/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. */ /** \file * \ingroup bke */ #include #include #include #include #include #include "MEM_guardedalloc.h" #include "DNA_meshdata_types.h" #include "DNA_mesh_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_string.h" #include "BLI_string_utils.h" #include "BLI_utildefines.h" #include "BLT_translation.h" #include "BKE_customdata.h" #include "BKE_data_transfer.h" #include "BKE_deform.h" /* own include */ #include "BKE_mesh.h" #include "BKE_mesh_mapping.h" #include "BKE_object.h" #include "BKE_object_deform.h" #include "data_transfer_intern.h" bDeformGroup *BKE_defgroup_new(Object *ob, const char *name) { bDeformGroup *defgroup; BLI_assert(OB_TYPE_SUPPORT_VGROUP(ob->type)); defgroup = MEM_callocN(sizeof(bDeformGroup), __func__); BLI_strncpy(defgroup->name, name, sizeof(defgroup->name)); BLI_addtail(&ob->defbase, defgroup); defgroup_unique_name(defgroup, ob); BKE_object_batch_cache_dirty_tag(ob); return defgroup; } void defgroup_copy_list(ListBase *outbase, const ListBase *inbase) { bDeformGroup *defgroup, *defgroupn; BLI_listbase_clear(outbase); for (defgroup = inbase->first; defgroup; defgroup = defgroup->next) { defgroupn = defgroup_duplicate(defgroup); BLI_addtail(outbase, defgroupn); } } bDeformGroup *defgroup_duplicate(const bDeformGroup *ingroup) { bDeformGroup *outgroup; if (!ingroup) { BLI_assert(0); return NULL; } outgroup = MEM_callocN(sizeof(bDeformGroup), "copy deformGroup"); /* For now, just copy everything over. */ memcpy(outgroup, ingroup, sizeof(bDeformGroup)); outgroup->next = outgroup->prev = NULL; return outgroup; } /** * Overwrite weights filtered by vgroup_subset. * - do nothing if neither are set. * - add destination weight if needed */ void defvert_copy_subset(MDeformVert *dvert_dst, const MDeformVert *dvert_src, const bool *vgroup_subset, const int vgroup_tot) { int defgroup; for (defgroup = 0; defgroup < vgroup_tot; defgroup++) { if (vgroup_subset[defgroup]) { defvert_copy_index(dvert_dst, defgroup, dvert_src, defgroup); } } } /** * Overwrite weights filtered by vgroup_subset and with mirroring specified by the flip map * - do nothing if neither are set. * - add destination weight if needed */ void defvert_mirror_subset(MDeformVert *dvert_dst, const MDeformVert *dvert_src, const bool *vgroup_subset, const int vgroup_tot, const int *flip_map, const int flip_map_len) { int defgroup; for (defgroup = 0; defgroup < vgroup_tot && defgroup < flip_map_len; defgroup++) { if (vgroup_subset[defgroup] && (dvert_dst != dvert_src || flip_map[defgroup] != defgroup)) { defvert_copy_index(dvert_dst, flip_map[defgroup], dvert_src, defgroup); } } } void defvert_copy(MDeformVert *dvert_dst, const MDeformVert *dvert_src) { if (dvert_dst->totweight == dvert_src->totweight) { if (dvert_src->totweight) { memcpy(dvert_dst->dw, dvert_src->dw, dvert_src->totweight * sizeof(MDeformWeight)); } } else { if (dvert_dst->dw) { MEM_freeN(dvert_dst->dw); } if (dvert_src->totweight) { dvert_dst->dw = MEM_dupallocN(dvert_src->dw); } else { dvert_dst->dw = NULL; } dvert_dst->totweight = dvert_src->totweight; } } /** * Copy an index from one dvert to another. * - do nothing if neither are set. * - add destination weight if needed. */ void defvert_copy_index(MDeformVert *dvert_dst, const int defgroup_dst, const MDeformVert *dvert_src, const int defgroup_src) { MDeformWeight *dw_src, *dw_dst; dw_src = defvert_find_index(dvert_src, defgroup_src); if (dw_src) { /* source is valid, verify destination */ dw_dst = defvert_verify_index(dvert_dst, defgroup_dst); dw_dst->weight = dw_src->weight; } else { /* source was NULL, assign zero, could also remove */ dw_dst = defvert_find_index(dvert_dst, defgroup_dst); if (dw_dst) { dw_dst->weight = 0.0f; } } } /** * Only sync over matching weights, don't add or remove groups * warning, loop within loop. */ void defvert_sync(MDeformVert *dvert_dst, const MDeformVert *dvert_src, const