/* curve.c * * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ #include // floor #include #include #ifdef HAVE_CONFIG_H #include #endif #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "DNA_object_types.h" #include "DNA_curve_types.h" #include "DNA_material_types.h" /* for dereferencing pointers */ #include "DNA_ID.h" #include "DNA_vfont_types.h" #include "DNA_key_types.h" #include "DNA_ipo_types.h" #include "BKE_global.h" #include "BKE_main.h" #include "BKE_utildefines.h" // VECCOPY #include "BKE_object.h" #include "BKE_mesh.h" #include "BKE_curve.h" #include "BKE_displist.h" #include "BKE_ipo.h" #include "BKE_anim.h" #include "BKE_library.h" #include "BKE_key.h" /* globals */ extern ListBase editNurb; /* editcurve.c */ /* local */ int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec); void unlink_curve(Curve *cu) { int a; for(a=0; atotcol; a++) { if(cu->mat[a]) cu->mat[a]->id.us--; cu->mat[a]= 0; } if(cu->vfont) cu->vfont->id.us--; cu->vfont= 0; if(cu->key) cu->key->id.us--; cu->key= 0; if(cu->ipo) cu->ipo->id.us--; cu->ipo= 0; } /* niet curve zelf vrijgeven */ void free_curve(Curve *cu) { freeNurblist(&cu->nurb); BLI_freelistN(&cu->bev); freedisplist(&cu->disp); unlink_curve(cu); if(cu->mat) MEM_freeN(cu->mat); if(cu->str) MEM_freeN(cu->str); if(cu->strinfo) MEM_freeN(cu->strinfo); if(cu->bb) MEM_freeN(cu->bb); if(cu->path) free_path(cu->path); if(cu->tb) MEM_freeN(cu->tb); } Curve *add_curve(char *name, int type) { Curve *cu; cu= alloc_libblock(&G.main->curve, ID_CU, name); cu->size[0]= cu->size[1]= cu->size[2]= 1.0; cu->flag= CU_FRONT+CU_BACK; cu->pathlen= 100; cu->resolu= cu->resolv= 12; cu->width= 1.0; cu->wordspace = 1.0; cu->spacing= cu->linedist= 1.0; cu->fsize= 1.0; cu->ulheight = 0.05; cu->texflag= CU_AUTOSPACE; cu->bb= unit_boundbox(); return cu; } Curve *copy_curve(Curve *cu) { Curve *cun; int a; cun= copy_libblock(cu); cun->nurb.first= cun->nurb.last= 0; duplicateNurblist( &(cun->nurb), &(cu->nurb)); cun->mat= MEM_dupallocN(cu->mat); for(a=0; atotcol; a++) { id_us_plus((ID *)cun->mat[a]); } cun->str= MEM_dupallocN(cu->str); cun->strinfo= MEM_dupallocN(cu->strinfo); cun->tb= MEM_dupallocN(cu->tb); cun->bb= MEM_dupallocN(cu->bb); cun->key= copy_key(cu->key); if(cun->key) cun->key->from= (ID *)cun; cun->disp.first= cun->disp.last= 0; cun->bev.first= cun->bev.last= 0; cun->path= 0; /* single user ipo too */ if(cun->ipo) cun->ipo= copy_ipo(cun->ipo); id_us_plus((ID *)cun->vfont); id_us_plus((ID *)cun->vfontb); id_us_plus((ID *)cun->vfonti); id_us_plus((ID *)cun->vfontbi); return cun; } void make_local_curve(Curve *cu) { Object *ob = 0; Curve *cun; int local=0, lib=0; /* - when there are only lib users: don't do * - when there are only local users: set flag * - mixed: do a copy */ if(cu->id.lib==0) return; if(cu->vfont) cu->vfont->id.lib= 0; if(cu->id.us==1) { cu->id.lib= 0; cu->id.flag= LIB_LOCAL; new_id(0, (ID *)cu, 0); return; } ob= G.main->object.first; while(ob) { if(ob->data==cu) { if(ob->id.lib) lib= 1; else local= 1; } ob= ob->id.next; } if(local && lib==0) { cu->id.lib= 0; cu->id.flag= LIB_LOCAL; new_id(0, (ID *)cu, 0); } else if(local && lib) { cun= copy_curve(cu); cun->id.us= 0; ob= G.main->object.first; while(ob) { if(ob->data==cu) { if(ob->id.lib==0) { ob->data= cun; cun->id.us++; cu->id.us--; } } ob= ob->id.next; } } } short curve_type(Curve *cu) { Nurb *nu; if(cu->vfont) { return OB_FONT; } for (nu= cu->nurb.first; nu; nu= nu->next) { if(nu->pntsv>1) { return OB_SURF; } } return OB_CURVE; } void test_curve_type(Object *ob) { ob->type = curve_type(ob->data); } void tex_space_curve(Curve *cu) { DispList *dl; BoundBox *bb; float *data, min[3], max[3], loc[3], size[3]; int tot, doit= 0; if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox"); bb= cu->bb; INIT_MINMAX(min, max); dl= cu->disp.first; while(dl) { if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr; else tot= dl->nr*dl->parts; if(tot) doit= 1; data= dl->verts; while(tot--) { DO_MINMAX(data, min, max); data+= 3; } dl= dl->next; } if(!doit) { min[0] = min[1] = min[2] = -1.0f; max[0] = max[1] = max[2] = 1.0f; } loc[0]= (min[0]+max[0])/2.0f; loc[1]= (min[1]+max[1])/2.0f; loc[2]= (min[2]+max[2])/2.0f; size[0]= (max[0]-min[0])/2.0f; size[1]= (max[1]-min[1])/2.0f; size[2]= (max[2]-min[2])/2.0f; boundbox_set_from_min_max(bb, min, max); if(cu->texflag & CU_AUTOSPACE) { VECCOPY(cu->loc, loc); VECCOPY(cu->size, size); cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0; if(cu->size[0]==0.0) cu->size[0]= 1.0; else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001; else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001; if(cu->size[1]==0.0) cu->size[1]= 1.0; else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001; else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001; if(cu->size[2]==0.0) cu->size[2]= 1.0; else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001; else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001; } } int count_curveverts(ListBase *nurb) { Nurb *nu; int tot=0; nu= nurb->first; while(nu) { if(nu->bezt) tot+= 3*nu->pntsu; else if(nu->bp) tot+= nu->pntsu*nu->pntsv; nu= nu->next; } return tot; } int count_curveverts_without_handles(ListBase *nurb) { Nurb *nu; int tot=0; nu= nurb->first; while(nu) { if(nu->bezt) tot+= nu->pntsu; else if(nu->bp) tot+= nu->pntsu*nu->pntsv; nu= nu->next; } return tot; } /* **************** NURBS ROUTINES ******************** */ void freeNurb(Nurb *nu) { if(nu==0) return; if(nu->bezt) MEM_freeN(nu->bezt); nu->bezt= 0; if(nu->bp) MEM_freeN(nu->bp); nu->bp= 0; if(nu->knotsu) MEM_freeN(nu->knotsu); nu->knotsu= NULL; if(nu->knotsv) MEM_freeN(nu->knotsv); nu->knotsv= NULL; /* if(nu->trim.first) freeNurblist(&(nu->trim)); */ MEM_freeN(nu); } void freeNurblist(ListBase *lb) { Nurb *nu, *next; if(lb==0) return; nu= lb->first; while(nu) { next= nu->next; freeNurb(nu); nu= next; } lb->first= lb->last= 0; } Nurb *duplicateNurb(Nurb *nu) { Nurb *newnu; int len; newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb"); if(newnu==0) return 0; memcpy(newnu, nu, sizeof(Nurb)); if(nu->bezt) { newnu->bezt= (BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2"); memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple)); } else { len= nu->pntsu*nu->pntsv; newnu->bp= (BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3"); memcpy(newnu->bp, nu->bp, len*sizeof(BPoint)); newnu->knotsu= newnu->knotsv= NULL; if(nu->knotsu) { len= KNOTSU(nu); if(len) { newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4"); memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len); } } if(nu->pntsv>1 && nu->knotsv) { len= KNOTSV(nu); if(len) { newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5"); memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len); } } } return newnu; } void duplicateNurblist(ListBase *lb1, ListBase *lb2) { Nurb *nu, *nun; freeNurblist(lb1); nu= lb2->first; while(nu) { nun= duplicateNurb(nu); BLI_addtail(lb1, nun); nu= nu->next; } } void test2DNurb(Nurb *nu) { BezTriple *bezt; BPoint *bp; int a; if( nu->type== CU_BEZIER+CU_2D ) { a= nu->pntsu; bezt= nu->bezt; while(a--) { bezt->vec[0][2]= 0.0; bezt->vec[1][2]= 0.0; bezt->vec[2][2]= 0.0; bezt++; } } else if(nu->type & CU_2D) { a= nu->pntsu*nu->pntsv; bp= nu->bp; while(a--) { bp->vec[2]= 0.0; bp++; } } } void minmaxNurb(Nurb *nu, float *min, float *max) { BezTriple *bezt; BPoint *bp; int a; if( (nu->type & 7)==CU_BEZIER ) { a= nu->pntsu; bezt= nu->bezt; while(a--) { DO_MINMAX(bezt->vec[0], min, max); DO_MINMAX(bezt->vec[1], min, max); DO_MINMAX(bezt->vec[2], min, max); bezt++; } } else { a= nu->pntsu*nu->pntsv; bp= nu->bp; while(a--) { DO_MINMAX(bp->vec, min, max); bp++; } } } /* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */ static void calcknots(float *knots, short aantal, short order, short type) /* knots: number of pnts NOT corrected for cyclic */ /* type; 0: uniform, 1: endpoints, 2: bezier */ { float k; int a, t; t = aantal+order; if(type==0) { for(a=0;a=order && a<=aantal) k+= 1.0; } } else if(type==2) { /* Warning, the order MUST be 2 or 4, if this is not enforced, the displist will be corrupt */ if(order==4) { k= 0.34; for(a=0;a=order && a<=aantal) k+= (0.5); knots[a]= (float)floor(k); } } else { printf("bez nurb curve order is not 3 or 4, should never happen\n"); } } } static void makecyclicknots(float *knots, short pnts, short order) /* pnts, order: number of pnts NOT corrected for cyclic */ { int a, b, order2, c; if(knots==0) return; order2=order-1; /* do first long rows (order -1), remove identical knots at endpoints */ if(order>2) { b= pnts+order2; for(a=1; atype & 7)==CU_NURBS ) { if(uv == 1) { if(nu->knotsu) MEM_freeN(nu->knotsu); if(check_valid_nurb_u(nu)) { nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots"); if(nu->flagu & CU_CYCLIC) { calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0); /* cyclic should be uniform */ makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu); } else { calcknots(nu->knotsu, nu->pntsu, nu->orderu, type); } } else nu->knotsu= NULL; } else if(uv == 2) { if(nu->knotsv) MEM_freeN(nu->knotsv); if(check_valid_nurb_v(nu)) { nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots"); if(nu->flagv & CU_CYCLIC) { calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0); /* cyclic should be uniform */ makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv); } else { calcknots(nu->knotsv, nu->pntsv, nu->orderv, type); } } else nu->knotsv= NULL; } } } static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end) { float d, e; int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2; orderpluspnts= order+pnts; opp2 = orderpluspnts-1; /* this is for float inaccuracy */ if(t < knots[0]) t= knots[0]; else if(t > knots[opp2]) t= knots[opp2]; /* this part is order '1' */ o2 = order + 1; for(i=0;i= knots[i] && t<=knots[i+1]) { basis[i]= 1.0; i1= i-o2; if(i1<0) i1= 0; i2= i; i++; while(i= orderpluspnts) i2= opp2-j; for(i= i1; i<=i2; i++) { if(basis[i]!=0.0) d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]); else d= 0.0; if(basis[i+1]!=0.0) e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]); else e= 0.0; basis[i]= d+e; } } *start= 1000; *end= 0; for(i=i1; i<=i2; i++) { if(basis[i]>0.0) { *end= i; if(*start==1000) *start= i; } } } void makeNurbfaces(Nurb *nu, float *data, int rowstride) /* data has to be 3*4*resolu*resolv in size, and zero-ed */ { BPoint *bp; float *basisu, *basis, *basisv, *sum, *fp, *in; float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv; int i, j, iofs, jofs, cycl, len, resolu, resolv; int istart, iend, jsta, jen, *jstart, *jend, ratcomp; if(nu->knotsu==NULL || nu->knotsv==NULL) return; if(nu->orderu>nu->pntsu) return; if(nu->orderv>nu->pntsv) return; if(data==0) return; /* allocate and initialize */ len= nu->pntsu*nu->pntsv; if(len==0) return; sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1"); resolu= nu->resolu; resolv= nu->resolv; len= resolu*resolv; if(len==0) { MEM_freeN(sum); return; } bp= nu->bp; i= nu->pntsu*nu->pntsv; ratcomp=0; while(i--) { if(bp->vec[3]!=1.0) { ratcomp= 1; break; } bp++; } fp= nu->knotsu; ustart= fp[nu->orderu-1]; if(nu->flagu & CU_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1]; else uend= fp[nu->pntsu]; ustep= (uend-ustart)/(resolu-1+(nu->flagu & CU_CYCLIC)); basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3"); fp= nu->knotsv; vstart= fp[nu->orderv-1]; if(nu->flagv & CU_CYCLIC) vend= fp[nu->pntsv+nu->orderv-1]; else vend= fp[nu->pntsv]; vstep= (vend-vstart)/(resolv-1+(nu->flagv & CU_CYCLIC)); len= KNOTSV(nu); basisv= (float *)MEM_mallocN(sizeof(float)*len*resolv, "makeNurbfaces3"); jstart= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces4"); jend= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces5"); /* precalculation of basisv and jstart,jend */ if(nu->flagv & CU_CYCLIC) cycl= nu->orderv-1; else cycl= 0; v= vstart; basis= basisv; while(resolv--) { basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+resolv, jend+resolv); basis+= KNOTSV(nu); v+= vstep; } if(nu->flagu & CU_CYCLIC) cycl= nu->orderu-1; else cycl= 0; in= data; u= ustart; while(resolu--) { basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend); basis= basisv; resolv= nu->resolv; while(resolv--) { jsta= jstart[resolv]; jen= jend[resolv]; /* calculate sum */ sumdiv= 0.0; fp= sum; for(j= jsta; j<=jen; j++) { if(j>=nu->pntsv) jofs= (j - nu->pntsv); else jofs= j; bp= nu->bp+ nu->pntsu*jofs+istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>= nu->pntsu) { iofs= i- nu->pntsu; bp= nu->bp+ nu->pntsu*jofs+iofs; } else bp++; if(ratcomp) { *fp= basisu[i]*basis[j]*bp->vec[3]; sumdiv+= *fp; } else *fp= basisu[i]*basis[j]; } } if(ratcomp) { fp= sum; for(j= jsta; j<=jen; j++) { for(i= istart; i<=iend; i++, fp++) { *fp/= sumdiv; } } } /* one! (1.0) real point now */ fp= sum; for(j= jsta; j<=jen; j++) { if(j>=nu->pntsv) jofs= (j - nu->pntsv); else jofs= j; bp= nu->bp+ nu->pntsu*jofs+istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>= nu->pntsu) { iofs= i- nu->pntsu; bp= nu->bp+ nu->pntsu*jofs+iofs; } else bp++; if(*fp!