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalize(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_Y: /* LOCK Z TRACK Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[1], vec, vec2); Normalize(totmat[1]); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalize(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; case TRACK_nX: /* LOCK Z TRACK -X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[0], vec, vec2); Normalize(totmat[0]); VecMulf(totmat[0],-1); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalize(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_nY: /* LOCK Z TRACK -Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[1], vec, vec2); Normalize(totmat[1]); VecMulf(totmat[1],-1); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalize(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } /* Block to keep matrix heading */ tmpmat[0][0] = ob->obmat[0][0];tmpmat[0][1] = ob->obmat[0][1];tmpmat[0][2] = ob->obmat[0][2]; tmpmat[1][0] = ob->obmat[1][0];tmpmat[1][1] = ob->obmat[1][1];tmpmat[1][2] = ob->obmat[1][2]; tmpmat[2][0] = ob->obmat[2][0];tmpmat[2][1] = ob->obmat[2][1];tmpmat[2][2] = ob->obmat[2][2]; Normalize(tmpmat[0]); Normalize(tmpmat[1]); Normalize(tmpmat[2]); Mat3Inv(invmat,tmpmat); Mat3MulMat3(tmpmat,totmat,invmat); totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2]; totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2]; totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2]; Mat4CpyMat4(tmat, ob->obmat); mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2], totmat[1][0],totmat[1][1],totmat[1][2], totmat[2][0],totmat[2][1],totmat[2][2]); if (mdet==0) { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } /* apply out transformaton to the object */ Mat4MulMat34(ob->obmat, totmat, tmat); } } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; float obmat[4][4]; float size[3], obsize[3]; data=(bFollowPathConstraint*)constraint->data; if (data->tar) { /* get Object local transform (loc/rot/size) to determine transformation from path */ object_to_mat4(ob, obmat); /* get scaling of object before applying constraint */ Mat4ToSize(ob->obmat, size); /* apply targetmat - containing location on path, and rotation */ Mat4MulSerie(ob->obmat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL); /* un-apply scaling caused by path */ Mat4ToSize(ob->obmat, obsize); if (obsize[0] != 0) VecMulf(ob->obmat[0], size[0] / obsize[0]); if (obsize[1] != 0) VecMulf(ob->obmat[1], size[1] / obsize[1]); if (obsize[2] != 0) VecMulf(ob->obmat[2], size[2] / obsize[2]); } } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; float size[3],scale[3],vec[3],xx[3],zz[3],orth[3]; float totmat[3][3]; float tmat[4][4]; float dist; data=(bStretchToConstraint*)constraint->data; Mat4ToSize (ob->obmat, size); if (data->tar) { /* store X orientation before destroying obmat */ xx[0] = ob->obmat[0][0]; xx[1] = ob->obmat[0][1]; xx[2] = ob->obmat[0][2]; Normalize(xx); /* store Z orientation before destroying obmat */ zz[0] = ob->obmat[2][0]; zz[1] = ob->obmat[2][1]; zz[2] = ob->obmat[2][2]; Normalize(zz); VecSubf(vec, ob->obmat[3], targetmat[3]); vec[0] /= size[0]; vec[1] /= size[1]; vec[2] /= size[2]; dist = Normalize(vec); //dist = VecLenf( ob->obmat[3], targetmat[3]); if (data->orglength == 0) data->orglength = dist; if (data->bulge ==0) data->bulge = 1.0; scale[1] = dist/data->orglength; switch (data->volmode) { /* volume preserving scaling */ case VOLUME_XZ : scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist)); scale[2] = scale[0]; break; case VOLUME_X: scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1); scale[2] = 1.0; break; case VOLUME_Z: scale[0] = 1.0; scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1); break; /* don't care for