bool use_verify) { if (dvert_src->totweight && dvert_dst->totweight) { int i; MDeformWeight *dw_src; for (i = 0, dw_src = dvert_src->dw; i < dvert_src->totweight; i++, dw_src++) { MDeformWeight *dw_dst; if (use_verify) { dw_dst = defvert_verify_index(dvert_dst, dw_src->def_nr); } else { dw_dst = defvert_find_index(dvert_dst, dw_src->def_nr); } if (dw_dst) { dw_dst->weight = dw_src->weight; } } } } /** * be sure all flip_map values are valid */ void defvert_sync_mapped(MDeformVert *dvert_dst, const MDeformVert *dvert_src, const int *flip_map, const int flip_map_len, const bool use_verify) { if (dvert_src->totweight && dvert_dst->totweight) { int i; MDeformWeight *dw_src; for (i = 0, dw_src = dvert_src->dw; i < dvert_src->totweight; i++, dw_src++) { if (dw_src->def_nr < flip_map_len) { MDeformWeight *dw_dst; if (use_verify) { dw_dst = defvert_verify_index(dvert_dst, flip_map[dw_src->def_nr]); } else { dw_dst = defvert_find_index(dvert_dst, flip_map[dw_src->def_nr]); } if (dw_dst) { dw_dst->weight = dw_src->weight; } } } } } /** * be sure all flip_map values are valid */ void defvert_remap(MDeformVert *dvert, int *map, const int map_len) { MDeformWeight *dw = dvert->dw; unsigned int i; for (i = dvert->totweight; i != 0; i--, dw++) { if (dw->def_nr < map_len) { BLI_assert(map[dw->def_nr] >= 0); dw->def_nr = map[dw->def_nr]; } } } /** * Same as #defvert_normalize but takes a bool array. */ void defvert_normalize_subset(MDeformVert *dvert, const bool *vgroup_subset, const int vgroup_tot) { if (dvert->totweight == 0) { /* nothing */ } else if (dvert->totweight == 1) { MDeformWeight *dw = dvert->dw; if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { dw->weight = 1.0f; } } else { MDeformWeight *dw; unsigned int i; float tot_weight = 0.0f; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { tot_weight += dw->weight; } } if (tot_weight > 0.0f) { float scalar = 1.0f / tot_weight; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { dw->weight *= scalar; /* in case of division errors with very low weights */ CLAMP(dw->weight, 0.0f, 1.0f); } } } } } void defvert_normalize(MDeformVert *dvert) { if (dvert->totweight == 0) { /* nothing */ } else if (dvert->totweight == 1) { dvert->dw[0].weight = 1.0f; } else { MDeformWeight *dw; unsigned int i; float tot_weight = 0.0f; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { tot_weight += dw->weight; } if (tot_weight > 0.0f) { float scalar = 1.0f / tot_weight; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { dw->weight *= scalar; /* in case of division errors with very low weights */ CLAMP(dw->weight, 0.0f, 1.0f); } } } } /** * Same as defvert_normalize() if the locked vgroup is not a member of the subset */ void defvert_normalize_lock_single(MDeformVert *dvert, const bool *vgroup_subset, const int vgroup_tot, const uint def_nr_lock) { if (dvert->totweight == 0) { /* nothing */ } else if (dvert->totweight == 1) { MDeformWeight *dw = dvert->dw; if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { if (def_nr_lock != dw->def_nr) { dw->weight = 1.0f; } } } else { MDeformWeight *dw_lock = NULL; MDeformWeight *dw; unsigned int i; float tot_weight = 0.0f; float lock_iweight = 1.0f; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { if (dw->def_nr != def_nr_lock) { tot_weight += dw->weight; } else { dw_lock = dw; lock_iweight = (1.0f - dw_lock->weight); CLAMP(lock_iweight, 0.0f, 1.0f); } } } if (tot_weight > 0.0f) { /* paranoid, should be 1.0 but in case of float error clamp anyway */ float scalar = (1.0f / tot_weight) * lock_iweight; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { if (dw != dw_lock) { dw->weight *= scalar; /* in case of division errors with very low weights */ CLAMP(dw->weight, 0.0f, 1.0f); } } } } } } /** * Same as defvert_normalize() if no locked vgroup is a member of the subset */ void defvert_normalize_lock_map(MDeformVert *dvert, const bool *vgroup_subset, const int vgroup_tot, const