/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include #include #include "MEM_guardedalloc.h" #include "nla.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_object_types.h" #include "DNA_action_types.h" #include "DNA_curve_types.h" #include "DNA_scene_types.h" #include "BKE_utildefines.h" #include "BKE_action.h" #include "BKE_anim.h" // for the curve calculation part #include "BKE_armature.h" #include "BKE_blender.h" #include "BKE_constraint.h" #include "BKE_object.h" #include "BKE_ipo.h" #include "BKE_global.h" #include "BKE_library.h" #include "blendef.h" #ifdef HAVE_CONFIG_H #include #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif /* used by object.c */ void Mat4BlendMat4(float [][4], float [][4], float [][4], float ); /* Local function prototypes */ /* ********************* Data level ****************** */ void free_constraint_data (bConstraint *con) { if (con->data){ switch (con->type){ default: break; }; MEM_freeN (con->data); } } void free_constraints (ListBase *conlist) { bConstraint *con; /* Do any specific freeing */ for (con=conlist->first; con; con=con->next) { free_constraint_data (con); }; /* Free the whole list */ BLI_freelistN(conlist); } void free_constraint_channels (ListBase *chanbase) { bConstraintChannel *chan; for (chan=chanbase->first; chan; chan=chan->next) { if (chan->ipo){ chan->ipo->id.us--; } } BLI_freelistN(chanbase); } void relink_constraints (struct ListBase *list) { bConstraint *con; for (con = list->first; con; con=con->next){ switch (con->type){ case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_NULL: { } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = con->data; ID_NEW(data->tar); } break; } } } void *copy_constraint_channels (ListBase *dst, ListBase *src) { bConstraintChannel *dchan, *schan; bConstraintChannel *newact=NULL; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){ dchan->ipo = copy_ipo(schan->ipo); } return newact; } bConstraintChannel *clone_constraint_channels (ListBase *dst, ListBase *src, bConstraintChannel *oldact) { bConstraintChannel *dchan, *schan; bConstraintChannel *newact=NULL; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){ id_us_plus((ID *)dchan->ipo); if (schan==oldact) newact=dchan; } return newact; } void copy_constraints (ListBase *dst, ListBase *src) { bConstraint *con; dst->first= dst->last= NULL; duplicatelist (dst, src); for (con = dst->first; con; con=con->next) { con->data = MEM_dupallocN (con->data); /* removed a whole lot of useless code here (ton) */ } } /* **************** Editor Functions **************** */ char constraint_has_target (bConstraint *con) { switch (con->type){ case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; if (data->tar) return 1; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; if (data->tar) return 1; } case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; if (data->tar) return 1; } break; } // Unknown types or CONSTRAINT_TYPE_NULL or no target return 0; } Object *get_constraint_target(bConstraint *con, char **subtarget) { /* * If the target for this constraint is target, return a pointer * to the name for this constraints subtarget ... NULL otherwise */ switch (con->type) { case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; *subtarget= data->subtarget; return data->tar; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; *subtarget= NULL; return data->tar; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; *subtarget= data->subtarget; return (data->tar); } break; } return NULL; } void set_constraint_target(bConstraint *con, Object *ob) { /* * Set the target for this constraint */ switch (con->type) { case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data = con->data; data->tar= ob; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data = con->data; data->tar= ob; } break; } } void unique_constraint_name (bConstraint *con, ListBase *list) { char tempname[64]; int number; char *dot; int exists = 0; bConstraint *curcon; /* See if we even need to do this */ for (curcon = list->first; curcon; curcon=curcon->next){ if (curcon!=con){ if (!strcmp(curcon->name, con->name)){ exists = 1; break; } } } if (!exists) return; /* Strip off the suffix */ dot=strchr(con->name, '.'); if (dot) *dot=0; for (number = 1; number <=999; number++){ sprintf (tempname, "%s.