/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2005 Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/editderivedmesh.c * \ingroup bke * * basic design: * * the bmesh derivedmesh exposes the mesh as triangles. it stores pointers * to three loops per triangle. the derivedmesh stores a cache of tessellations * for each face. this cache will smartly update as needed (though at first * it'll simply be more brute force). keeping track of face/edge counts may * be a small problem. * * this won't be the most efficient thing, considering that internal edges and * faces of tessellations are exposed. looking up an edge by index in particular * is likely to be a little slow. */ #include "atomic_ops.h" #include "BLI_math.h" #include "BLI_jitter_2d.h" #include "BLI_bitmap.h" #include "BLI_task.h" #include "BKE_cdderivedmesh.h" #include "BKE_deform.h" #include "BKE_mesh.h" #include "BKE_editmesh.h" #include "BKE_editmesh_bvh.h" #include "BKE_editmesh_tangent.h" #include "DNA_scene_types.h" #include "DNA_object_types.h" #include "DNA_mesh_types.h" #include "MEM_guardedalloc.h" typedef struct EditDerivedBMesh { DerivedMesh dm; BMEditMesh *em; EditMeshData emd; } EditDerivedBMesh; /* -------------------------------------------------------------------- */ /* Lazy initialize datastructures */ static void emDM_ensurePolyNormals(EditDerivedBMesh *bmdm); static void emDM_ensureVertNormals(EditDerivedBMesh *bmdm) { if (bmdm->emd.vertexCos && (bmdm->emd.vertexNos == NULL)) { BMesh *bm = bmdm->em->bm; const float (*vertexCos)[3], (*polyNos)[3]; float (*vertexNos)[3]; /* calculate vertex normals from poly normals */ emDM_ensurePolyNormals(bmdm); BM_mesh_elem_index_ensure(bm, BM_FACE); polyNos = bmdm->emd.polyNos; vertexCos = bmdm->emd.vertexCos; vertexNos = MEM_callocN(sizeof(*vertexNos) * bm->totvert, __func__); BM_verts_calc_normal_vcos(bm, polyNos, vertexCos, vertexNos); bmdm->emd.vertexNos = (const float (*)[3])vertexNos; } } static void emDM_ensurePolyNormals(EditDerivedBMesh *bmdm) { if (bmdm->emd.vertexCos && (bmdm->emd.polyNos == NULL)) { BMesh *bm = bmdm->em->bm; const float (*vertexCos)[3]; float (*polyNos)[3]; BMFace *efa; BMIter fiter; int i; BM_mesh_elem_index_ensure(bm, BM_VERT); polyNos = MEM_mallocN(sizeof(*polyNos) * bm->totface, __func__); vertexCos = bmdm->emd.vertexCos; BM_ITER_MESH_INDEX (efa, &fiter, bm, BM_FACES_OF_MESH, i) { BM_elem_index_set(efa, i); /* set_inline */ BM_face_calc_normal_vcos(bm, efa, polyNos[i], vertexCos); } bm->elem_index_dirty &= ~BM_FACE; bmdm->emd.polyNos = (const float (*)[3])polyNos; } } static void emDM_ensurePolyCenters(EditDerivedBMesh *bmdm) { if (bmdm->emd.polyCos == NULL) { BMesh *bm = bmdm->em->bm; float (*polyCos)[3]; BMFace *efa; BMIter fiter; int i; polyCos = MEM_mallocN(sizeof(*polyCos) * bm->totface, __func__); if (bmdm->emd.vertexCos) { const float (*vertexCos)[3]; vertexCos = bmdm->emd.vertexCos; BM_mesh_elem_index_ensure(bm, BM_VERT); BM_ITER_MESH_INDEX (efa, &fiter, bm, BM_FACES_OF_MESH, i) { BM_face_calc_center_mean_vcos(bm, efa, polyCos[i], vertexCos); } } else { BM_ITER_MESH_INDEX (efa, &fiter, bm, BM_FACES_OF_MESH, i) { BM_face_calc_center_mean(efa, polyCos[i]); } } bmdm->emd.polyCos = (const float (*)[3])polyCos; } } static void emDM_calcNormals(DerivedMesh *dm) { /* Nothing to do: normals are already calculated and stored on the * BMVerts and BMFaces */ dm->dirty &= ~DM_DIRTY_NORMALS; } static void emDM_calcLoopNormalsSpaceArray( DerivedMesh *dm, const bool use_split_normals, const float split_angle, MLoopNorSpaceArray *r_lnors_spacearr); static void emDM_calcLoopNormals(DerivedMesh *dm, const bool use_split_normals, const float split_angle) { emDM_calcLoopNormalsSpaceArray(dm, use_split_normals, split_angle, NULL); } /* #define DEBUG_CLNORS */ static void