bool *lock_flags, const int defbase_tot) { if (dvert->totweight == 0) { /* nothing */ } else if (dvert->totweight == 1) { MDeformWeight *dw = dvert->dw; if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { if ((dw->def_nr < defbase_tot) && (lock_flags[dw->def_nr] == false)) { dw->weight = 1.0f; } } } else { MDeformWeight *dw; unsigned int i; float tot_weight = 0.0f; float lock_iweight = 0.0f; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { if ((dw->def_nr < defbase_tot) && (lock_flags[dw->def_nr] == false)) { tot_weight += dw->weight; } else { /* invert after */ lock_iweight += dw->weight; } } } lock_iweight = max_ff(0.0f, 1.0f - lock_iweight); if (tot_weight > 0.0f) { /* paranoid, should be 1.0 but in case of float error clamp anyway */ float scalar = (1.0f / tot_weight) * lock_iweight; for (i = dvert->totweight, dw = dvert->dw; i != 0; i--, dw++) { if ((dw->def_nr < vgroup_tot) && vgroup_subset[dw->def_nr]) { if ((dw->def_nr < defbase_tot) && (lock_flags[dw->def_nr] == false)) { dw->weight *= scalar; /* in case of division errors with very low weights */ CLAMP(dw->weight, 0.0f, 1.0f); } } } } } } void defvert_flip(MDeformVert *dvert, const int *flip_map, const int flip_map_len) { MDeformWeight *dw; int i; for (dw = dvert->dw, i = 0; i < dvert->totweight; dw++, i++) { if (dw->def_nr < flip_map_len) { if (flip_map[dw->def_nr] >= 0) { dw->def_nr = flip_map[dw->def_nr]; } } } } void defvert_flip_merged(MDeformVert *dvert, const int *flip_map, const int flip_map_len) { MDeformWeight *dw, *dw_cpy; float weight; int i, totweight = dvert->totweight; /* copy weights */ for (dw = dvert->dw, i = 0; i < totweight; dw++, i++) { if (dw->def_nr < flip_map_len) { if (flip_map[dw->def_nr] >= 0) { /* error checkers complain of this but we'll never get NULL return */ dw_cpy = defvert_verify_index(dvert, flip_map[dw->def_nr]); dw = &dvert->dw[i]; /* in case array got realloced */ /* distribute weights: if only one of the vertex groups was * assigned this will halve the weights, otherwise it gets * evened out. this keeps it proportional to other groups */ weight = 0.5f * (dw_cpy->weight + dw->weight); dw_cpy->weight = weight; dw->weight = weight; } } } } bDeformGroup *defgroup_find_name(Object *ob, const char *name) { return (name && name[0] != '\0') ? BLI_findstring(&ob->defbase, name, offsetof(bDeformGroup, name)) : NULL; } int defgroup_name_index(Object *ob, const char *name) { return (name && name[0] != '\0') ? BLI_findstringindex(&ob->defbase, name, offsetof(bDeformGroup, name)) : -1; } /** * \note caller must free. */ int *defgroup_flip_map(Object *ob, int *flip_map_len, const bool use_default) { int defbase_tot = *flip_map_len = BLI_listbase_count(&ob->defbase); if (defbase_tot == 0) { return NULL; } else { bDeformGroup *dg; char name_flip[sizeof(dg->name)]; int i, flip_num, *map = MEM_mallocN(defbase_tot * sizeof(int), __func__); for (i = 0; i < defbase_tot; i++) { map[i] = -1; } for (dg = ob->defbase.first, i = 0; dg; dg = dg->next, i++) { if (map[i] == -1) { /* may be calculated previously */ /* in case no valid value is found, use this */ if (use_default) { map[i] = i; } BLI_string_flip_side_name(name_flip, dg->name, false, sizeof(name_flip)); if (!STREQ(name_flip, dg->name)) { flip_num = defgroup_name_index(ob, name_flip); if (flip_num >= 0) { map[i] = flip_num; map[flip_num] = i; /* save an extra lookup */ } } } } return map; } } /** * \note caller must free. */ int *defgroup_flip_map_single(Object *ob, int *flip_map_len, const bool use_default, int defgroup) { int defbase_tot = *flip_map_len = BLI_listbase_count(&ob->defbase); if (defbase_tot == 0) { return NULL; } else { bDeformGroup *dg; char name_flip[sizeof(dg->name)]; int i, flip_num, *map = MEM_mallocN(defbase_tot * sizeof(int), __func__); for (i = 0; i < defbase_tot; i++) { map[i] = use_default ? i : -1; } dg = BLI_findlink(&ob->defbase, defgroup); BLI_string_flip_side_name(name_flip, dg->name, false, sizeof(name_flip)); if (!STREQ(name_flip, dg->name)) { flip_num = defgroup_name_index(ob, name_flip); if (flip_num != -1) { map[defgroup] = flip_num; map[flip_num] = defgroup; } } return map; } } int defgroup_flip_index(Object *ob, int index, const bool use_default) { bDeformGroup *dg = BLI_findlink(&ob->defbase, index); int flip_index = -1; if (dg) { char name_flip[sizeof(dg->name)]; BLI_string_flip_side_name(name_flip, dg->name, false, sizeof(name_flip)); if (!STREQ(name_flip, dg->name)) { flip_index = defgroup_name_index(ob, name_flip); } } return (flip_index == -1 && use_default) ? index : flip_index; } static bool defgroup_find_name_dupe(const char *name, bDeformGroup *dg, Object *ob) { bDeformGroup *curdef; for (curdef = ob->defbase.first; curdef; curdef = curdef->next) { if (dg != curdef) { if (STREQ(curdef->name, name)) { return true; } } } return false; } static bool defgroup_unique_check(void *arg, const char *name) { struct { Object *ob; void *dg; } *data = arg; return defgroup_find_name_dupe(name, data->dg, data->ob); } void defgroup_unique_name(bDeformGroup *dg, Object *ob) { struct { Object *ob; void *dg; } data; data.ob = ob; data.dg = dg; BLI_uniquename_cb(defgroup_unique_check, &data, DATA_("Group"), '.', dg->name, sizeof(dg->name)); } float defvert_find_weight(const struct MDeformVert *dvert, const int defgroup) { MDeformWeight *dw = defvert_find_index(dvert, defgroup); return dw ? dw->weight : 0.0f; } /** * Take care with this the rationale is: * - if the object has no vertex group. act like vertex group isn't set and return 1.0, * - if the vertex group exists but the 'defgroup' isn't found on this vertex, _still_ return 0.0 * * This is a bit confusing, just saves some checks from the caller. */ float defvert_array_find_weight_safe(const struct MDeformVert *dvert, const int index, const int defgroup) { /* Invalid defgroup index means the vgroup selected is invalid, * does not exist, in that case it is OK to return 1.0 * (i.e. maximum weight, as if no vgroup was selected). * But in case of valid defgroup and NULL dvert data pointer, it means that vgroup **is** valid, * and just totally empty, so we shall return '0.0' value then! */ if (defgroup == -1) { return 1.0f; } else if (dvert == NULL) { return 0.0f; } return defvert_find_weight(dvert + index, defgroup); } MDeformWeight *defvert_find_index(const MDeformVert *dvert, const int defgroup) { if (dvert && defgroup >= 0) { MDeformWeight *dw = dvert->dw; unsigned int i; for (i = dvert->totweight; i != 0; i--, dw++) { if (dw->def_nr == defgroup) { return dw; } } } else { BLI_assert(0); } return NULL; } /** * Ensures that mv has a deform weight entry for the specified defweight group. * * \note this function is mirrored in editmesh_tools.c, for use for editvertices. */ MDeformWeight *defvert_verify_index(MDeformVert *dvert, const int defgroup) { MDeformWeight *dw_new; /* do this check always, this function is used to check for it */ if (!dvert || defgroup < 0) { BLI_assert(0); return NULL; } dw_new = defvert_find_index(dvert, defgroup); if (dw_new) { return dw_new; } dw_new = MEM_mallocN(sizeof(MDeformWeight) * (dvert->totweight + 1), "deformWeight"); if (dvert->dw) { memcpy(dw_new, dvert->dw, sizeof(MDeformWeight) * dvert->totweight); MEM_freeN(dvert->dw); } dvert->dw = dw_new; dw_new += dvert->totweight; dw_new->weight = 0.0f; dw_new->def_nr = defgroup; /* Group index */ dvert->totweight++; return dw_new; } /* TODO. merge with code above! */ /** * Adds the given vertex to the specified vertex group, with given weight. * * \warning this does NOT check for existing, assume caller already knows its not there. */ void defvert_add_index_notest(MDeformVert *dvert, int defgroup, const float weight) { MDeformWeight *dw_new; /* do this check always, this function is used to check for it */ if (!dvert || defgroup < 0) { BLI_assert(0); return; } dw_new = MEM_callocN(sizeof(MDeformWeight) * (dvert->totweight + 1), "defvert_add_to group, new deformWeight"); if (dvert->dw) { memcpy(dw_new, dvert->dw, sizeof(MDeformWeight) * dvert->totweight); MEM_freeN(dvert->dw); } dvert->dw = dw_new; dw_new += dvert->totweight; dw_new->weight = weight; dw_new->def_nr = defgroup; dvert->totweight++; } /** * Removes the given vertex from the vertex group. * * \warning This function frees the given MDeformWeight, do not use it afterward! */ void defvert_remove_group(MDeformVert *dvert, MDeformWeight *dw) { if (dvert && dw) { int i = dw - dvert->dw; /* Security check! */ if (i < 0 || i >= dvert->totweight) { return; } dvert->totweight--; /* If there are still other deform weights attached to this vert then remove * this deform weight, and reshuffle the others. */ if (dvert->totweight) { BLI_assert(dvert->dw != NULL); if (i != dvert->totweight) { dvert->dw[i] = dvert->dw[dvert->totweight]; } dvert->dw = MEM_reallocN(dvert->dw, sizeof(MDeformWeight) * dvert->totweight); } else { /* If there are no other deform weights left then just remove this one. */ MEM_freeN(dvert->dw); dvert->dw = NULL; } } } void defvert_clear(MDeformVert *dvert) { if (dvert->dw) { MEM_freeN(dvert->dw); dvert->dw = NULL; } dvert->totweight = 0; } /** * \return The first group index shared by both deform verts * or -1 if none are found. */ int defvert_find_shared(const MDeformVert *dvert_a, const MDeformVert *dvert_b) { if (dvert_a->totweight && dvert_b->totweight) { MDeformWeight *dw = dvert_a->dw; unsigned int i; for (i = dvert_a->totweight; i != 0; i--, dw++) { if (dw->weight > 0.0f && defvert_find_weight(dvert_b, dw->def_nr) > 0.0f) { return dw->def_nr; } } } return -1; } /** * return true if has no weights */ bool defvert_is_weight_zero(const struct MDeformVert *dvert, const int defgroup_tot) { MDeformWeight *dw = dvert->dw; unsigned int i; for (i = dvert->totweight; i != 0; i--, dw++) { if (dw->weight != 0.0f) { /* check the group is in-range, happens on rare situations */ if (LIKELY(dw->def_nr < defgroup_tot)) { return false; } } } return true; } /** * \return The representative weight of a multipaint group, used for * viewport colors and actual painting. * * Result equal to sum of weights with auto normalize, and average otherwise. * Value is not clamped, since painting relies on multiplication being always * commutative with the collective weight function. */ float BKE_defvert_multipaint_collective_weight(const struct MDeformVert *dv, int defbase_tot, const bool *defbase_sel, int defbase_tot_sel, bool do_autonormalize) { int i; float total = 0.0f; const MDeformWeight *dw = dv->dw; for (i = dv->totweight; i != 0; i--, dw++) { /* in multipaint, get the average if auto normalize is inactive * get the sum if it is active */ if (dw->def_nr < defbase_tot) { if (defbase_sel[dw->def_nr]) { total += dw->weight; } } } if (do_autonormalize == false) { total /= defbase_tot_sel; } return total; } /* -------------------------------------------------------------------- */ /** \name Defvert Array functions * \{ */ void BKE_defvert_array_copy(MDeformVert *dst, const MDeformVert *src, int copycount) { /* Assumes dst is already set up */ int i; if (!src || !dst) { return; } memcpy(dst, src, copycount * sizeof(MDeformVert)); for (i = 0; i < copycount; i++) { if (src[i].dw) { dst[i].dw = MEM_mallocN(sizeof(MDeformWeight) * src[i].totweight, "copy_deformWeight"); memcpy(dst[i].dw, src[i].dw, sizeof(MDeformWeight) * src[i].totweight); } } } void BKE_defvert_array_free_elems(MDeformVert *dvert, int totvert) { /* Instead of freeing the verts directly, * call this function to delete any special * vert data */ int i; if (!dvert) { return; } /* Free any special data from the verts */ for (i = 0; i < totvert; i++) { if (dvert[i].dw) { MEM_freeN(dvert[i].dw); } } } void BKE_defvert_array_free(MDeformVert *dvert, int totvert) { /* Instead of freeing the verts directly, * call this function to delete any special * vert data */ if (!dvert) { return; } /* Free any special data from the verts */ BKE_defvert_array_free_elems(dvert, totvert); MEM_freeN(dvert); } void BKE_defvert_extract_vgroup_to_vertweights(MDeformVert *dvert, const int defgroup, const int num_verts, float *r_weights, const bool invert_vgroup) { if (dvert && defgroup != -1) { int i = num_verts; while (i--) { const float w = defvert_find_weight(&dvert[i], defgroup); r_weights[i] = invert_vgroup ? (1.0f - w) : w; } } else { copy_vn_fl(r_weights, num_verts, invert_vgroup ? 