/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2020 Blender Foundation. * All rights reserved. */ /** \file * \ingroup bke */ #include "BKE_cryptomatte.h" #include "BKE_main.h" #include "DNA_material_types.h" #include "DNA_node_types.h" #include "DNA_object_types.h" #include "BLI_compiler_attrs.h" #include "BLI_dynstr.h" #include "BLI_hash_mm3.h" #include "BLI_listbase.h" #include "BLI_string.h" #include "MEM_guardedalloc.h" #include #include #include static uint32_t cryptomatte_hash(const ID *id) { const char *name = &id->name[2]; const int name_len = BLI_strnlen(name, MAX_NAME); uint32_t cryptohash_int = BKE_cryptomatte_hash(name, name_len); return cryptohash_int; } uint32_t BKE_cryptomatte_hash(const char *name, int name_len) { uint32_t cryptohash_int = BLI_hash_mm3((const unsigned char *)name, name_len, 0); return cryptohash_int; } uint32_t BKE_cryptomatte_object_hash(const Object *object) { return cryptomatte_hash(&object->id); } uint32_t BKE_cryptomatte_material_hash(const Material *material) { if (material == nullptr) { return 0.0f; } return cryptomatte_hash(&material->id); } uint32_t BKE_cryptomatte_asset_hash(const Object *object) { const Object *asset_object = object; while (asset_object->parent != nullptr) { asset_object = asset_object->parent; } return cryptomatte_hash(&asset_object->id); } /* Convert a cryptomatte hash to a float. * * Cryptomatte hashes are stored in float textures and images. The conversion is taken from the * cryptomatte specification. See Floating point conversion section in * https://github.com/Psyop/Cryptomatte/blob/master/specification/cryptomatte_specification.pdf. * * The conversion uses as many 32 bit floating point values as possible to minimize hash * collisions. Unfortunately not all 32 bits can be as NaN and Inf can be problematic. * * Note that this conversion assumes to be running on a L-endian system. */ float BKE_cryptomatte_hash_to_float(uint32_t cryptomatte_hash) { uint32_t mantissa = cryptomatte_hash & ((1 << 23) - 1); uint32_t exponent = (cryptomatte_hash >> 23) & ((1 << 8) - 1); exponent = MAX2(exponent, (uint32_t)1); exponent = MIN2(exponent, (uint32_t)254); exponent = exponent << 23; uint32_t sign = (cryptomatte_hash >> 31); sign = sign << 31; uint32_t float_bits = sign | exponent | mantissa; float f; memcpy(&f, &float_bits, sizeof(uint32_t)); return f; } static ID *cryptomatte_find_id(const ListBase *ids, const float encoded_hash) { LISTBASE_FOREACH (ID *, id, ids) { uint32_t hash = BKE_cryptomatte_hash((id->name + 2), BLI_strnlen(id->name + 2, MAX_NAME)); if (BKE_cryptomatte_hash_to_float(hash) == encoded_hash) { return id; } } return nullptr; } /* Find an ID in the given main that matches the given encoded float. */ static struct ID *BKE_cryptomatte_find_id(const Main *bmain, const float encoded_hash) { ID *result; result = cryptomatte_find_id(&bmain->objects, encoded_hash); if (result == nullptr) { result = cryptomatte_find_id(&bmain->materials, encoded_hash); } return result; } char *BKE_cryptomatte_entries_to_matte_id(NodeCryptomatte *node_storage) { DynStr *matte_id = BLI_dynstr_new(); bool first = true; LISTBASE_FOREACH (CryptomatteEntry *, entry, &node_storage->entries) { if (!first) { BLI_dynstr_append(matte_id, ","); } if (BLI_strnlen(entry->name, sizeof(entry->name)) != 0) { BLI_dynstr_nappend(matte_id, entry->name, sizeof(entry->name)); } else { BLI_dynstr_appendf(matte_id, "<%.9g>", entry->encoded_hash); } first = false; } char *result = BLI_dynstr_get_cstring(matte_id); BLI_dynstr_free(matte_id); return result; } void BKE_cryptomatte_matte_id_to_entries(const Main *bmain, NodeCryptomatte *node_storage, const char *matte_id) { BLI_freelistN(&node_storage->entries); std::istringstream ss(matte_id); while (ss.good()) { CryptomatteEntry *entry = nullptr; std::string token; getline(ss, token, ','); /* Ignore empty tokens. */ if (token.length() > 0) { size_t first = token.find_first_not_of(' '); size_t last = token.find_last_not_of(' '); if (first == std::string::npos || last == std::string::npos) { break; } token = token.substr(first, (last - first + 1)); if (*token.begin() == '<' && *(--token.end()) == '>') { float encoded_hash = atof(token.substr(1, token.length() - 2).c_str()); entry = (CryptomatteEntry *)MEM_callocN(sizeof(CryptomatteEntry), __func__); entry->encoded_hash = encoded_hash; if (bmain) { ID *id = BKE_cryptomatte_find_id(bmain, encoded_hash); if (id != nullptr) { BLI_strncpy(entry->name, id->name + 2, sizeof(entry->name)); } } } else { const char *name = token.c_str(); int name_len = token.length(); entry = (CryptomatteEntry *)MEM_callocN(sizeof(CryptomatteEntry), __func__); BLI_strncpy(entry->name, name, sizeof(entry->name)); uint32_t hash = BKE_cryptomatte_hash(name, name_len); entry->encoded_hash = BKE_cryptomatte_hash_to_float(hash); } } if (entry != nullptr) { BLI_addtail(&node_storage->entries, entry); } } }