emDM_calcLoopNormalsSpaceArray( DerivedMesh *dm, const bool use_split_normals, const float split_angle, MLoopNorSpaceArray *r_lnors_spacearr) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; const float (*vertexCos)[3], (*vertexNos)[3], (*polyNos)[3]; float (*loopNos)[3]; short (*clnors_data)[2]; int cd_loop_clnors_offset; /* calculate loop normals from poly and vertex normals */ emDM_ensureVertNormals(bmdm); emDM_ensurePolyNormals(bmdm); dm->dirty &= ~DM_DIRTY_NORMALS; vertexCos = bmdm->emd.vertexCos; vertexNos = bmdm->emd.vertexNos; polyNos = bmdm->emd.polyNos; loopNos = dm->getLoopDataArray(dm, CD_NORMAL); if (!loopNos) { DM_add_loop_layer(dm, CD_NORMAL, CD_CALLOC, NULL); loopNos = dm->getLoopDataArray(dm, CD_NORMAL); } /* We can have both, give priority to dm's data, and fallback to bm's ones. */ clnors_data = dm->getLoopDataArray(dm, CD_CUSTOMLOOPNORMAL); cd_loop_clnors_offset = clnors_data ? -1 : CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL); BM_loops_calc_normal_vcos(bm, vertexCos, vertexNos, polyNos, use_split_normals, split_angle, loopNos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset); #ifdef DEBUG_CLNORS if (r_lnors_spacearr) { int i; for (i = 0; i < numLoops; i++) { if (r_lnors_spacearr->lspacearr[i]->ref_alpha != 0.0f) { LinkNode *loops = r_lnors_spacearr->lspacearr[i]->loops; printf("Loop %d uses lnor space %p:\n", i, r_lnors_spacearr->lspacearr[i]); print_v3("\tfinal lnor:", loopNos[i]); print_v3("\tauto lnor:", r_lnors_spacearr->lspacearr[i]->vec_lnor); print_v3("\tref_vec:", r_lnors_spacearr->lspacearr[i]->vec_ref); printf("\talpha: %f\n\tbeta: %f\n\tloops: %p\n", r_lnors_spacearr->lspacearr[i]->ref_alpha, r_lnors_spacearr->lspacearr[i]->ref_beta, r_lnors_spacearr->lspacearr[i]->loops); printf("\t\t(shared with loops"); while (loops) { printf(" %d", GET_INT_FROM_POINTER(loops->link)); loops = loops->next; } printf(")\n"); } else { printf("Loop %d has no lnor space\n", i); } } } #endif } static void emDM_calc_loop_tangents( DerivedMesh *dm, bool calc_active_tangent, const char (*tangent_names)[MAX_NAME], int tangent_names_len) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMEditMesh *em = bmdm->em; if (CustomData_number_of_layers(&em->bm->ldata, CD_MLOOPUV) == 0) { return; } const float (*poly_normals)[3] = bmdm->emd.polyNos; const float (*loop_normals)[3] = CustomData_get_layer(&dm->loopData, CD_NORMAL); const float (*vert_orco)[3] = dm->getVertDataArray(dm, CD_ORCO); /* can be NULL */ BKE_editmesh_loop_tangent_calc( em, calc_active_tangent, tangent_names, tangent_names_len, poly_normals, loop_normals, vert_orco, &dm->loopData, dm->numLoopData, &dm->tangent_mask); } static void emDM_recalcTessellation(DerivedMesh *UNUSED(dm)) { /* do nothing */ } static void emDM_recalcLoopTri(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMLoop *(*looptris)[3] = bmdm->em->looptris; MLoopTri *mlooptri; const int tottri = bmdm->em->tottri; int i; DM_ensure_looptri_data(dm); mlooptri = dm->looptris.array_wip; BLI_assert(tottri == 0 || mlooptri != NULL); BLI_assert(poly_to_tri_count(dm->numPolyData, dm->numLoopData) == dm->looptris.num); BLI_assert(tottri == dm->looptris.num); BM_mesh_elem_index_ensure(bmdm->em->bm, BM_FACE | BM_LOOP); for (i = 0; i < tottri; i++) { BMLoop **ltri = looptris[i]; MLoopTri *lt = &mlooptri[i]; ARRAY_SET_ITEMS( lt->tri, BM_elem_index_get(ltri[0]), BM_elem_index_get(ltri[1]), BM_elem_index_get(ltri[2])); lt->poly = BM_elem_index_get(ltri[0]->f); } BLI_assert(dm->looptris.array == NULL); atomic_cas_ptr((void **)&dm->looptris.array, dm->looptris.array, dm->looptris.array_wip); dm->looptris.array_wip = NULL; } static void emDM_foreachMappedVert( DerivedMesh *dm, void (*func)(void *userData, int index, const float co[3], const float no_f[3], const short no_s[3]), void *userData, DMForeachFlag flag) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMVert *eve; BMIter iter; int i; if (bmdm->emd.vertexCos) { const float (*vertexCos)[3] = bmdm->emd.vertexCos; const float (*vertexNos)[3]; if (flag & DM_FOREACH_USE_NORMAL) { emDM_ensureVertNormals(bmdm); vertexNos = bmdm->emd.vertexNos; } else { vertexNos = NULL; } BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { const float *no = (flag & DM_FOREACH_USE_NORMAL) ? vertexNos[i] : NULL; func(userData, i, vertexCos[i], no, NULL); } } else { BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { const float *no = (flag & DM_FOREACH_USE_NORMAL) ? eve->no : NULL; func(userData, i, eve->co, no, NULL); } } } static void emDM_foreachMappedEdge( DerivedMesh *dm, void (*func)(void *userData, int index, const float v0co[3], const float v1co[3]), void *userData) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMEdge *eed; BMIter iter; int i; if (bmdm->emd.vertexCos) { BM_mesh_elem_index_ensure(bm, BM_VERT); BM_ITER_MESH_INDEX (eed, &iter, bm, BM_EDGES_OF_MESH, i) { func(userData, i, bmdm->emd.vertexCos[BM_elem_index_get(eed->v1)], bmdm->emd.vertexCos[BM_elem_index_get(eed->v2)]); } } else { BM_ITER_MESH_INDEX (eed, &iter, bm, BM_EDGES_OF_MESH, i) { func(userData, i, eed->v1->co, eed->v2->co); } } } static void emDM_foreachMappedLoop( DerivedMesh *dm, void (*func)(void *userData, int vertex_index, int face_index, const float co[3], const float no[3]), void *userData, DMForeachFlag flag) { /* We can't use dm->getLoopDataLayout(dm) here, we want to always access dm->loopData, EditDerivedBMesh would * return loop data from bmesh itself. */ const float (*lnors)[3] = (flag & DM_FOREACH_USE_NORMAL) ? DM_get_loop_data_layer(dm, CD_NORMAL) : NULL; EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMFace *efa; BMIter iter; const float (*vertexCos)[3] = bmdm->emd.vertexCos; int f_idx; BM_mesh_elem_index_ensure(bm, BM_VERT); BM_ITER_MESH_INDEX (efa, &iter, bm, BM_FACES_OF_MESH, f_idx) { BMLoop *l_iter, *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(efa); do { const BMVert *eve = l_iter->v; const int v_idx = BM_elem_index_get(eve); const float *no = lnors ? *lnors++ : NULL; func(userData, v_idx, f_idx, vertexCos ? vertexCos[v_idx] : eve->co, no); } while ((l_iter = l_iter->next) != l_first); } } static void emDM_foreachMappedFaceCenter( DerivedMesh *dm, void (*func)(void *userData, int index, const float co[3], const float no[3]), void *userData, DMForeachFlag flag) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; const float (*polyNos)[3]; const float (*polyCos)[3]; BMFace *efa; BMIter iter; int i; emDM_ensurePolyCenters(bmdm); polyCos = bmdm->emd.polyCos; /* always set */ if (flag & DM_FOREACH_USE_NORMAL) { emDM_ensurePolyNormals(bmdm); polyNos = bmdm->emd.polyNos; /* maybe NULL */ } else { polyNos = NULL; } if (polyNos) { BM_ITER_MESH_INDEX (efa, &iter, bm, BM_FACES_OF_MESH, i) { const float *no = polyNos[i]; func(userData, i, polyCos[i], no); } } else { BM_ITER_MESH_INDEX (efa, &iter, bm, BM_FACES_OF_MESH, i) { const float *no = (flag & DM_FOREACH_USE_NORMAL) ? efa->no : NULL; func(userData, i, polyCos[i], no); } } } static void emDM_getMinMax(DerivedMesh *dm, float r_min[3], float r_max[3]) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMVert *eve; BMIter iter; int i; if (bm->totvert) { if (bmdm->emd.vertexCos) { BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { minmax_v3v3_v3(r_min, r_max, bmdm->emd.vertexCos[i]); } } else { BM_ITER_MESH (eve, &iter, bm, BM_VERTS_OF_MESH) { minmax_v3v3_v3(r_min, r_max, eve->co); } } } else { zero_v3(r_min); zero_v3(r_max); } } static int emDM_getNumVerts(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return bmdm->em->bm->totvert; } static int