1.0f : 0.0f); } } /** * The following three make basic interpolation, * using temp vert_weights array to avoid looking up same weight several times. */ void BKE_defvert_extract_vgroup_to_edgeweights(MDeformVert *dvert, const int defgroup, const int num_verts, MEdge *edges, const int num_edges, float *r_weights, const bool invert_vgroup) { if (dvert && defgroup != -1) { int i = num_edges; float *tmp_weights = MEM_mallocN(sizeof(*tmp_weights) * (size_t)num_verts, __func__); BKE_defvert_extract_vgroup_to_vertweights( dvert, defgroup, num_verts, tmp_weights, invert_vgroup); while (i--) { MEdge *me = &edges[i]; r_weights[i] = (tmp_weights[me->v1] + tmp_weights[me->v2]) * 0.5f; } MEM_freeN(tmp_weights); } else { copy_vn_fl(r_weights, num_edges, 0.0f); } } void BKE_defvert_extract_vgroup_to_loopweights(MDeformVert *dvert, const int defgroup, const int num_verts, MLoop *loops, const int num_loops, float *r_weights, const bool invert_vgroup) { if (dvert && defgroup != -1) { int i = num_loops; float *tmp_weights = MEM_mallocN(sizeof(*tmp_weights) * (size_t)num_verts, __func__); BKE_defvert_extract_vgroup_to_vertweights( dvert, defgroup, num_verts, tmp_weights, invert_vgroup); while (i--) { MLoop *ml = &loops[i]; r_weights[i] = tmp_weights[ml->v]; } MEM_freeN(tmp_weights); } else { copy_vn_fl(r_weights, num_loops, 0.0f); } } void BKE_defvert_extract_vgroup_to_polyweights(MDeformVert *dvert, const int defgroup, const int num_verts, MLoop *loops, const int UNUSED(num_loops), MPoly *polys, const int num_polys, float *r_weights, const bool invert_vgroup) { if (dvert && defgroup != -1) { int i = num_polys; float *tmp_weights = MEM_mallocN(sizeof(*tmp_weights) * (size_t)num_verts, __func__); BKE_defvert_extract_vgroup_to_vertweights( dvert, defgroup, num_verts, tmp_weights, invert_vgroup); while (i--) { MPoly *mp = &polys[i]; MLoop *ml = &loops[mp->loopstart]; int j = mp->totloop; float w = 0.0f; for (; j--; ml++) { w += tmp_weights[ml->v]; } r_weights[i] = w / (float)mp->totloop; } MEM_freeN(tmp_weights); } else { copy_vn_fl(r_weights, num_polys, 0.0f); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Data Transfer * \{ */ static void vgroups_datatransfer_interp(const CustomDataTransferLayerMap *laymap, void *dest, const void **sources, const float *weights, const int count, const float mix_factor) { MDeformVert **data_src = (MDeformVert **)sources; MDeformVert *data_dst = (MDeformVert *)dest; const int idx_src = laymap->data_src_n; const int idx_dst = laymap->data_dst_n; const int mix_mode = laymap->mix_mode; int i, j; MDeformWeight *dw_src; MDeformWeight *dw_dst = defvert_find_index(data_dst, idx_dst); float weight_src = 0.0f, weight_dst = 0.0f; if (sources) { for (i = count; i--;) { for (j = data_src[i]->totweight; j--;) { if ((dw_src = &data_src[i]->dw[j])->def_nr == idx_src) { weight_src += dw_src->weight * weights[i]; break; } } } } if (dw_dst) { weight_dst = dw_dst->weight; } else if (mix_mode == CDT_MIX_REPLACE_ABOVE_THRESHOLD) { return; /* Do not affect destination. */ } weight_src = data_transfer_interp_float_do(mix_mode, weight_dst, weight_src, mix_factor); CLAMP(weight_src, 0.0f, 1.0f); if (!dw_dst) { defvert_add_index_notest(data_dst, idx_dst, weight_src); } else { dw_dst->weight = weight_src; } } static bool data_transfer_layersmapping_vgroups_multisrc_to_dst(ListBase *r_map, const int mix_mode, const float mix_factor, const float *mix_weights, const int num_elem_dst, const bool use_create, const bool use_delete, Object *ob_src, Object *ob_dst, MDeformVert *data_src, MDeformVert *data_dst, CustomData *UNUSED(cd_src), CustomData *cd_dst, const bool UNUSED(use_dupref_dst), const int tolayers, bool *use_layers_src, const int num_layers_src) { int idx_src; int idx_dst; int tot_dst = BLI_listbase_count(&ob_dst->defbase); const size_t elem_size = sizeof(*((MDeformVert *)NULL)); switch (tolayers) { case DT_LAYERS_INDEX_DST: idx_dst = tot_dst; /* Find last source actually used! */ idx_src = num_layers_src; while (idx_src-- && !use_layers_src[idx_src]) { /* pass */ } idx_src++; if (idx_dst < idx_src) { if (use_create) { /* Create as much vgroups as necessary! */ for (; idx_dst < idx_src; idx_dst++) { BKE_object_defgroup_add(ob_dst); } } else { /* Otherwise, just try to map what we can with existing dst vgroups. */ idx_src = idx_dst; } } else if (use_delete && idx_dst > idx_src) { while (idx_dst-- > idx_src) { BKE_object_defgroup_remove(ob_dst, ob_dst->defbase.last); } } if (r_map) { /* At this stage, we **need** a valid CD_MDEFORMVERT layer on dest! * Again, use_create is not relevant in this case */ if (!data_dst) { data_dst = CustomData_add_layer(cd_dst, CD_MDEFORMVERT, CD_CALLOC, NULL, num_elem_dst); } while (idx_src--) { if (!use_layers_src[idx_src]) { continue; } data_transfer_layersmapping_add_item(r_map, CD_FAKE_MDEFORMVERT, mix_mode, mix_factor, mix_weights, data_src, data_dst, idx_src, idx_src, elem_size, 0, 0, 0, vgroups_datatransfer_interp, NULL); } } break; case DT_LAYERS_NAME_DST: { bDeformGroup *dg_src, *dg_dst; if (use_delete) { /* Remove all unused dst vgroups first, simpler in this case. */ for (dg_dst = ob_dst->defbase.first; dg_dst;) { bDeformGroup *dg_dst_next = dg_dst->next; if (defgroup_name_index(ob_src, dg_dst->name) == -1) { BKE_object_defgroup_remove(ob_dst, dg_dst); } dg_dst = dg_dst_next; } } for (idx_src = 0, dg_src = ob_src->defbase.first; idx_src < num_layers_src; idx_src++, dg_src = dg_src->next) { if (!use_layers_src[idx_src]) { continue; } if ((idx_dst = defgroup_name_index(ob_dst, dg_src->name)) == -1) { if (use_create) { BKE_object_defgroup_add_name(ob_dst, dg_src->name); idx_dst = ob_dst->actdef - 1; } else { /* If we are not allowed to create missing dst vgroups, just skip matching src one. */ continue; } } if (r_map) { /* At this stage, we **need** a valid CD_MDEFORMVERT layer on dest! * use_create is not relevant in this case */ if (!data_dst) { data_dst = CustomData_add_layer(cd_dst, CD_MDEFORMVERT, CD_CALLOC, NULL, num_elem_dst); } data_transfer_layersmapping_add_item(r_map, CD_FAKE_MDEFORMVERT, mix_mode, mix_factor, mix_weights, data_src, data_dst, idx_src, idx_dst, elem_size, 0, 0, 0, vgroups_datatransfer_interp, NULL); } } break; } default: return false; } return true; } bool data_transfer_layersmapping_vgroups(ListBase *r_map, const int mix_mode, const float mix_factor, const float *mix_weights, const int num_elem_dst, const bool use_create, const bool use_delete, Object *ob_src, Object *ob_dst, CustomData *cd_src, CustomData *cd_dst, const bool use_dupref_dst, const int fromlayers, const int tolayers) { int idx_src, idx_dst; MDeformVert *data_src, *data_dst = NULL; const size_t elem_size = sizeof(*((MDeformVert *)NULL)); /* Note: * VGroups are a bit hairy, since their layout is defined on object level (ob->defbase), * while their actual data is a (mesh) CD layer. * This implies we may have to handle data layout itself while having NULL data itself, * and even have to support NULL data_src in transfer data code * (we always create a data_dst, though). */ if (BLI_listbase_is_empty(&ob_src->defbase)) { if (use_delete) { BKE_object_defgroup_remove_all(ob_dst); } return true; } data_src = CustomData_get_layer(cd_src, CD_MDEFORMVERT); data_dst = CustomData_get_layer(cd_dst, CD_MDEFORMVERT); if (data_dst && use_dupref_dst && r_map) { /* If dest is