=0.0) { in[0]+= (*fp) * bp->vec[0]; in[1]+= (*fp) * bp->vec[1]; in[2]+= (*fp) * bp->vec[2]; } } } in+=3; basis+= KNOTSV(nu); } u+= ustep; if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*nu->resolv*sizeof(*in))); } /* free */ MEM_freeN(sum); MEM_freeN(basisu); MEM_freeN(basisv); MEM_freeN(jstart); MEM_freeN(jend); } void makeNurbcurve(Nurb *nu, float *data, int resolu, int dim) /* data has to be dim*4*pntsu*resolu in size and zero-ed */ { BPoint *bp; float u, ustart, uend, ustep, sumdiv; float *basisu, *sum, *fp, *in; int i, len, istart, iend, cycl; if(nu->knotsu==NULL) return; if(nu->orderu>nu->pntsu) return; if(data==0) return; /* allocate and initialize */ len= nu->pntsu; if(len==0) return; sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1"); resolu*= nu->pntsu; if(resolu==0) { MEM_freeN(sum); return; } fp= nu->knotsu; ustart= fp[nu->orderu-1]; if(nu->flagu & CU_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1]; else uend= fp[nu->pntsu]; ustep= (uend-ustart)/(resolu-1+(nu->flagu & CU_CYCLIC)); basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3"); if(nu->flagu & CU_CYCLIC) cycl= nu->orderu-1; else cycl= 0; in= data; u= ustart; while(resolu--) { basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend); /* calc sum */ sumdiv= 0.0; fp= sum; bp= nu->bp+ istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu); else bp++; *fp= basisu[i]*bp->vec[3]; sumdiv+= *fp; } if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) { /* is normalizing needed? */ fp= sum; for(i= istart; i<=iend; i++, fp++) { *fp/= sumdiv; } } /* one! (1.0) real point */ fp= sum; bp= nu->bp+ istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu); else bp++; if(*fp!=0.0) { in[0]+= (*fp) * bp->vec[0]; in[1]+= (*fp) * bp->vec[1]; if(dim>=3) { in[2]+= (*fp) * bp->vec[2]; if(dim==4) in[3]+= (*fp) * bp->alfa; } } } in+= dim; u+= ustep; } /* free */ MEM_freeN(sum); MEM_freeN(basisu); } /* forward differencing method for bezier curve */ void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride) { float rt0,rt1,rt2,rt3,f; int a; f= (float)it; rt0= q0; rt1= 3.0f*(q1-q0)/f; f*= f; rt2= 3.0f*(q0-2.0f*q1+q2)/f; f*= it; rt3= (q3-q0+3.0f*(q1-q2))/f; q0= rt0; q1= rt1+rt2+rt3; q2= 2*rt2+6*rt3; q3= 6*rt3; for(a=0; a<=it; a++) { *p= q0; p+= stride; q0+= q1; q1+= q2; q2+= q3; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ float *make_orco_surf(Object *ob) { Curve *cu= ob->data; Nurb *nu; int a, b, tot=0; int sizeu, sizev; float *data, *orco; /* first calculate the size of the datablock */ nu= cu->nurb.first; while(nu) { /* as we want to avoid the seam in a cyclic nurbs texture wrapping, reserve extra orco data space to save these extra needed vertex based UV coordinates for the meridian vertices. Vertices on the 0/2pi boundary are not duplicated inside the displist but later in the renderface/vert construction. See also convertblender.c: init_render_surf() */ sizeu = nu->resolu; sizev = nu->resolv; if (nu->flagu & CU_CYCLIC) sizeu++; if (nu->flagv & CU_CYCLIC) sizev++; if(nu->pntsv>1) tot+= sizeu * sizev; nu= nu->next; } /* makeNurbfaces wants zeros */ data= orco= MEM_callocN(3*sizeof(float)*tot, "make_orco"); nu= cu->nurb.first; while(nu) { if(nu->pntsv>1) { sizeu = nu->resolu; sizev = nu->resolv; if (nu->flagu & CU_CYCLIC) sizeu++; if (nu->flagv & CU_CYCLIC) sizev++; if(cu->flag & CU_UV_ORCO) { for(b=0; b< sizeu; b++) { for(a=0; a< sizev; a++) { if(sizev <2) data[0]= 0.0f; else data[0]= -1.0f + 2.0f*((float)a)/(sizev - 1); if(sizeu <2) data[1]= 0.0f; else data[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1); data[2]= 0.0; data+= 3; } } } else { float *_tdata= MEM_callocN(nu->resolu*nu->resolv*3*sizeof(float), "temp data"); float *tdata= _tdata; makeNurbfaces(nu, tdata, 0); for(b=0; bflagu & CU_CYCLIC)) use_b= 0; for(a=0; aflagv & CU_CYCLIC)) use_a= 0; tdata = _tdata + 3 * (use_b * nu->resolv + use_a); data[0]= (tdata[0]-cu->loc[0])/cu->size[0]; data[1]= (tdata[1]-cu->loc[1])/cu->size[1]; data[2]= (tdata[2]-cu->loc[2])/cu->size[2]; data+= 3; } } MEM_freeN(_tdata); } } nu= nu->next; } return orco; } /* NOTE: This routine is tied to the order of vertex * built by displist and as passed to the renderer. */ float *make_orco_curve(Object *ob) { Curve *cu = ob->data; DispList *dl; int u, v, numVerts; float *fp, *orco; int remakeDisp = 0; if (!(cu->flag&CU_UV_ORCO) && cu->key && cu->key->refkey) { cp_cu_key(cu, cu->key->refkey, 0, count_curveverts(&cu->nurb)); makeDispListCurveTypes(ob, 1); remakeDisp = 1; } /* Assumes displist has been built */ numVerts = 0; for (dl=cu->disp.first; dl; dl=dl->next) { if (dl->type==DL_INDEX3) { numVerts += dl->nr; } else if (dl->type==DL_SURF) { /* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */ if (dl->flag & DL_CYCL_U) { if (dl->flag & DL_CYCL_V) numVerts += (dl->parts+1)*(dl->nr+1); else numVerts += dl->parts*(dl->nr+1); } else numVerts += dl->parts*dl->nr; } } fp= orco= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco"); for (dl=cu->disp.first; dl; dl=dl->next) { if (dl->type==DL_INDEX3) { for (u=0; unr; u++, fp+=3) { if (cu->flag & CU_UV_ORCO) { fp[0]= 2.0f*u/(dl->nr-1) - 1.0f; fp[1]= 0.0; fp[2]= 0.0; } else { VECCOPY(fp, &dl->verts[u*3]); fp[0]= (fp[0]-cu->loc[0])/cu->size[0]; fp[1]= (fp[1]-cu->loc[1])/cu->size[1]; fp[2]= (fp[2]-cu->loc[2])/cu->size[2]; } } } else if (dl->type==DL_SURF) { int sizeu= dl->nr, sizev= dl->parts; /* exception as handled in convertblender.c too */ if (dl->flag & DL_CYCL_U) { sizeu++; if (dl->flag & DL_CYCL_V) sizev++; } for (u=0; uflag & CU_UV_ORCO) { fp[0]= 2.0f*u/(dl->parts-1) - 1.0f; fp[1]= 2.0f*v/(dl->nr-1) - 1.0f; fp[2]= 0.0; } else { int realv= v % dl->nr; VECCOPY(fp, &dl->verts[(dl->nr*u + realv)*3]); fp[0]= (fp[0]-cu->loc[0])/cu->size[0]; fp[1]= (fp[1]-cu->loc[1])/cu->size[1]; fp[2]= (fp[2]-cu->loc[2])/cu->size[2]; } } } } } if (remakeDisp) { makeDispListCurveTypes(ob, 0); } return orco; } /* ***************** BEVEL ****************** */ void makebevelcurve(Object *ob, ListBase *disp) { DispList *dl, *dlnew; Curve *bevcu, *cu; float *fp, facx, facy, angle, dangle; int nr, a; cu= ob->data; disp->first = disp->last = NULL; /* if a font object is being edited, then do nothing */ if( ob == G.obedit && ob->type == OB_FONT ) return; if(cu->bevobj && cu->bevobj!