emDM_getNumEdges(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return bmdm->em->bm->totedge; } static int emDM_getNumTessFaces(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return bmdm->em->tottri; } static int emDM_getNumLoops(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return bmdm->em->bm->totloop; } static int emDM_getNumPolys(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return bmdm->em->bm->totface; } static void bmvert_to_mvert(BMesh *bm, BMVert *ev, MVert *r_vert) { const float *f; copy_v3_v3(r_vert->co, ev->co); normal_float_to_short_v3(r_vert->no, ev->no); r_vert->flag = BM_vert_flag_to_mflag(ev); if ((f = CustomData_bmesh_get(&bm->vdata, ev->head.data, CD_BWEIGHT))) { r_vert->bweight = (unsigned char)((*f) * 255.0f); } } static void emDM_getVert(DerivedMesh *dm, int index, MVert *r_vert) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMVert *ev; if (UNLIKELY(index < 0 || index >= bm->totvert)) { BLI_assert(!"error in emDM_getVert"); return; } BLI_assert((bm->elem_table_dirty & BM_VERT) == 0); ev = bm->vtable[index]; /* should be BM_vert_at_index() */ // ev = BM_vert_at_index(bm, index); /* warning, does list loop, _not_ ideal */ bmvert_to_mvert(bm, ev, r_vert); if (bmdm->emd.vertexCos) copy_v3_v3(r_vert->co, bmdm->emd.vertexCos[index]); } static void emDM_getVertCo(DerivedMesh *dm, int index, float r_co[3]) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; if (UNLIKELY(index < 0 || index >= bm->totvert)) { BLI_assert(!"error in emDM_getVertCo"); return; } if (bmdm->emd.vertexCos) { copy_v3_v3(r_co, bmdm->emd.vertexCos[index]); } else { BMVert *ev; BLI_assert((bm->elem_table_dirty & BM_VERT) == 0); ev = bm->vtable[index]; /* should be BM_vert_at_index() */ // ev = BM_vert_at_index(bm, index); /* warning, does list loop, _not_ ideal */ copy_v3_v3(r_co, ev->co); } } static void emDM_getVertNo(DerivedMesh *dm, int index, float r_no[3]) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; if (UNLIKELY(index < 0 || index >= bm->totvert)) { BLI_assert(!"error in emDM_getVertNo"); return; } if (bmdm->emd.vertexCos) { emDM_ensureVertNormals(bmdm); copy_v3_v3(r_no, bmdm->emd.vertexNos[index]); } else { BMVert *ev; BLI_assert((bm->elem_table_dirty & BM_VERT) == 0); ev = bm->vtable[index]; /* should be BM_vert_at_index() */ // ev = BM_vert_at_index(bm, index); /* warning, does list loop, _not_ ideal */ copy_v3_v3(r_no, ev->no); } } static void emDM_getPolyNo(DerivedMesh *dm, int index, float r_no[3]) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; if (UNLIKELY(index < 0 || index >= bm->totface)) { BLI_assert(!"error in emDM_getPolyNo"); return; } if (bmdm->emd.vertexCos) { emDM_ensurePolyNormals(bmdm); copy_v3_v3(r_no, bmdm->emd.polyNos[index]); } else { BMFace *efa; BLI_assert((bm->elem_table_dirty & BM_FACE) == 0); efa = bm->ftable[index]; /* should be BM_vert_at_index() */ // efa = BM_face_at_index(bm, index); /* warning, does list loop, _not_ ideal */ copy_v3_v3(r_no, efa->no); } } static void emDM_getEdge(DerivedMesh *dm, int index, MEdge *r_edge) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMEdge *e; const float *f; if (UNLIKELY(index < 0 || index >= bm->totedge)) { BLI_assert(!"error in emDM_getEdge"); return; } BLI_assert((bm->elem_table_dirty & BM_EDGE) == 0); e = bm->etable[index]; /* should be BM_edge_at_index() */ // e = BM_edge_at_index(bm, index); /* warning, does list loop, _not_ ideal */ r_edge->flag = BM_edge_flag_to_mflag(e); r_edge->v1 = BM_elem_index_get(e->v1); r_edge->v2 = BM_elem_index_get(e->v2); if ((f = CustomData_bmesh_get(&bm->edata, e->head.data, CD_BWEIGHT))) { r_edge->bweight = (unsigned char)((*f) * 255.0f); } if ((f = CustomData_bmesh_get(&bm->edata, e->head.data, CD_CREASE))) { r_edge->crease = (unsigned char)((*f) * 255.0f); } } static void emDM_getTessFace(DerivedMesh *dm, int index, MFace *r_face) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMFace *ef; BMLoop **ltri; if (UNLIKELY(index < 0 || index >= bmdm->em->tottri)) { BLI_assert(!"error in emDM_getTessFace"); return; } ltri = bmdm->em->looptris[index]; ef = ltri[0]->f; r_face->mat_nr = (unsigned char) ef->mat_nr; r_face->flag = BM_face_flag_to_mflag(ef); r_face->v1 = BM_elem_index_get(ltri[0]->v); r_face->v2 = BM_elem_index_get(ltri[1]->v); r_face->v3 = BM_elem_index_get(ltri[2]->v); r_face->v4 = 0; test_index_face(r_face, NULL, 0, 3); } static void emDM_copyVertArray(DerivedMesh *dm, MVert *r_vert) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMVert *eve; BMIter iter; const int cd_vert_bweight_offset = CustomData_get_offset(&bm->vdata, CD_BWEIGHT); if (bmdm->emd.vertexCos) { int i; BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { copy_v3_v3(r_vert->co, bmdm->emd.vertexCos[i]); normal_float_to_short_v3(r_vert->no, eve->no); r_vert->flag = BM_vert_flag_to_mflag(eve); r_vert->bweight = (cd_vert_bweight_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eve, cd_vert_bweight_offset) : 0; r_vert++; } } else { BM_ITER_MESH (eve, &iter, bm, BM_VERTS_OF_MESH) { copy_v3_v3(r_vert->co, eve->co); normal_float_to_short_v3(r_vert->no, eve->no); r_vert->flag = BM_vert_flag_to_mflag(eve); r_vert->bweight = (cd_vert_bweight_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eve, cd_vert_bweight_offset) : 0; r_vert++; } } } static void emDM_copyEdgeArray(DerivedMesh *dm, MEdge *r_edge) { BMesh *bm = ((EditDerivedBMesh *)dm)->em->bm; BMEdge *eed; BMIter iter; const int cd_edge_bweight_offset = CustomData_get_offset(&bm->edata, CD_BWEIGHT); const int cd_edge_crease_offset = CustomData_get_offset(&bm->edata, CD_CREASE); BM_mesh_elem_index_ensure(bm, BM_VERT); BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { r_edge->v1 = BM_elem_index_get(eed->v1); r_edge->v2 = BM_elem_index_get(eed->v2); r_edge->flag = BM_edge_flag_to_mflag(eed); r_edge->crease = (cd_edge_crease_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_crease_offset) : 0; r_edge->bweight = (cd_edge_bweight_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_bweight_offset) : 0; r_edge++; } } static void emDM_copyTessFaceArray(DerivedMesh *dm, MFace *r_face) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; struct BMLoop *(*looptris)[3] = bmdm->em->looptris; BMFace *ef; int i; BM_mesh_elem_index_ensure(bm, BM_VERT); for (i = 0; i < bmdm->em->tottri; i++, r_face++) { BMLoop **ltri = looptris[i]; ef = ltri[0]->f; r_face->mat_nr = (unsigned char) ef->mat_nr; r_face->flag = BM_face_flag_to_mflag(ef); r_face->edcode = 0; r_face->v1 = BM_elem_index_get(ltri[0]->v); r_face->v2 = BM_elem_index_get(ltri[1]->v); r_face->v3 = BM_elem_index_get(ltri[2]->v); r_face->v4 = 0; test_index_face(r_face, NULL, 0, 3); } } static void emDM_copyLoopArray(DerivedMesh *dm, MLoop *r_loop) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMIter iter; BMFace *efa; BM_mesh_elem_index_ensure(bm, BM_VERT | BM_EDGE); BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) { BMLoop *l_iter, *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(efa); do { r_loop->v = BM_elem_index_get(l_iter->v); r_loop->e = BM_elem_index_get(l_iter->e); r_loop++; } while ((l_iter = l_iter->next) != l_first); } } static void emDM_copyPolyArray(DerivedMesh *dm, MPoly *r_poly) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMIter iter; BMFace *efa; int i; i = 0; BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) { r_poly->flag = BM_face_flag_to_mflag(efa); r_poly->loopstart = i; r_poly->totloop = efa->len; r_poly->mat_nr = efa->mat_nr; r_poly++; i += efa->len; } } static void *emDM_getTessFaceDataArray(DerivedMesh *dm, int type) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; void *datalayer; datalayer = DM_get_tessface_data_layer(dm, type); if (datalayer) return datalayer; /* layers are store per face for editmesh, we convert to a temporary * data layer array in the derivedmesh when these are requested */ if (type == CD_MTFACE || type == CD_MCOL) { const char *bmdata; char *data; bool has_type_source = CustomData_has_layer(&bm->ldata, (type == CD_MTFACE) ? CD_MLOOPUV : CD_MLOOPCOL); if (has_type_source) { /* offset = bm->pdata.layers[index].offset; */ /* UNUSED */ BMLoop *(*looptris)[3] = bmdm->em->looptris; const int size = CustomData_sizeof(type); int i, j; DM_add_tessface_layer(dm, type, CD_CALLOC, NULL); const int index = CustomData_get_layer_index(&dm->faceData, type); dm->faceData.layers[index].flag |= CD_FLAG_TEMPORARY; data = datalayer = DM_get_tessface_data_layer(dm, type); if (type == CD_MTFACE) { const int cd_loop_uv_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPUV); for (i = 0; i < bmdm->em->tottri; i++, data += size) { for (j = 0; j < 3; j++) { // bmdata = CustomData_bmesh_get(&bm->ldata, looptris[i][j]->head.data, CD_MLOOPUV); bmdata = BM_ELEM_CD_GET_VOID_P(looptris[i][j], cd_loop_uv_offset); copy_v2_v2(((MTFace *)data)->uv[j], ((const MLoopUV *)bmdata)->uv); } } } else { const int cd_loop_color_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPCOL); for (i = 0; i < bmdm->em->tottri; i++, data += size) { for (j = 0; j < 3; j++) { // bmdata = CustomData_bmesh_get(&bm->ldata, looptris[i][j]->head.data, CD_MLOOPCOL); bmdata = BM_ELEM_CD_GET_VOID_P(looptris[i][j], cd_loop_color_offset); MESH_MLOOPCOL_TO_MCOL(((const MLoopCol *)bmdata), (((MCol *)data) + j)); } } } } } /* Special handling for CD_TESSLOOPNORMAL, we generate it on demand as well. */ if (type == CD_TESSLOOPNORMAL) { const float (*lnors)[3] = dm->getLoopDataArray(dm, CD_NORMAL); if (lnors) { BMLoop *(*looptris)[3] = bmdm->em->looptris; short (*tlnors)[4][3], (*tlnor)[4][3]; int index, i, j; DM_add_tessface_layer(dm, type, CD_CALLOC, NULL); index = CustomData_get_layer_index(&dm->faceData, type); dm->faceData.layers[index].flag |= CD_FLAG_TEMPORARY; tlnor = tlnors = DM_get_tessface_data_layer(dm, type); BM_mesh_elem_index_ensure(bm, BM_LOOP); for (i = 0; i < bmdm->em->tottri; i++, tlnor++, looptris++) { for (j = 0; j < 3; j++) { normal_float_to_short_v3((*tlnor)[j], lnors[BM_elem_index_get((*looptris)[j])]); } } } } return datalayer; } static void emDM_getVertCos(DerivedMesh *dm, float (*r_cos)[3]) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BMesh *bm = bmdm->em->bm; BMVert *eve; BMIter iter; int i; if (bmdm->emd.vertexCos) { BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { copy_v3_v3(r_cos[i], bmdm->emd.vertexCos[i]); } } else { BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { copy_v3_v3(r_cos[i], eve->co); } } } static void emDM_release(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; if (DM_release(dm)) { if (bmdm->emd.vertexCos) { MEM_freeN((void *)bmdm->emd.vertexCos); if (bmdm->emd.vertexNos) { MEM_freeN((void *)bmdm->emd.vertexNos); } if (bmdm->emd.polyNos) { MEM_freeN((void *)bmdm->emd.polyNos); } } if (bmdm->emd.polyCos) { MEM_freeN((void *)bmdm->emd.polyCos); } MEM_freeN(bmdm); } } static CustomData *bmDm_getVertDataLayout(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return &bmdm->em->bm->vdata; } static CustomData *bmDm_getEdgeDataLayout(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return &bmdm->em->bm->edata; } static CustomData *bmDm_getTessFaceDataLayout(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return &bmdm->dm.faceData; } static CustomData *bmDm_getLoopDataLayout(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return &bmdm->em->bm->ldata; } static CustomData *bmDm_getPolyDataLayout(DerivedMesh *dm) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; return &bmdm->em->bm->pdata; } /** * \note This may be called per-draw, * avoid allocating large arrays where possible and keep this a thin wrapper for #BMesh. */ DerivedMesh *getEditDerivedBMesh( BMEditMesh *em, struct Object *UNUSED(ob), CustomDataMask data_mask, float (*vertexCos)[3]) { EditDerivedBMesh *bmdm = MEM_callocN(sizeof(*bmdm), __func__); BMesh *bm = em->bm; bmdm->em = em; DM_init((DerivedMesh *)bmdm, DM_TYPE_EDITBMESH, bm->totvert, bm->totedge, em->tottri, bm->totloop, bm->totface); /* could also get from the objects mesh directly */ bmdm->dm.cd_flag = BM_mesh_cd_flag_from_bmesh(bm); bmdm->dm.getVertCos = emDM_getVertCos; bmdm->dm.getMinMax = emDM_getMinMax; bmdm->dm.getVertDataLayout = bmDm_getVertDataLayout; bmdm->dm.getEdgeDataLayout = bmDm_getEdgeDataLayout; bmdm->dm.getTessFaceDataLayout = bmDm_getTessFaceDataLayout; bmdm->dm.getLoopDataLayout = bmDm_getLoopDataLayout; bmdm->dm.getPolyDataLayout = bmDm_getPolyDataLayout; bmdm->dm.getNumVerts = emDM_getNumVerts; bmdm->dm.getNumEdges = emDM_getNumEdges; bmdm->dm.getNumTessFaces = emDM_getNumTessFaces; bmdm->dm.getNumLoops = emDM_getNumLoops; bmdm->dm.getNumPolys = emDM_getNumPolys; bmdm->dm.getVert = emDM_getVert; bmdm->dm.getVertCo = emDM_getVertCo; bmdm->dm.getVertNo = emDM_getVertNo; bmdm->dm.getPolyNo = emDM_getPolyNo; bmdm->dm.getEdge = emDM_getEdge; bmdm->dm.getTessFace = emDM_getTessFace; bmdm->dm.copyVertArray = emDM_copyVertArray; bmdm->dm.copyEdgeArray = emDM_copyEdgeArray; bmdm->dm.copyTessFaceArray = emDM_copyTessFaceArray; bmdm->dm.copyLoopArray = emDM_copyLoopArray; bmdm->dm.copyPolyArray = emDM_copyPolyArray; bmdm->dm.getTessFaceDataArray = emDM_getTessFaceDataArray; bmdm->dm.calcNormals = emDM_calcNormals; bmdm->dm.calcLoopNormals = emDM_calcLoopNormals; bmdm->dm.calcLoopNormalsSpaceArray = emDM_calcLoopNormalsSpaceArray; bmdm->dm.calcLoopTangents = emDM_calc_loop_tangents; bmdm->dm.recalcTessellation = emDM_recalcTessellation; bmdm->dm.recalcLoopTri = emDM_recalcLoopTri; bmdm->dm.foreachMappedVert = emDM_foreachMappedVert; bmdm->dm.foreachMappedLoop = emDM_foreachMappedLoop; bmdm->dm.foreachMappedEdge = emDM_foreachMappedEdge; bmdm->dm.foreachMappedFaceCenter = emDM_foreachMappedFaceCenter; bmdm->dm.release = emDM_release; bmdm->emd.vertexCos = (const float (*)[3])vertexCos; bmdm->dm.deformedOnly = (vertexCos != NULL); const int cd_dvert_offset = (data_mask & CD_MASK_MDEFORMVERT) ? CustomData_get_offset(&bm->vdata, CD_MDEFORMVERT) : -1; if (cd_dvert_offset != -1) { BMIter iter; BMVert *eve; int i; DM_add_vert_layer(&bmdm->dm, CD_MDEFORMVERT, CD_CALLOC, NULL); BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { DM_set_vert_data(&bmdm->dm, i, CD_MDEFORMVERT, BM_ELEM_CD_GET_VOID_P(eve, cd_dvert_offset)); } } const int cd_skin_offset = (data_mask & CD_MASK_MVERT_SKIN) ? CustomData_get_offset(&bm->vdata, CD_MVERT_SKIN) : -1; if (cd_skin_offset != -1) { BMIter iter; BMVert *eve; int i; DM_add_vert_layer(&bmdm->dm, CD_MVERT_SKIN, CD_CALLOC, NULL); BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { DM_set_vert_data(&bmdm->dm, i, CD_MVERT_SKIN, BM_ELEM_CD_GET_VOID_P(eve, cd_skin_offset)); } } return (DerivedMesh *)bmdm; } /* -------------------------------------------------------------------- */ /* StatVis Functions */ static void axis_from_enum_v3(float v[3], const char axis) { zero_v3(v); if (axis < 3) v[axis] = 1.0f; else v[axis - 3] = -1.0f; } static void statvis_calc_overhang( BMEditMesh *em, const float (*polyNos)[3], /* values for calculating */ const float min, const float max, const char axis, /* result */ unsigned char (*r_face_colors)[4]) { BMIter iter; BMesh *bm = em->bm; BMFace *f; float dir[3]; int index; const float minmax_irange = 1.0f / (max - min); bool is_max; /* fallback */ unsigned char