a derivedmesh, we do not want to overwrite cdlayers of org mesh! */ data_dst = CustomData_duplicate_referenced_layer(cd_dst, CD_MDEFORMVERT, num_elem_dst); } if (fromlayers == DT_LAYERS_ACTIVE_SRC || fromlayers >= 0) { /* Note: use_delete has not much meaning in this case, ignored. */ if (fromlayers >= 0) { idx_src = fromlayers; if (idx_src >= BLI_listbase_count(&ob_src->defbase)) { /* This can happen when vgroups are removed from source object... * Remapping would be really tricky here, we'd need to go over all objects in * Main every time we delete a vgroup... for now, simpler and safer to abort. */ return false; } } else if ((idx_src = ob_src->actdef - 1) == -1) { return false; } if (tolayers >= 0) { /* Note: in this case we assume layer exists! */ idx_dst = tolayers; BLI_assert(idx_dst < BLI_listbase_count(&ob_dst->defbase)); } else if (tolayers == DT_LAYERS_ACTIVE_DST) { if ((idx_dst = ob_dst->actdef - 1) == -1) { bDeformGroup *dg_src; if (!use_create) { return true; } dg_src = BLI_findlink(&ob_src->defbase, idx_src); BKE_object_defgroup_add_name(ob_dst, dg_src->name); idx_dst = ob_dst->actdef - 1; } } else if (tolayers == DT_LAYERS_INDEX_DST) { int num = BLI_listbase_count(&ob_src->defbase); idx_dst = idx_src; if (num <= idx_dst) { if (!use_create) { return true; } /* Create as much vgroups as necessary! */ for (; num <= idx_dst; num++) { BKE_object_defgroup_add(ob_dst); } } } else if (tolayers == DT_LAYERS_NAME_DST) { bDeformGroup *dg_src = BLI_findlink(&ob_src->defbase, idx_src); if ((idx_dst = defgroup_name_index(ob_dst, dg_src->name)) == -1) { if (!use_create) { return true; } BKE_object_defgroup_add_name(ob_dst, dg_src->name); idx_dst = ob_dst->actdef - 1; } } else { return false; } if (r_map) { /* At this stage, we **need** a valid CD_MDEFORMVERT layer on dest! * use_create is not relevant in this case */ if (!data_dst) { data_dst = CustomData_add_layer(cd_dst, CD_MDEFORMVERT, CD_CALLOC, NULL, num_elem_dst); } data_transfer_layersmapping_add_item(r_map, CD_FAKE_MDEFORMVERT, mix_mode, mix_factor, mix_weights, data_src, data_dst, idx_src, idx_dst, elem_size, 0, 0, 0, vgroups_datatransfer_interp, NULL); } } else { int num_src, num_sel_unused; bool *use_layers_src = NULL; bool ret = false; switch (fromlayers) { case DT_LAYERS_ALL_SRC: use_layers_src = BKE_object_defgroup_subset_from_select_type( ob_src, WT_VGROUP_ALL, &num_src, &num_sel_unused); break; case DT_LAYERS_VGROUP_SRC_BONE_SELECT: use_layers_src = BKE_object_defgroup_subset_from_select_type( ob_src, WT_VGROUP_BONE_SELECT, &num_src, &num_sel_unused); break; case DT_LAYERS_VGROUP_SRC_BONE_DEFORM: use_layers_src = BKE_object_defgroup_subset_from_select_type( ob_src, WT_VGROUP_BONE_DEFORM, &num_src, &num_sel_unused); break; } if (use_layers_src) { ret = data_transfer_layersmapping_vgroups_multisrc_to_dst(r_map, mix_mode, mix_factor, mix_weights, num_elem_dst, use_create, use_delete, ob_src, ob_dst, data_src, data_dst, cd_src, cd_dst, use_dupref_dst, tolayers, use_layers_src, num_src); } MEM_SAFE_FREE(use_layers_src); return ret; } return true; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Various utils & helpers. * \{ */ void BKE_defvert_weight_to_rgb(float r_rgb[3], const float weight) { const float blend = ((weight / 2.0f) + 0.5f); if (weight <= 0.25f) { /* blue->cyan */ r_rgb[0] = 0.0f; r_rgb[1] = blend * weight * 4.0f; r_rgb[2] = blend; } else if (weight <= 0.50f) { /* cyan->green */ r_rgb[0] = 0.0f; r_rgb[1] = blend; r_rgb[2] = blend * (1.0f - ((weight - 0.25f) * 4.0f)); } else if (weight <= 0.75f) { /* green->yellow */ r_rgb[0] = blend * ((weight - 0.50f) * 4.0f); r_rgb[1] = blend; r_rgb[2] = 0.0f; } else if (weight <= 1.0f) { /* yellow->red */ r_rgb[0] = blend; r_rgb[1] = blend * (1.0f - ((weight - 0.75f) * 4.0f)); r_rgb[2] = 0.0f; } else { /* exceptional value, unclamped or nan, * avoid uninitialized memory use */ r_rgb[0] = 1.0f; r_rgb[1] = 0.0f; r_rgb[2] = 1.0f; } } /** \} */