%03d", con->name, number); exists = 0; for (curcon=list->first; curcon; curcon=curcon->next){ if (con!=curcon){ if (!strcmp (curcon->name, tempname)){ exists = 1; break; } } } if (!exists){ strcpy (con->name, tempname); return; } } } void *new_constraint_data (short type) { void *result; switch (type){ case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint"); data->tolerance = (float)0.001; data->iterations = 500; result = data; } break; case CONSTRAINT_TYPE_NULL: { result = NULL; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint"); data->reserved1 = TRACK_Y; data->reserved2 = UP_Z; result = data; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = MEM_callocN(sizeof(bRotateLikeConstraint), "rotlikeConstraint"); result = data; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = MEM_callocN(sizeof(bLocateLikeConstraint), "loclikeConstraint"); data->flag |= LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z; result = data; } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; data = MEM_callocN(sizeof(bActionConstraint), "actionConstraint"); data->local= 1; result = data; } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint"); data->trackflag = TRACK_Y; data->lockflag = LOCK_Z; result = data; } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint"); data->trackflag = TRACK_Y; data->upflag = UP_Z; data->offset = 0; data->followflag = 0; result = data; } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint"); data->volmode = 0; data->plane = 0; data->orglength = 0.0; data->bulge = 1.0; result = data; } break; default: result = NULL; break; } return result; } bConstraintChannel *find_constraint_channel (ListBase *list, const char *name) { bConstraintChannel *chan; for (chan = list->first; chan; chan=chan->next) { if (!strcmp(name, chan->name)) { return chan; } } return NULL; } /* ***************** Evaluating ********************* */ /* does ipos only */ void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime) { bConstraint *con; bConstraintChannel *chan; IpoCurve *icu=NULL; for (con=conbase->first; con; con=con->next) { chan = find_constraint_channel(chanbase, con->name); if (chan && chan->ipo){ calc_ipo(chan->ipo, ctime); for (icu=chan->ipo->curve.first; icu; icu=icu->next){ switch (icu->adrcode){ case CO_ENFORCE: con->enforce = icu->curval; if (con->enforce<0) con->enforce=0; else if (con->enforce>1) con->enforce=1; break; } } } } } void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight) { float squat[4], dquat[4], fquat[4]; float ssize[3], dsize[3], fsize[4]; float sloc[3], dloc[3], floc[3]; float mat3[3][3], dstweight; float qmat[3][3], smat[3][3]; int i; dstweight = 1.0F-srcweight; Mat3CpyMat4(mat3, dst); Mat3ToQuat(mat3, dquat); Mat3ToSize(mat3, dsize); VECCOPY (dloc, dst[3]); Mat3CpyMat4(mat3, src); Mat3ToQuat(mat3, squat); Mat3ToSize(mat3, ssize); VECCOPY (sloc, src[3]); /* Do the actual blend */ for (i=0; i<3; i++){ floc[i] = (dloc[i]*dstweight) + (sloc[i]*srcweight); fsize[i] = 1.0f + ((dsize[i]-1.0f)*dstweight) + ((ssize[i]-1.0f)*srcweight); fquat[i+1] = (dquat[i+1]*dstweight) + (squat[i+1]*srcweight); } /* Do one more iteration for the quaternions only and normalize the quaternion if needed */ fquat[0] = 1.0f + ((dquat[0]-1.0f)*dstweight) + ((squat[0]-1.0f)*srcweight); NormalQuat (fquat); QuatToMat3(fquat, qmat); SizeToMat3(fsize, smat); Mat3MulMat3(mat3, qmat, smat); Mat4CpyMat3(out, mat3); VECCOPY (out[3], floc); } static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3], float ctime) { /* Case OBJECT */ if (!strlen(substring)) { Mat4CpyMat4 (mat, ob->obmat); VECCOPY (size, ob->size); // whats this for, hack! (ton) } /* Case BONE */ else { bPoseChannel *pchan; float bsize[3]={1, 1, 1}; pchan = get_pose_channel(ob->pose, substring); if (pchan){ /** * Multiply the objectspace bonematrix by the skeletons's global * transform to obtain the worldspace transformation of the target */ Mat4MulMat4 (mat, pchan->pose_mat, ob->obmat); } else Mat4CpyMat4 (mat, ob->obmat); VECCOPY(size, bsize); // whats this for, hack! (ton) } } /* called during solve_constraints */ /* also for make_parent, to find correct inverse of "follow path" */ /* warning, ownerdata is void... is not Bone anymore, but posechannel */ short get_constraint_target_matrix (bConstraint *con, short ownertype, void* ownerdata, float mat[][4], float size[3], float ctime) { short valid=0; switch (con->type){ case CONSTRAINT_TYPE_NULL: { Mat4One(mat); } break; case CONSTRAINT_TYPE_ACTION: { if (ownertype == TARGET_BONE) { extern void chan_calc_mat(bPoseChannel *chan); bActionConstraint *data = (bActionConstraint*)con->data; bPose *pose; bPoseChannel *pchan, *tchan; float tempmat3[3][3]; float eul[3]; float s,t; Mat4One(mat); // return mat if (data->tar==NULL) return 0; /* need proper check for bone... */ if(data->subtarget[0]) { pchan = get_pose_channel(data->tar->pose, data->subtarget); if (pchan) { float arm_mat[3][3], pose_mat[3][3]; Mat3CpyMat4(arm_mat, pchan->bone->arm_mat); Mat3CpyMat4(pose_mat, pchan->pose_mat); /* new; true local rotation constraint */ if(data->local) { float diff_mat[3][3], par_mat[3][3], ipar_mat[3][3]; /* we need the local rotation = current rotation - (parent rotation + restpos) */ if (pchan->parent) { Mat3CpyMat4(par_mat, pchan->parent->pose_mat); Mat3MulMat3(diff_mat, par_mat, arm_mat); Mat3Inv(ipar_mat, diff_mat); } else { Mat3Inv(ipar_mat, arm_mat); } Mat3MulMat3(tempmat3, ipar_mat, pose_mat); } else { /* we use the deform mat, for backwards compatibility */ float imat[3][3]; Mat3Inv(imat, arm_mat); Mat3MulMat3(tempmat3, pose_mat, imat); } } else Mat3One(tempmat3); } else { float ans[4][4]; constraint_target_to_mat4(data->tar, data->subtarget, ans, size, ctime); /* extract rotation, is in global world coordinates */ Mat3CpyMat4(tempmat3, ans); } Mat3ToEul(tempmat3, eul); eul[0]*=(float)(180.0/M_PI); eul[1]*=(float)(180.0/M_PI); eul[2]*=(float)(180.0/M_PI); /* Target defines the animation */ s = (eul[data->type]-data->min)/(data->max-data->min); if (s<0) s=0; if (s>1) s=1; t = ( s * (data->end-data->start)) + data->start; /* Get the appropriate information from the action, we make temp pose */ pose = MEM_callocN(sizeof(bPose), "pose"); pchan = ownerdata; tchan= verify_pose_channel(pose, pchan->name); extract_pose_from_action (pose, data->act, t); chan_calc_mat(tchan); Mat4CpyMat4(mat, tchan->chan_mat); /* Clean up */ free_pose_channels(pose); MEM_freeN(pose); } } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = (bRotateLikeConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = (bTrackToConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = (bKinematicConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; data = (bLockTrackConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; data = (bFollowPathConstraint*)con->data; if (data->tar){ Curve *cu; float q[4], vec[4], dir[3], *quat, x1, totmat[4][4]; float curvetime; Mat4One (totmat); Mat4One (mat); cu= data->tar->data; /* note; when creating constraints that follow path, the curve gets the CU_PATH set now, currently for paths to work it needs to go through the bevlist/displist system (ton) */ if(cu->path && cu->path->data) { curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset; if(calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) { curvetime /= cu->pathlen; CLAMP(curvetime, 0.0, 1.0); } if(where_on_path(data->tar, curvetime, vec, dir) ) { if(data->followflag){ quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag); Normalise(dir); q[0]= (float)cos(0.5*vec[3]); x1= (float)sin(0.5*vec[3]); q[1]= -x1*dir[0]; q[2]= -x1*dir[1]; q[3]= -x1*dir[2]; QuatMul(quat, q, quat); QuatToMat4(quat, totmat); } VECCOPY(totmat[3], vec); Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL); } } valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; data = (bStretchToConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid = 1; } else Mat4One (mat); } break; default: Mat4One(mat); break; } return valid; } /* only called during solve_constraints */ /* bone constraints create a fake object to work on, then ob is a workob */ void evaluate_constraint (bConstraint *constraint, Object *ob, short ownertype, void *ownerdata, float targetmat[][4]) { float M_oldmat[4][4]; float M_identity[4][4]; if (!constraint || !ob) return; Mat4One (M_identity); switch (constraint->type){ case CONSTRAINT_TYPE_ACTION: { float temp[4][4]; bActionConstraint *data; data = constraint->data; Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4(ob->obmat, targetmat, temp); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = constraint->data; if (data->flag & LOCLIKE_X) ob->obmat[3][0] = targetmat[3][0]; if (data->flag & LOCLIKE_Y) ob->obmat[3][1] = targetmat[3][1]; if (data->flag & LOCLIKE_Z) ob->obmat[3][2] = targetmat[3][2]; } break; case CONSTRAINT_TYPE_ROTLIKE: { float tmat[4][4]; float size[3]; Mat4ToSize(ob->obmat, size); Mat4CpyMat4 (tmat, targetmat); Mat4Ortho(tmat); ob->obmat[0][0] = tmat[0][0]*size[0]; ob->obmat[0][1] = tmat[0][1]*size[1]; ob->obmat[0][2] = tmat[0][2]*size[2]; ob->obmat[1][0] = tmat[1][0]*size[0]; ob->obmat[1][1] = tmat[1][1]*size[1]; ob->obmat[1][2] = tmat[1][2]*size[2]; ob->obmat[2][0] = tmat[2][0]*size[0]; ob->obmat[2][1] = tmat[2][1]*size[1]; ob->obmat[2][2] = tmat[2][2]*size[2]; } break; case CONSTRAINT_TYPE_NULL: { } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; float size[3]; float *quat; float vec[3]; float totmat[3][3]; float tmat[4][4]; data=(bTrackToConstraint*)constraint->data; if (data->tar){ /* Get size property, since ob->size is only the object's own relative size, not its global one */ Mat4ToSize (ob->obmat, size); Mat4CpyMat4 (M_oldmat, ob->obmat); // Clear the object's rotation ob->obmat[0][0]=size[0]; ob->obmat[0][1]=0; ob->obmat[0][2]=0; ob->obmat[1][0]=0; ob->obmat[1][1]=size[1]; ob->obmat[1][2]=0; ob->obmat[2][0]=0; ob->obmat[2][1]=0; ob->obmat[2][2]=size[2]; VecSubf(vec, ob->obmat[3], targetmat[3]); quat= vectoquat(vec, (short)data->reserved1, (short)data->reserved2); QuatToMat3(quat, totmat); Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat34(ob->obmat, totmat, tmat); } } break; case CONSTRAINT_TYPE_KINEMATIC: { /* removed */ } break; case CONSTRAINT_TYPE_LOCKTRACK: { bLockTrackConstraint *data; float vec[3],vec2[3]; float totmat[3][3]; float tmpmat[3][3]; float invmat[3][3]; float tmat[4][4]; float mdet; data=(bLockTrackConstraint*)constraint->data; if (data->tar){ Mat4CpyMat4 (M_oldmat, ob->obmat); /* Vector object -> target */ VecSubf(vec, targetmat[3], ob->obmat[3]); switch (data->lockflag){ case LOCK_X: /* LOCK X */ { switch (data->trackflag){ case TRACK_Y: /* LOCK X TRACK Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_Z: /* LOCK X TRACK Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_nY: /* LOCK X TRACK -Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); VecMulf(totmat[1],-1); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_nZ: /* LOCK X TRACK -Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[0]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); VecMulf(totmat[2],-1); /* the x axis is fixed*/ totmat[0][0] = ob->obmat[0][0]; totmat[0][1] = ob->obmat[0][1]; totmat[0][2] = ob->obmat[0][2]; Normalise(totmat[0]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; case LOCK_Y: /* LOCK Y */ { switch (data->trackflag){ case TRACK_X: /* LOCK Y TRACK X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_Z: /* LOCK Y TRACK Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; case TRACK_nX: /* LOCK Y TRACK -X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); VecMulf(totmat[0],-1); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[2], totmat[0], totmat[1]); } break; case TRACK_nZ: /* LOCK Y TRACK -Z */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[1]); VecSubf(totmat[2], vec, vec2); Normalise(totmat[2]); VecMulf(totmat[2],-1); /* the y axis is fixed*/ totmat[1][0] = ob->obmat[1][0]; totmat[1][1] = ob->obmat[1][1]; totmat[1][2] = ob->obmat[1][2]; Normalise(totmat[1]); /* the z axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; case LOCK_Z: /* LOCK Z */ { switch (data->trackflag){ case TRACK_X: /* LOCK Z TRACK X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_Y: /* LOCK Z TRACK Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; case TRACK_nX: /* LOCK Z TRACK -X */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[0], vec, vec2); Normalise(totmat[0]); VecMulf(totmat[0],-1); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[1], totmat[2], totmat[0]); } break; case TRACK_nY: /* LOCK Z TRACK -Y */ { /* Projection of Vector on the plane */ Projf(vec2, vec, ob->obmat[2]); VecSubf(totmat[1], vec, vec2); Normalise(totmat[1]); VecMulf(totmat[1],-1); /* the z axis is fixed*/ totmat[2][0] = ob->obmat[2][0]; totmat[2][1] = ob->obmat[2][1]; totmat[2][2] = ob->obmat[2][2]; Normalise(totmat[2]); /* the x axis gets mapped onto