=ob) { if(cu->bevobj->type==OB_CURVE) { bevcu= cu->bevobj->data; if(bevcu->ext1==0.0 && bevcu->ext2==0.0) { facx= cu->bevobj->size[0]; facy= cu->bevobj->size[1]; dl= bevcu->disp.first; if(dl==0) { makeDispListCurveTypes(cu->bevobj, 0); dl= bevcu->disp.first; } while(dl) { if ELEM(dl->type, DL_POLY, DL_SEGM) { dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1"); *dlnew= *dl; dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1"); memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr); if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE); BLI_addtail(disp, dlnew); fp= dlnew->verts; nr= dlnew->parts*dlnew->nr; while(nr--) { fp[2]= fp[1]*facy; fp[1]= -fp[0]*facx; fp[0]= 0.0; fp+= 3; } } dl= dl->next; } } } } else if(cu->ext1==0.0 && cu->ext2==0.0) { ; } else if(cu->ext2==0.0) { dl= MEM_callocN(sizeof(DispList), "makebevelcurve2"); dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2"); BLI_addtail(disp, dl); dl->type= DL_SEGM; dl->parts= 1; dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE; dl->nr= 2; fp= dl->verts; fp[0]= fp[1]= 0.0; fp[2]= -cu->ext1; fp[3]= fp[4]= 0.0; fp[5]= cu->ext1; } else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f) { // we make a full round bevel in that case nr= 4+ 2*cu->bevresol; dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1"); dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1"); BLI_addtail(disp, dl); dl->type= DL_POLY; dl->parts= 1; dl->flag= DL_BACK_CURVE; dl->nr= nr; /* a circle */ fp= dl->verts; dangle= (2.0f*M_PI/(nr)); angle= -(nr-1)*dangle; for(a=0; aext2)); fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1; angle+= dangle; fp+= 3; } } else { short dnr; /* bevel now in three parts, for proper vertex normals */ /* part 1 */ dnr= nr= 2+ cu->bevresol; if( (cu->flag & (CU_FRONT|CU_BACK))==0) nr= 3+ 2*cu->bevresol; dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1"); dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1"); BLI_addtail(disp, dl); dl->type= DL_SEGM; dl->parts= 1; dl->flag= DL_BACK_CURVE; dl->nr= nr; /* half a circle */ fp= dl->verts; dangle= (0.5*M_PI/(dnr-1)); angle= -(nr-1)*dangle; for(a=0; aext2)); fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1; angle+= dangle; fp+= 3; } /* part 2, sidefaces */ if(cu->ext1!=0.0) { nr= 2; dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2"); dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2"); BLI_addtail(disp, dl); dl->type= DL_SEGM; dl->parts= 1; dl->nr= nr; fp= dl->verts; fp[1]= cu->ext2; fp[2]= -cu->ext1; fp[4]= cu->ext2; fp[5]= cu->ext1; if( (cu->flag & (CU_FRONT|CU_BACK))==0) { dl= MEM_dupallocN(dl); dl->verts= MEM_dupallocN(dl->verts); BLI_addtail(disp, dl); fp= dl->verts; fp[1]= -fp[1]; fp[2]= -fp[2]; fp[4]= -fp[4]; fp[5]= -fp[5]; } } /* part 3 */ dnr= nr= 2+ cu->bevresol; if( (cu->flag & (CU_FRONT|CU_BACK))==0) nr= 3+ 2*cu->bevresol; dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3"); dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3"); BLI_addtail(disp, dl); dl->type= DL_SEGM; dl->flag= DL_FRONT_CURVE; dl->parts= 1; dl->nr= nr; /* half a circle */ fp= dl->verts; angle= 0.0; dangle= (0.5*M_PI/(dnr-1)); for(a=0; aext2)); fp[2]= (float)(sin(angle)*(cu->ext2)) + cu->ext1; angle+= dangle; fp+= 3; } } } int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec) { /* return: -1: colliniar 0: no intersection of segments 1: exact intersection of segments 2: cross-intersection of segments */ float deler; deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]); if(deler==0.0) return -1; *labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]); *labda= -(*labda/deler); deler= v3[coy]-v4[coy]; if(deler==0) { deler=v3[cox]-v4[cox]; *mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler; } else { *mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler; } vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox]; vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy]; if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) { if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1; return 2; } return 0; } static short bevelinside(BevList *bl1,BevList *bl2) { /* is bl2 INSIDE bl1 ? with left-right method and "labda's" */ /* returns '1' if correct hole */ BevPoint *bevp, *prevbevp; float min,max,vec[3],hvec1[3],hvec2[3],lab,mu; int nr, links=0,rechts=0,mode; /* take first vertex of possible hole */ bevp= (BevPoint *)(bl2+1); hvec1[0]= bevp->x; hvec1[1]= bevp->y; hvec1[2]= 0.0; VECCOPY(hvec2,hvec1); hvec2[0]+=1000; /* test it with all edges of potential surounding poly */ /* count number of transitions left-right */ bevp= (BevPoint *)(bl1+1); nr= bl1->nr; prevbevp= bevp+(nr-1); while(nr--) { min= prevbevp->y; max= bevp->y; if(maxy; } if(min!=max) { if(min<=hvec1[1] && max>=hvec1[1]) { /* there's a transition, calc intersection point */ mode= cu_isectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec); /* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition only allow for one situation: we choose lab= 1.0 */ if(mode>=0 && lab!