volume */ case NO_VOLUME: scale[0] = 1.0; scale[2] = 1.0; break; default: /* should not happen, but in case*/ return; } /* switch (data->volmode) */ /* Clear the object's rotation and scale */ ob->obmat[0][0]=size[0]*scale[0]; ob->obmat[0][1]=0; ob->obmat[0][2]=0; ob->obmat[1][0]=0; ob->obmat[1][1]=size[1]*scale[1]; ob->obmat[1][2]=0; ob->obmat[2][0]=0; ob->obmat[2][1]=0; ob->obmat[2][2]=size[2]*scale[2]; VecSubf(vec, ob->obmat[3], targetmat[3]); Normalize(vec); /* new Y aligns object target connection*/ totmat[1][0] = -vec[0]; totmat[1][1] = -vec[1]; totmat[1][2] = -vec[2]; switch (data->plane) { case PLANE_X: /* build new Z vector */ /* othogonal to "new Y" "old X! plane */ Crossf(orth, vec, xx); Normalize(orth); /* new Z*/ totmat[2][0] = orth[0]; totmat[2][1] = orth[1]; totmat[2][2] = orth[2]; /* we decided to keep X plane*/ Crossf(xx,orth, vec); Normalize(xx); totmat[0][0] = xx[0]; totmat[0][1] = xx[1]; totmat[0][2] = xx[2]; break; case PLANE_Z: /* build new X vector */ /* othogonal to "new Y" "old Z! plane */ Crossf(orth, vec, zz); Normalize(orth); /* new X */ totmat[0][0] = -orth[0]; totmat[0][1] = -orth[1]; totmat[0][2] = -orth[2]; /* we decided to keep Z */ Crossf(zz,orth, vec); Normalize(zz); totmat[2][0] = zz[0]; totmat[2][1] = zz[1]; totmat[2][2] = zz[2]; break; } /* switch (data->plane) */ Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat34(ob->obmat, totmat, tmat); } } break; case CONSTRAINT_TYPE_LOCLIMIT: { bLocLimitConstraint *data; data = constraint->data; /* limit location relative to origin or parent */ if ((data->flag2 & LIMIT_NOPARENT) && ob->parent) { /* limiting relative to parent */ float parmat[4][4]; /* matrix of parent */ float objLoc[3], parLoc[3]; /* location of object, and location of parent */ float relLoc[3]; /* objLoc - parLoc*/ /* get matrix of parent */ Mat4CpyMat4(parmat, ob->parent->obmat); /* get locations as vectors */ objLoc[0] = ob->obmat[3][0]; objLoc[1] = ob->obmat[3][1]; objLoc[2] = ob->obmat[3][2]; parLoc[0] = parmat[3][0]; parLoc[1] = parmat[3][1]; parLoc[2] = parmat[3][2]; /* get relative location of obj from parent */ VecSubf(relLoc, objLoc, parLoc); /* limiting location */ if (data->flag & LIMIT_XMIN) { if(relLoc[0] < data->xmin) ob->obmat[3][0] = (parLoc[0]+data->xmin); } if (data->flag & LIMIT_XMAX) { if (relLoc[0] > data->xmax) ob->obmat[3][0] = (parLoc[0]+data->xmax); } if (data->flag & LIMIT_YMIN) { if(relLoc[1] < data->ymin) ob->obmat[3][1] = (parLoc[1]+data->ymin); } if (data->flag & LIMIT_YMAX) { if (relLoc[1] > data->ymax) ob->obmat[3][1] = (parLoc[1]+data->ymax); } if (data->flag & LIMIT_ZMIN) { if(relLoc[2] < data->zmin) ob->obmat[3][2] = (parLoc[2]+data->zmin); } if (data->flag & LIMIT_ZMAX) { if (relLoc[2] > data->zmax) ob->obmat[3][2] = (parLoc[2]+data->zmax); } } else { /* limiting relative to origin */ if (data->flag & LIMIT_XMIN) { if(ob->obmat[3][0] < data->xmin) ob->obmat[3][0] = data->xmin; } if (data->flag & LIMIT_XMAX) { if (ob->obmat[3][0] > data->xmax) ob->obmat[3][0] = data->xmax; } if (data->flag & LIMIT_YMIN) { if(ob->obmat[3][1] < data->ymin) ob->obmat[3][1] = data->ymin; } if (data->flag & LIMIT_YMAX) { if (ob->obmat[3][1] > data->ymax) ob->obmat[3][1] = data->ymax; } if (data->flag & LIMIT_ZMIN) { if(ob->obmat[3][2] < data->zmin) ob->obmat[3][2] = data->zmin; } if (data->flag & LIMIT_ZMAX) { if (ob->obmat[3][2] > data->zmax) ob->obmat[3][2] = data->zmax; } } } break; case CONSTRAINT_TYPE_ROTLIMIT: { bRotLimitConstraint *data; float loc[3]; float eul[3]; float size[3]; data = constraint->data; VECCOPY(loc, ob->obmat[3]); Mat4ToSize(ob->obmat, size); Mat4ToEul(ob->obmat, eul); /* eulers: radians to degrees! */ eul[0] = (eul[0] / M_PI * 180); eul[1] = (eul[1] / M_PI * 180); eul[2] = (eul[2] / M_PI * 