a third orthogonal vector */ Crossf(totmat[0], totmat[1], totmat[2]); } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } } break; default: { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } break; } /* Block to keep matrix heading */ tmpmat[0][0] = ob->obmat[0][0];tmpmat[0][1] = ob->obmat[0][1];tmpmat[0][2] = ob->obmat[0][2]; tmpmat[1][0] = ob->obmat[1][0];tmpmat[1][1] = ob->obmat[1][1];tmpmat[1][2] = ob->obmat[1][2]; tmpmat[2][0] = ob->obmat[2][0];tmpmat[2][1] = ob->obmat[2][1];tmpmat[2][2] = ob->obmat[2][2]; Normalise(tmpmat[0]); Normalise(tmpmat[1]); Normalise(tmpmat[2]); Mat3Inv(invmat,tmpmat); Mat3MulMat3(tmpmat,totmat,invmat); totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2]; totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2]; totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2]; Mat4CpyMat4(tmat, ob->obmat); mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2], totmat[1][0],totmat[1][1],totmat[1][2], totmat[2][0],totmat[2][1],totmat[2][2]); if (mdet==0) { totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0; totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0; totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1; } /* apply out transformaton to the object */ Mat4MulMat34(ob->obmat, totmat, tmat); } } break; case CONSTRAINT_TYPE_FOLLOWPATH: { bFollowPathConstraint *data; float obmat[4][4]; data=(bFollowPathConstraint*)constraint->data; if (data->tar) { // weird, this is needed? doesnt work for workob (ton) object_to_mat4(ob, obmat); Mat4MulSerie(ob->obmat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL); } } break; case CONSTRAINT_TYPE_STRETCHTO: { bStretchToConstraint *data; float size[3],scale[3],vec[3],xx[3],zz[3],orth[3]; float totmat[3][3]; float tmat[4][4]; float dist; data=(bStretchToConstraint*)constraint->data; Mat4ToSize (ob->obmat, size); if (data->tar){ /* store X orientation before destroying obmat */ xx[0] = ob->obmat[0][0]; xx[1] = ob->obmat[0][1]; xx[2] = ob->obmat[0][2]; Normalise(xx); /* store Z orientation before destroying obmat */ zz[0] = ob->obmat[2][0]; zz[1] = ob->obmat[2][1]; zz[2] = ob->obmat[2][2]; Normalise(zz); VecSubf(vec, ob->obmat[3], targetmat[3]); vec[0] /= size[0]; vec[1] /= size[1]; vec[2] /= size[2]; dist = Normalise(vec); //dist = VecLenf( ob->obmat[3], targetmat[3]); if (data->orglength == 0) data->orglength = dist; if (data->bulge ==0) data->bulge = 1.0; scale[1] = dist/data->orglength; switch (data->volmode){ /* volume preserving scaling */ case VOLUME_XZ : scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist)); scale[2] = scale[0]; break; case VOLUME_X: scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1); scale[2] = 1.0; break; case VOLUME_Z: scale[0] = 1.0; scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1); break; /* don't care for volume */ case NO_VOLUME: scale[0] = 1.0; scale[2] = 1.0; break; default: /* should not happen, but in case*/ return; } /* switch (data->volmode) */ /* Clear the object's rotation and scale */ ob->obmat[0][0]=size[0]*scale[0]; ob->obmat[0][1]=0; ob->obmat[0][2]=0; ob->obmat[1][0]=0; ob->obmat[1][1]=size[1]*scale[1]; ob->obmat[1][2]=0; ob->obmat[2][0]=0; ob->obmat[2][1]=0; ob->obmat[2][2]=size[2]*scale[2]; VecSubf(vec, ob->obmat[3], targetmat[3]); Normalise(vec); /* new Y aligns object target connection*/ totmat[1][0] = -vec[0]; totmat[1][1] = -vec[1]; totmat[1][2] = -vec[2]; switch (data->plane){ case PLANE_X: /* build new Z vector */ /* othogonal to "new Y" "old X! plane */ Crossf(orth, vec, xx); Normalise(orth); /* new Z*/ totmat[2][0] = orth[0]; totmat[2][1] = orth[1]; totmat[2][2] = orth[2]; /* we decided to keep X plane*/ Crossf(xx,orth, vec); Normalise(xx); totmat[0][0] = xx[0]; totmat[0][1] = xx[1]; totmat[0][2] = xx[2]; break; case PLANE_Z: /* build new X vector */ /* othogonal to "new Y" "old Z! plane */ Crossf(orth, vec, zz); Normalise(orth); /* new X*/ totmat[0][0] = -orth[0]; totmat[0][1] = -orth[1]; totmat[0][2] = -orth[2]; /* we decided to keep Z */ Crossf(zz,orth, vec); Normalise(zz); totmat[2][0] = zz[0]; totmat[2][1] = zz[1]; totmat[2][2] = zz[2]; break; } /* switch (data->plane) */ Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat34(ob->obmat, totmat, tmat); } } break; default: printf ("Error: Unknown constraint type\n"); break; } }