=0.0) { if(vec[0]left > x2->left ) return 1; else if( x1->left < x2->left) return -1; return 0; } /* this function cannot be replaced with atan2, but why? */ static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa) { float t01, t02, x3, y3; t01= (float)sqrt(x1*x1+y1*y1); t02= (float)sqrt(x2*x2+y2*y2); if(t01==0.0) t01= 1.0; if(t02==0.0) t02= 1.0; x1/=t01; y1/=t01; x2/=t02; y2/=t02; t02= x1*x2+y1*y2; if(fabs(t02)>=1.0) t02= .5*M_PI; else t02= (saacos(t02))/2.0f; t02= (float)sin(t02); if(t02==0.0) t02= 1.0; x3= x1-x2; y3= y1-y2; if(x3==0 && y3==0) { x3= y1; y3= -x1; } else { t01= (float)sqrt(x3*x3+y3*y3); x3/=t01; y3/=t01; } *sina= -y3/t02; *cosa= x3/t02; } static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *data_a, int resolu) { BezTriple *pprev, *next, *last; float fac, dfac, t[4]; int a; last= nu->bezt+(nu->pntsu-1); /* returns a point */ if(prevbezt==nu->bezt) { if(nu->flagu & CU_CYCLIC) pprev= last; else pprev= prevbezt; } else pprev= prevbezt-1; /* next point */ if(bezt==last) { if(nu->flagu & CU_CYCLIC) next= nu->bezt; else next= bezt; } else next= bezt+1; fac= 0.0; dfac= 1.0f/(float)resolu; for(a=0; atilt_interp); data_a[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa; } } void makeBevelList(Object *ob) { /* - convert all curves to polys, with indication of resol and flags for double-vertices - possibly; do a smart vertice removal (in case Nurb) - separate in individual blicks with BoundBox - AutoHole detection */ Curve *cu; Nurb *nu; BezTriple *bezt, *prevbezt; BPoint *bp; BevList *bl, *blnew, *blnext; BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0; float *data, *data_a, *v1, *v2, min, inp, x1, x2, y1, y2, vec[3]; struct bevelsort *sortdata, *sd, *sd1; int a, b, nr, poly, resolu, len=0; /* this function needs an object, because of tflag and upflag */ cu= ob->data; /* STEP 1: MAKE POLYS */ BLI_freelistN(&(cu->bev)); if(ob==G.obedit && ob->type!=OB_FONT) nu= editNurb.first; else nu= cu->nurb.first; while(nu) { /* check we are a single point? also check we are not a surface and that the orderu is sane, * enforced in the UI but can go wrong possibly */ if(!check_valid_nurb_u(nu)) { bl= MEM_callocN(sizeof(BevList)+1*sizeof(BevPoint), "makeBevelList"); BLI_addtail(&(cu->bev), bl); bl->nr= 0; } else { if(G.rendering && cu->resolu_ren!=0) resolu= cu->resolu_ren; else resolu= nu->resolu; if((nu->type & 7)==CU_POLY) { len= nu->pntsu; bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList"); BLI_addtail(&(cu->bev), bl); if(nu->flagu & CU_CYCLIC) bl->poly= 0; else bl->poly= -1; bl->nr= len; bl->flag= 0; bevp= (BevPoint *)(bl+1); bp= nu->bp; while(len--) { bevp->x= bp->vec[0]; bevp->y= bp->vec[1]; bevp->z= bp->vec[2]; bevp->alfa= bp->alfa; bevp->f1= 1; bevp++; bp++; } } else if((nu->type & 7)==CU_BEZIER) { len= resolu*(nu->pntsu+ (nu->flagu & CU_CYCLIC) -1)+1; /* in case last point is not cyclic */ bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList"); BLI_addtail(&(cu->bev), bl); if(nu->flagu & CU_CYCLIC) bl->poly= 0; else bl->poly= -1; bevp= (BevPoint *)(bl+1); a= nu->pntsu-1; bezt= nu->bezt; if(nu->flagu & CU_CYCLIC) { a++; prevbezt= nu->bezt+(nu->pntsu-1); } else { prevbezt= bezt; bezt++; } data= MEM_mallocN(3*sizeof(float)*(resolu+1), "makeBevelList2"); data_a= MEM_callocN(sizeof(float)*(resolu+1), "data_a"); while(a--) { if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) { bevp->x= prevbezt->vec[1][0]; bevp->y= prevbezt->vec[1][1]; bevp->z= prevbezt->vec[1][2]; bevp->alfa= prevbezt->alfa; bevp->f1= SELECT; bevp->f2= 0; bevp++; bl->nr++; bl->flag= 1; } else { v1= prevbezt->vec[1]; v2= bezt->vec[0]; /* always do all three, to prevent data hanging around */ forward_diff_bezier(v1[0], v1[3], v2[0], v2[3], data, resolu, 3); forward_diff_bezier(v1[1], v1[4], v2[1], v2[4], data+1, resolu, 3); forward_diff_bezier(v1[2], v1[5], v2[2], v2[5], data+2, resolu, 3); if((nu->type & CU_2D)==0) { if(cu->flag & CU_3D) { alfa_bezpart(prevbezt, bezt, nu, data_a, resolu); } } /* indicate with handlecodes double points */ if(prevbezt->h1==prevbezt->h2) { if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1; } else { if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1; else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= 1; } v1= data; v2= data_a; nr= resolu; while(nr--) { bevp->x= v1[0]; bevp->y= v1[1]; bevp->z= v1[2]; bevp->alfa= v2[0]; bevp++; v1+=3; v2++; } bl->nr+= resolu; } prevbezt= bezt; bezt++; } MEM_freeN(data); MEM_freeN(data_a); if((nu->flagu & CU_CYCLIC)==0) { /* not cyclic: endpoint */ bevp->x= prevbezt->vec[1][0]; bevp->y= prevbezt->vec[1][1]; bevp->z= prevbezt->vec[1][2]; bevp->alfa= prevbezt->alfa; bl->nr++; } } else if((nu->type & 7)==CU_NURBS) { if(nu->pntsv==1) { len= resolu*nu->pntsu; bl= MEM_mallocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3"); BLI_addtail(&(cu->bev), bl); bl->nr= len; bl->flag= 0; if(nu->flagu & CU_CYCLIC) bl->poly= 0; else bl->poly= -1; bevp= (BevPoint *)(bl+1); data= MEM_callocN(4*sizeof(float)*len, "makeBevelList4"); /* has to be zero-ed */ makeNurbcurve(nu, data, resolu, 4); v1= data; while(len--) { bevp->x= v1[0]; bevp->y= v1[1]; bevp->z= v1[2]; bevp->alfa= v1[3]; bevp->f1= bevp->f2= 0; bevp++; v1+=4; } MEM_freeN(data); } } } nu= nu->next; } /* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */ bl= cu->bev.first; while(bl) { if (bl->nr) { /* null bevel items come from single points */ nr= bl->nr; bevp1= (BevPoint *)(bl+1); bevp0= bevp1+(nr-1); nr--; while(nr--) { if( fabs(bevp0->x-bevp1->x)<0.00001 ) { if( fabs(bevp0->y-bevp1->y)<0.00001 ) { if( fabs(bevp0->z-bevp1->z)<0.00001 ) { bevp0->f2= SELECT; bl->flag++; } } } bevp0= bevp1; bevp1++; } } bl= bl->next; } bl= cu->bev.first; while(bl) { blnext= bl->next; if(bl->nr && bl->flag) { nr= bl->nr- bl->flag+1; /* +1 because vectorbezier sets flag too */ blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList"); memcpy(blnew, bl, sizeof(BevList)); blnew->nr= 0; BLI_remlink(&(cu->bev), bl); BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */ bevp0= (BevPoint *)(bl+1); bevp1= (BevPoint *)(blnew+1); nr= bl->nr; while(nr--) { if(bevp0->f2==0) { memcpy(bevp1, bevp0, sizeof(BevPoint)); bevp1++; blnew->nr++; } bevp0++; } MEM_freeN(bl); blnew->flag= 0; } bl= blnext; } /* STEP 3: COUNT POLYS TELLEN AND AUTOHOLE */ bl= cu->bev.first; poly= 0; while(bl) { if(bl->nr && bl->poly>=0) { poly++; bl->poly= poly; bl->gat= 0; /* 'gat' is dutch for hole */ } bl= bl->next; } /* find extreme left points, also test (turning) direction */ if(poly>0) { sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5"); bl= cu->bev.first; while(bl) { if(bl->poly>0) { min= 300000.0; bevp= (BevPoint *)(bl+1); nr= bl->nr; while(nr--) { if(min>bevp->x) { min= bevp->x; bevp1= bevp; } bevp++; } sd->bl= bl; sd->left= min; bevp= (BevPoint *)(bl+1); if(bevp1== bevp) bevp0= bevp+ (bl->nr-1); else bevp0= bevp1-1; bevp= bevp+ (bl->nr-1); if(bevp1== bevp) bevp2= (BevPoint *)(bl+1); else bevp2= bevp1+1; inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y) +(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x); if(inp>0.0) sd->dir= 1; else sd->dir= 0; sd++; } bl= bl->next; } qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev); sd= sortdata+1; for(a=1; abl; /* is bl a hole? */ sd1= sortdata+ (a-1); for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */ if(bevelinside(sd1->bl, bl)) { bl->gat= 1- sd1->bl->gat; break; } } } /* turning direction */ if((cu->flag & CU_3D)==0) { sd= sortdata; for(a=0; abl->gat==sd->dir) { bl= sd->bl; bevp1= (BevPoint *)(bl+1); bevp2= bevp1+ (bl->nr-1); nr= bl->nr/2; while(nr--) { SWAP(BevPoint, *bevp1, *bevp2); bevp1++; bevp2--; } } } } MEM_freeN(sortdata); } /* STEP 4: COSINES */ bl= cu->bev.first; while(bl) { if(bl->nr==2) { /* 2 pnt, treat separate */ bevp2= (BevPoint *)(bl+1); bevp1= bevp2+1; x1= bevp1->x- bevp2->x; y1= bevp1->y- bevp2->y; calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa)); bevp2->sina= bevp1->sina; bevp2->cosa= bevp1->cosa; if(cu->flag & CU_3D) { /* 3D */ float quat[4], q[4]; vec[0]= bevp1->x - bevp2->x; vec[1]= bevp1->y - bevp2->y; vec[2]= bevp1->z - bevp2->z; vectoquat(vec, 5, 1, quat); Normalize(vec); q[0]= (float)cos(0.5*bevp1->alfa); x1= (float)sin(0.5*bevp1->alfa); q[1]= x1*vec[0]; q[2]= x1*vec[1]; q[3]= x1*vec[2]; QuatMul(quat, q, quat); QuatToMat3(quat, bevp1->mat); Mat3CpyMat3(bevp2->mat, bevp1->mat); } } else if(bl->nr>2) { bevp2= (BevPoint *)(bl+1); bevp1= bevp2+(bl->nr-1); bevp0= bevp1-1; nr= bl->nr; while(nr--) { if(cu->flag & CU_3D) { /* 3D */ float quat[4], q[4]; vec[0]= bevp2->x - bevp0->x; vec[1]= bevp2->y - bevp0->y; vec[2]= bevp2->z - bevp0->z; Normalize(vec); vectoquat(vec, 5, 1, quat); q[0]= (float)cos(0.5*bevp1->alfa); x1= (float)sin(0.5*bevp1->alfa); q[1]= x1*vec[0]; q[2]= x1*vec[1]; q[3]= x1*vec[2]; QuatMul(quat, q, quat); QuatToMat3(quat, bevp1->mat); } x1= bevp1->x- bevp0->x; x2= bevp1->x- bevp2->x; y1= bevp1->y- bevp0->y; y2= bevp1->y- bevp2->y; calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa)); bevp0= bevp1; bevp1= bevp2; bevp2++; } /* correct non-cyclic cases */ if(bl->poly== -1) { if(bl->nr>2) { bevp= (BevPoint *)(bl+1); bevp1= bevp+1; bevp->sina= bevp1->sina; bevp->cosa= bevp1->cosa; Mat3CpyMat3(bevp->mat, bevp1->mat); bevp= (BevPoint *)(bl+1); bevp+= (bl->nr-1); bevp1= bevp-1; bevp->sina= bevp1->sina; bevp->cosa= bevp1->cosa; Mat3CpyMat3(bevp->mat, bevp1->mat); } } } bl= bl->next; } } /* calculates a bevel width (radius) for a particular subdivided curve part, * based on the radius value of the surrounding CVs */ float calc_curve_subdiv_radius(Curve *cu, Nurb *nu, int cursubdiv) { BezTriple *bezt, *beztfirst, *beztlast, *beztnext, *beztprev; BPoint *bp, *bpfirst, *bplast; int resolu; float prevrad=0.0, nextrad=0.0, rad=0.0, ratio=0.0; int vectseg=0, subdivs=0; if((nu==NULL) || (nu->pntsu<=1)) return 1.0; bezt= nu->bezt; bp = nu->bp; if(G.rendering && cu->resolu_ren!=0) resolu= cu->resolu_ren; else resolu= nu->resolu; if(((nu->type & 7)==CU_BEZIER) && (bezt != NULL)) { beztfirst = nu->bezt; beztlast = nu->bezt + (nu->pntsu - 1); /* loop through the CVs to end up with a pointer to the CV before the subdiv in question, and a ratio * of how far that subdiv is between this CV and the next */ while(bezt<=beztlast) { beztnext = bezt+1; beztprev = bezt-1; vectseg=0; if (subdivs==cursubdiv) { ratio= 0.0; break; } /* check to see if we're looking at a vector segment (no subdivisions) */ if (nu->flagu & CU_CYCLIC) { if (bezt == beztfirst) { if ((beztlast->h2==HD_VECT) && (bezt->h1==HD_VECT)) vectseg = 1; } else { if ((beztprev->h2==HD_VECT) && (bezt->h1==HD_VECT)) vectseg = 1; } } else if ((bezt->h2==HD_VECT) && (beztnext->h1==HD_VECT)) vectseg = 1; if (vectseg==0) { /* if it's NOT a vector segment, check to see if the subdiv falls within the segment */ subdivs += resolu; if (cursubdiv < subdivs) { ratio = 1.0 - ((subdivs - cursubdiv)/(float)resolu); break; } } else { /* must be a vector segment.. loop again! */ subdivs += 1; } bezt++; } /* Now we have a nice bezt pointer to the CV that we want. But cyclic messes it up, so must correct for that.. * (cyclic goes last-> first -> first+1 -> first+2 -> ...) */ if (nu->flagu & CU_CYCLIC) { if (bezt == beztfirst) bezt = beztlast; else bezt--; } /* find the radii at the bounding CVs and interpolate between them based on ratio */ rad = prevrad = bezt->radius; if ((bezt == beztlast) && (nu->flagu & CU_CYCLIC)) { /* loop around */ bezt= beztfirst; } else if (bezt != beztlast) { bezt++; } nextrad = bezt->radius; } else if( ( ((nu->type & 7)==CU_NURBS) || ((nu->type & 7)==CU_POLY)) && (bp != NULL)) { /* follows similar algo as for bezt above */ bpfirst = nu->bp; bplast = nu->bp + (nu->pntsu - 1); if ((nu->type & 7)==CU_POLY) resolu=1; while(bp<=bplast) { if (subdivs==cursubdiv) { ratio= 0.0; break; } subdivs += resolu; if (cursubdiv < subdivs) { ratio = 1.0 - ((subdivs - cursubdiv)/(float)resolu); break; } bp++; } if ( ((nu->type & 7)==CU_NURBS) && (nu->flagu & CU_CYCLIC)) { if (bp >= bplast) bp = bpfirst; else bp++; } else if ( bp > bplast ) { /* this can happen in rare cases, refer to bug [#8596] */ bp = bplast; } rad = prevrad = bp->radius; if ((bp == bplast) && (nu->flagu & CU_CYCLIC)) { /* loop around */ bp= bpfirst; } else if (bp < bplast) { bp++; } nextrad = bp->radius; } if (nextrad != prevrad) { /* smooth interpolation */ rad = prevrad + (nextrad-prevrad)*(3.0f*ratio*ratio - 2.0f*ratio*ratio*ratio); } if (rad > 0.0) return rad; else return 1.0; } /* ****************** HANDLES ************** */ /* * handlecodes: * 1: nothing, 1:auto, 2:vector, 3:aligned */ /* mode: is not zero when IpoCurve, is 2 when forced horizontal for autohandles */ void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode) { float *p1,*p2,*p3, pt[3]; float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2; if(bezt->h1==0 && bezt->h2==0) return; p2= bezt->vec[1]; if(prev==0) { p3= next->vec[1]; pt[0]= 2*p2[0]- p3[0]; pt[1]= 2*p2[1]- p3[1]; pt[2]= 2*p2[2]- p3[2]; p1= pt; } else p1= prev->vec[1]; if(next==0) { pt[0]= 2*p2[0]- p1[0]; pt[1]= 2*p2[1]- p1[1]; pt[2]= 2*p2[2]- p1[2]; p3= pt; } else p3= next->vec[1]; dx= p2[0]- p1[0]; dy= p2[1]- p1[1]; dz= p2[2]- p1[2]; if(mode) len1= dx; else len1= (float)sqrt(dx*dx+dy*dy+dz*dz); dx1= p3[0]- p2[0]; dy1= p3[1]- p2[1]; dz1= p3[2]- p2[2]; if(mode) len2= dx1; else len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1); if(len1==0.0f) len1=1.0f; if(len2==0.0f) len2=1.0f; if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) { /* auto */ vx= dx1/len2 + dx/len1; vy= dy1/len2 + dy/len1; vz= dz1/len2 + dz/len1; len= 2.5614f*(float)sqrt(vx*vx + vy*vy + vz*vz); if(len!