180); /* limiting of euler values... */ if (data->flag & LIMIT_XROT) { if (eul[0] < data->xmin) eul[0] = data->xmin; if (eul[0] > data->xmax) eul[0] = data->xmax; } if (data->flag & LIMIT_YROT) { if (eul[1] < data->ymin) eul[1] = data->ymin; if (eul[1] > data->ymax) eul[1] = data->ymax; } if (data->flag & LIMIT_ZROT) { if (eul[2] < data->zmin) eul[2] = data->zmin; if (eul[2] > data->zmax) eul[2] = data->zmax; } /* eulers: degrees to radians ! */ eul[0] = (eul[0] / 180 * M_PI); eul[1] = (eul[1] / 180 * M_PI); eul[2] = (eul[2] / 180 * M_PI); LocEulSizeToMat4(ob->obmat, loc, eul, size); } break; case CONSTRAINT_TYPE_SIZELIMIT: { bSizeLimitConstraint *data; float obsize[3], size[3]; int clearNegScale=0; data = constraint->data; Mat4ToSize(ob->obmat, size); Mat4ToSize(ob->obmat, obsize); if (data->flag & LIMIT_XMIN) { if (ob->transflag & OB_NEG_SCALE) { size[0] *= -1; if (size[0] < data->xmin) { size[0] = data->xmin; clearNegScale += 1; } } else { if (size[0] < data->xmin) size[0] = data->xmin; } } if (data->flag & LIMIT_XMAX) { if (size[0] > data->xmax) size[0] = data->xmax; } if (data->flag & LIMIT_YMIN) { if (ob->transflag & OB_NEG_SCALE) { size[1] *= -1; if (size[1] < data->ymin) { size[1] = data->ymin; clearNegScale += 1; } } else { if (size[1] < data->ymin) size[1] = data->ymin; } } if (data->flag & LIMIT_YMAX) { if (size[1] > data->ymax) size[1] = data->ymax; } if (data->flag & LIMIT_ZMIN) { if (ob->transflag & OB_NEG_SCALE) { size[2] *= -1; if (size[2] < data->zmin) { size[2] = data->zmin; clearNegScale += 1; } } else { if (size[2] < data->zmin) size[2] = data->zmin; } } if (data->flag & LIMIT_ZMAX) { if (size[2] > data->zmax) size[2] = data->zmax; } if (clearNegScale != 0) { ob->transflag &= ~OB_NEG_SCALE; /* is this how we remove that flag? */ } VecMulf(ob->obmat[0], size[0]/obsize[0]); VecMulf(ob->obmat[1], size[1]/obsize[1]); VecMulf(ob->obmat[2], size[2]/obsize[2]); } break; case CONSTRAINT_TYPE_RIGIDBODYJOINT: { } break; case CONSTRAINT_TYPE_CLAMPTO: { bClampToConstraint *data; Curve *cu; float obmat[4][4], targetMatrix[4][4], ownLoc[3]; float curveMin[3], curveMax[3]; data = constraint->data; /* prevent crash if user deletes curve */ if ((data->tar == NULL) || (data->tar->type != OB_CURVE) ) return; else cu= data->tar->data; Mat4CpyMat4(obmat, ob->obmat); Mat4One(targetMatrix); VECCOPY(ownLoc, obmat[3]); INIT_MINMAX(curveMin, curveMax) minmax_object(data->tar, curveMin, curveMax); /* get targetmatrix */ if(cu->path && cu->path->data) { float vec[4], dir[3], totmat[4][4]; float curvetime; short clamp_axis; /* find best position on curve */ /* 1. determine which axis to sample on? */ if (data->flag==CLAMPTO_AUTO) { float size[3]; VecSubf(size, curveMax, curveMin); /* find axis along which the bounding box has the greatest * extent. Otherwise, default to the x-axis, as that is quite * frequently used. */ if ((size[2]>size[0]) && (size[2]>size[1])) clamp_axis= CLAMPTO_Z; else if ((size[1]>size[0]) && (size[1]>size[2])) clamp_axis= CLAMPTO_Y; else clamp_axis = CLAMPTO_X; } else clamp_axis= data->flag; /* 2. determine position relative to curve on a 0-1 scale */ if (clamp_axis > 0) clamp_axis--; if (ownLoc[clamp_axis] <= curveMin[clamp_axis]) curvetime = 0.0; else if (ownLoc[clamp_axis] >= curveMax[clamp_axis]) curvetime = 1.0; else curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (curveMax[clamp_axis] - curveMin[clamp_axis]); // umm /* 3. position on curve */ if(where_on_path(data->tar, curvetime, vec, dir) ) { Mat4One(totmat); VECCOPY(totmat[3], vec); Mat4MulSerie(targetMatrix, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL); } } /* obtain final object position */ VECCOPY(ob->obmat[3], targetMatrix[3]); } break; default: printf ("Error: Unknown constraint type\n"); break; } }