=0.0f) { int leftviolate=0, rightviolate=0; /* for mode==2 */ if(len1>5.0f*len2) len1= 5.0f*len2; if(len2>5.0f*len1) len2= 5.0f*len1; if(bezt->h1==HD_AUTO) { len1/=len; *(p2-3)= *p2-vx*len1; *(p2-2)= *(p2+1)-vy*len1; *(p2-1)= *(p2+2)-vz*len1; if(mode==2 && next && prev) { // keep horizontal if extrema float ydiff1= prev->vec[1][1] - bezt->vec[1][1]; float ydiff2= next->vec[1][1] - bezt->vec[1][1]; if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) { bezt->vec[0][1]= bezt->vec[1][1]; } else { // handles should not be beyond y coord of two others if(ydiff1<=0.0) { if(prev->vec[1][1] > bezt->vec[0][1]) { bezt->vec[0][1]= prev->vec[1][1]; leftviolate= 1; } } else { if(prev->vec[1][1] < bezt->vec[0][1]) { bezt->vec[0][1]= prev->vec[1][1]; leftviolate= 1; } } } } } if(bezt->h2==HD_AUTO) { len2/=len; *(p2+3)= *p2+vx*len2; *(p2+4)= *(p2+1)+vy*len2; *(p2+5)= *(p2+2)+vz*len2; if(mode==2 && next && prev) { // keep horizontal if extrema float ydiff1= prev->vec[1][1] - bezt->vec[1][1]; float ydiff2= next->vec[1][1] - bezt->vec[1][1]; if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) { bezt->vec[2][1]= bezt->vec[1][1]; } else { // handles should not be beyond y coord of two others if(ydiff1<=0.0) { if(next->vec[1][1] < bezt->vec[2][1]) { bezt->vec[2][1]= next->vec[1][1]; rightviolate= 1; } } else { if(next->vec[1][1] > bezt->vec[2][1]) { bezt->vec[2][1]= next->vec[1][1]; rightviolate= 1; } } } } } if(leftviolate || rightviolate) { /* align left handle */ float h1[3], h2[3]; VecSubf(h1, p2-3, p2); VecSubf(h2, p2, p2+3); len1= Normalize(h1); len2= Normalize(h2); vz= INPR(h1, h2); if(leftviolate) { *(p2+3)= *(p2) - vz*len2*h1[0]; *(p2+4)= *(p2+1) - vz*len2*h1[1]; *(p2+5)= *(p2+2) - vz*len2*h1[2]; } else { *(p2-3)= *(p2) + vz*len1*h2[0]; *(p2-2)= *(p2+1) + vz*len1*h2[1]; *(p2-1)= *(p2+2) + vz*len1*h2[2]; } } } } if(bezt->h1==HD_VECT) { /* vector */ dx/=3.0; dy/=3.0; dz/=3.0; *(p2-3)= *p2-dx; *(p2-2)= *(p2+1)-dy; *(p2-1)= *(p2+2)-dz; } if(bezt->h2==HD_VECT) { dx1/=3.0; dy1/=3.0; dz1/=3.0; *(p2+3)= *p2+dx1; *(p2+4)= *(p2+1)+dy1; *(p2+5)= *(p2+2)+dz1; } len2= VecLenf(p2, p2+3); len1= VecLenf(p2, p2-3); if(len1==0.0) len1=1.0; if(len2==0.0) len2=1.0; if(bezt->f1 & SELECT) { /* order of calculation */ if(bezt->h2==HD_ALIGN) { /* aligned */ len= len2/len1; p2[3]= p2[0]+len*(p2[0]-p2[-3]); p2[4]= p2[1]+len*(p2[1]-p2[-2]); p2[5]= p2[2]+len*(p2[2]-p2[-1]); } if(bezt->h1==HD_ALIGN) { len= len1/len2; p2[-3]= p2[0]+len*(p2[0]-p2[3]); p2[-2]= p2[1]+len*(p2[1]-p2[4]); p2[-1]= p2[2]+len*(p2[2]-p2[5]); } } else { if(bezt->h1==HD_ALIGN) { len= len1/len2; p2[-3]= p2[0]+len*(p2[0]-p2[3]); p2[-2]= p2[1]+len*(p2[1]-p2[4]); p2[-1]= p2[2]+len*(p2[2]-p2[5]); } if(bezt->h2==HD_ALIGN) { /* aligned */ len= len2/len1; p2[3]= p2[0]+len*(p2[0]-p2[-3]); p2[4]= p2[1]+len*(p2[1]-p2[-2]); p2[5]= p2[2]+len*(p2[2]-p2[-1]); } } } void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */ { BezTriple *bezt, *prev, *next; short a; if((nu->type & 7)!=CU_BEZIER) return; if(nu->pntsu<2) return; a= nu->pntsu; bezt= nu->bezt; if(nu->flagu & CU_CYCLIC) prev= bezt+(a-1); else prev= 0; next= bezt+1; while(a--) { calchandleNurb(bezt, prev, next, 0); prev= bezt; if(a==1) { if(nu->flagu & CU_CYCLIC) next= nu->bezt; else next= 0; } else next++; bezt++; } } void testhandlesNurb(Nurb *nu) { /* use when something has changed with handles. it treats all BezTriples with the following rules: PHASE 1: do types have to be altered? Auto handles: become aligned when selection status is NOT(000 || 111) Vector handles: become 'nothing' when (one half selected AND other not) PHASE 2: recalculate handles */ BezTriple *bezt; short flag, a; if((nu->type & 7)!=CU_BEZIER) return; bezt= nu->bezt; a= nu->pntsu; while(a--) { flag= 0; if(bezt->f1 & SELECT) flag++; if(bezt->f2 & SELECT) flag += 2; if(bezt->f3 & SELECT) flag += 4; if( !(flag==0 || flag==7) ) { if(bezt->h1==HD_AUTO) { /* auto */ bezt->h1= HD_ALIGN; } if(bezt->h2==HD_AUTO) { /* auto */ bezt->h2= HD_ALIGN; } if(bezt->h1==HD_VECT) { /* vector */ if(flag < 4) bezt->h1= 0; } if(bezt->h2==HD_VECT) { /* vector */ if( flag > 3) bezt->h2= 0; } } bezt++; } calchandlesNurb(nu); } void autocalchandlesNurb(Nurb *nu, int flag) { /* checks handle coordinates and calculates type */ BezTriple *bezt2, *bezt1, *bezt0; int i, align, leftsmall, rightsmall; if(nu==0 || nu->bezt==0) return; bezt2 = nu->bezt; bezt1 = bezt2 + (nu->pntsu-1); bezt0 = bezt1 - 1; i = nu->pntsu; while(i--) { align= leftsmall= rightsmall= 0; /* left handle: */ if(flag==0 || (bezt1->f1 & flag) ) { bezt1->h1= 0; /* distance too short: vectorhandle */ if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) { bezt1->h1= HD_VECT; leftsmall= 1; } else { /* aligned handle? */ if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) { align= 1; bezt1->h1= HD_ALIGN; } /* or vector handle? */ if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001) bezt1->h1= HD_VECT; } } /* right handle: */ if(flag==0 || (bezt1->f3 & flag) ) { bezt1->h2= 0; /* distance too short: vectorhandle */ if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) { bezt1->h2= HD_VECT; rightsmall= 1; } else { /* aligned handle? */ if(align) bezt1->h2= HD_ALIGN; /* or vector handle? */ if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001) bezt1->h2= HD_VECT; } } if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0; if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0; /* undesired combination: */ if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0; if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0; bezt0= bezt1; bezt1= bezt2; bezt2++; } calchandlesNurb(nu); } void autocalchandlesNurb_all(int flag) { Nurb *nu; nu= editNurb.first; while(nu) { autocalchandlesNurb(nu, flag); nu= nu->next; } } void sethandlesNurb(short code) { /* code==1: set autohandle */ /* code==2: set vectorhandle */ /* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */ /* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */ /* code==5: Set align, like 3 but no toggle */ /* code==6: Clear align, like 3 but no toggle */ Nurb *nu; BezTriple *bezt; short a, ok=0; if(code==1 || code==2) { nu= editNurb.first; while(nu) { if( (nu->type & 7)==1) { bezt= nu->bezt; a= nu->pntsu; while(a--) { if(bezt->f1 || bezt->f3) { if(bezt->f1) bezt->h1= code; if(bezt->f3) bezt->h2= code; if(bezt->h1!=bezt->h2) { if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE; if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE; } } bezt++; } calchandlesNurb(nu); } nu= nu->next; } } else { /* there is 1 handle not FREE: FREE it all, else make ALIGNED */ nu= editNurb.first; if (code == 5) { ok = HD_ALIGN; } else if (code == 6) { ok = HD_FREE; } else { /* Toggle */ while(nu) { if( (nu->type & 7)==1) { bezt= nu->bezt; a= nu->pntsu; while(a--) { if(bezt->f1 && bezt->h1) ok= 1; if(bezt->f3 && bezt->h2) ok= 1; if(ok) break; bezt++; } } nu= nu->next; } if(ok) ok= HD_FREE; else ok= HD_ALIGN; } nu= editNurb.first; while(nu) { if( (nu->type & 7)==1) { bezt= nu->bezt; a= nu->pntsu; while(a--) { if(bezt->f1) bezt->h1= ok; if(bezt->f3 ) bezt->h2= ok; bezt++; } calchandlesNurb(nu); } nu= nu->next; } } } static void swapdata(void *adr1, void *adr2, int len) { if(len<=0) return; if(len<65) { char adr[64]; memcpy(adr, adr1, len); memcpy(adr1, adr2, len); memcpy(adr2, adr, len); } else { char *adr; adr= (char *)MEM_mallocN(len, "curve swap"); memcpy(adr, adr1, len); memcpy(adr1, adr2, len); memcpy(adr2, adr, len); MEM_freeN(adr); } } void switchdirectionNurb(Nurb *nu) { BezTriple *bezt1, *bezt2; BPoint *bp1, *bp2; float *fp1, *fp2, *tempf; int a, b; if(nu->pntsu==1 && nu->pntsv==1) return; if((nu->type & 7)==CU_BEZIER) { a= nu->pntsu; bezt1= nu->bezt; bezt2= bezt1+(a-1); if(a & 1) a+= 1; /* if odd, also swap middle content */ a/= 2; while(a>0) { if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2); swapdata(bezt1->vec[0], bezt1->vec[2], 12); if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12); SWAP(char, bezt1->h1, bezt1->h2); SWAP(short, bezt1->f1, bezt1->f3); if(bezt1!=bezt2) { SWAP(char, bezt2->h1, bezt2->h2); SWAP(short, bezt2->f1, bezt2->f3); bezt1->alfa= -bezt1->alfa; bezt2->alfa= -bezt2->alfa; } a--; bezt1++; bezt2--; } } else if(nu->pntsv==1) { a= nu->pntsu; bp1= nu->bp; bp2= bp1+(a-1); a/= 2; while(bp1!=bp2 && a>0) { SWAP(BPoint, *bp1, *bp2); a--; bp1->alfa= -bp1->alfa; bp2->alfa= -bp2->alfa; bp1++; bp2--; } if((nu->type & 7)==CU_NURBS) { /* inverse knots */ a= KNOTSU(nu); fp1= nu->knotsu; fp2= fp1+(a-1); a/= 2; while(fp1!=fp2 && a>0) { SWAP(float, *fp1, *fp2); a--; fp1++; fp2--; } /* and make in increasing order again */ a= KNOTSU(nu); fp1= nu->knotsu; fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect"); while(a--) { fp2[0]= fabs(fp1[1]-fp1[0]); fp1++; fp2++; } a= KNOTSU(nu)-1; fp1= nu->knotsu; fp2= tempf; fp1[0]= 0.0; fp1++; while(a--) { fp1[0]= fp1[-1]+fp2[0]; fp1++; fp2++; } MEM_freeN(tempf); } } else { for(b=0; bpntsv; b++) { bp1= nu->bp+b*nu->pntsu; a= nu->pntsu; bp2= bp1+(a-1); a/= 2; while(bp1!=bp2 && a>0) { SWAP(BPoint, *bp1, *bp2); a--; bp1++; bp2--; } } } } float (*curve_getVertexCos(Curve *cu, ListBase *lb, int *numVerts_r))[3] { int i, numVerts = *numVerts_r = count_curveverts(lb); float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos"); Nurb *nu; co = cos[0]; for (nu=lb->first; nu; nu=nu->next) { if ((nu->type & 7)==CU_BEZIER) { BezTriple *bezt = nu->bezt; for (i=0; ipntsu; i++,bezt++) { VECCOPY(co, bezt->vec[0]); co+=3; VECCOPY(co, bezt->vec[1]); co+=3; VECCOPY(co, bezt->vec[2]); co+=3; } } else { BPoint *bp = nu->bp; for (i=0; ipntsu*nu->pntsv; i++,bp++) { VECCOPY(co, bp->vec); co+=3; } } } return cos; } void curve_applyVertexCos(Curve *cu, ListBase *lb, float (*vertexCos)[3]) { float *co = vertexCos[0]; Nurb *nu; int i; for (nu=lb->first; nu; nu=nu->next) { if ((nu->type & 7)==CU_BEZIER) { BezTriple *bezt = nu->bezt; for (i=0; ipntsu; i++,bezt++) { VECCOPY(bezt->vec[0], co); co+=3; VECCOPY(bezt->vec[1], co); co+=3; VECCOPY(bezt->vec[2], co); co+=3; } } else { BPoint *bp = nu->bp; for (i=0; ipntsu*nu->pntsv; i++,bp++) { VECCOPY(bp->vec, co); co+=3; } } } } int check_valid_nurb_u( struct Nurb *nu ) { if (nu==NULL) return 0; if (nu->pntsu <= 1) return 0; if ((nu->type & 7)!=CU_NURBS) return 1; /* not a nurb, lets assume its valid */ if (nu->pntsu < nu->orderu) return 0; if (((nu->flag & CU_CYCLIC)==0) && ((nu->flagu>>1) & 2)) { /* Bezier U Endpoints */ if (nu->orderu==4) { if (nu->pntsu < 5) return 0; /* bezier with 4 orderu needs 5 points */ } else if (nu->orderu != 3) return 0; /* order must be 3 or 4 */ } return 1; } int check_valid_nurb_v( struct Nurb *nu) { if (nu==NULL) return 0; if (nu->pntsv <= 1) return 0; if ((nu->type & 7)!=CU_NURBS) return 1; /* not a nurb, lets assume its valid */ if (nu->pntsv < nu->orderv) return 0; if (((nu->flag & CU_CYCLIC)==0) && ((nu->flagv>>1) & 2)) { /* Bezier V Endpoints */ if (nu->orderv==4) { if (nu->pntsv < 5) return 0; /* bezier with 4 orderu needs 5 points */ } else if (nu->orderv != 3) return 0; /* order must be 3 or 4 */ } return 1; } int clamp_nurb_order_u( struct Nurb *nu ) { int change = 0; if(nu->pntsuorderu) { nu->orderu= nu->pntsu; change= 1; } if(((nu->flag & CU_CYCLIC)==0) && (nu->flagu>>1)&2) { CLAMP(nu->orderu, 3,4); change= 1; } return change; } int clamp_nurb_order_v( struct Nurb *nu) { int change = 0; if(nu->pntsvorderv) { nu->orderv= nu->pntsv; change= 1; } if(((nu->flag & CU_CYCLIC)==0) && (nu->flagv>>1)&2) { CLAMP(nu->orderv, 3,4); change= 1; } return change; }