col_fallback[4] = {64, 64, 64, 255}; /* gray */ unsigned char col_fallback_max[4] = {0, 0, 0, 255}; /* max color */ BLI_assert(min <= max); axis_from_enum_v3(dir, axis); if (LIKELY(em->ob)) { mul_transposed_mat3_m4_v3(em->ob->obmat, dir); normalize_v3(dir); } /* fallback max */ { float fcol[3]; BKE_defvert_weight_to_rgb(fcol, 1.0f); rgb_float_to_uchar(col_fallback_max, fcol); } /* now convert into global space */ BM_ITER_MESH_INDEX (f, &iter, bm, BM_FACES_OF_MESH, index) { float fac = angle_normalized_v3v3(polyNos ? polyNos[index] : f->no, dir) / (float)M_PI; /* remap */ if ((is_max = (fac <= max)) && (fac >= min)) { float fcol[3]; fac = (fac - min) * minmax_irange; fac = 1.0f - fac; CLAMP(fac, 0.0f, 1.0f); BKE_defvert_weight_to_rgb(fcol, fac); rgb_float_to_uchar(r_face_colors[index], fcol); } else { const unsigned char *fallback = is_max ? col_fallback_max : col_fallback; copy_v4_v4_uchar(r_face_colors[index], fallback); } } } /* so we can use jitter values for face interpolation */ static void uv_from_jitter_v2(float uv[2]) { uv[0] += 0.5f; uv[1] += 0.5f; if (uv[0] + uv[1] > 1.0f) { uv[0] = 1.0f - uv[0]; uv[1] = 1.0f - uv[1]; } CLAMP(uv[0], 0.0f, 1.0f); CLAMP(uv[1], 0.0f, 1.0f); } static void statvis_calc_thickness( BMEditMesh *em, const float (*vertexCos)[3], /* values for calculating */ const float min, const float max, const int samples, /* result */ unsigned char (*r_face_colors)[4]) { const float eps_offset = 0.00002f; /* values <= 0.00001 give errors */ float *face_dists = (float *)r_face_colors; /* cheating */ const bool use_jit = samples < 32; float jit_ofs[32][2]; BMesh *bm = em->bm; const int tottri = em->tottri; const float minmax_irange = 1.0f / (max - min); int i; struct BMLoop *(*looptris)[3] = em->looptris; /* fallback */ const unsigned char col_fallback[4] = {64, 64, 64, 255}; struct BMBVHTree *bmtree; BLI_assert(min <= max); copy_vn_fl(face_dists, em->bm->totface, max); if (use_jit) { int j; BLI_assert(samples < 32); BLI_jitter_init(jit_ofs, samples); for (j = 0; j < samples; j++) { uv_from_jitter_v2(jit_ofs[j]); } } BM_mesh_elem_index_ensure(bm, BM_FACE); if (vertexCos) { BM_mesh_elem_index_ensure(bm, BM_VERT); } bmtree = BKE_bmbvh_new_from_editmesh(em, 0, vertexCos, false); for (i = 0; i < tottri; i++) { BMFace *f_hit; BMLoop **ltri = looptris[i]; const int index = BM_elem_index_get(ltri[0]->f); const float *cos[3]; float ray_co[3]; float ray_no[3]; if (vertexCos) { cos[0] = vertexCos[BM_elem_index_get(ltri[0]->v)]; cos[1] = vertexCos[BM_elem_index_get(ltri[1]->v)]; cos[2] = vertexCos[BM_elem_index_get(ltri[2]->v)]; } else { cos[0] = ltri[0]->v->co; cos[1] = ltri[1]->v->co; cos[2] = ltri[2]->v->co; } normal_tri_v3(ray_no, cos[2], cos[1], cos[0]); #define FACE_RAY_TEST_ANGLE \ f_hit = BKE_bmbvh_ray_cast(bmtree, ray_co, ray_no, 0.0f, \ &dist, NULL, NULL); \ if (f_hit && dist < face_dists[index]) { \ float angle_fac = fabsf(dot_v3v3(ltri[0]->f->no, f_hit->no)); \ angle_fac = 1.0f - angle_fac; \ angle_fac = angle_fac * angle_fac * angle_fac; \ angle_fac = 1.0f - angle_fac; \ dist /= angle_fac; \ if (dist < face_dists[index]) { \ face_dists[index] = dist; \ } \ } (void)0 if (use_jit) { int j; for (j = 0; j < samples; j++) { float dist = face_dists[index]; interp_v3_v3v3v3_uv(ray_co, cos[0], cos[1], cos[2], jit_ofs[j]); madd_v3_v3fl(ray_co, ray_no, eps_offset); FACE_RAY_TEST_ANGLE; } } else { float dist = face_dists[index]; mid_v3_v3v3v3(ray_co, cos[0], cos[1], cos[2]); madd_v3_v3fl(ray_co, ray_no, eps_offset); FACE_RAY_TEST_ANGLE; } } BKE_bmbvh_free(bmtree); /* convert floats into color! */ for (i = 0; i < bm->totface; i++) { float fac = face_dists[i]; /* important not '<=' */ if (fac < max) { float fcol[3]; fac = (fac - min) * minmax_irange; fac = 1.0f - fac; CLAMP(fac, 0.0f, 1.0f); BKE_defvert_weight_to_rgb(fcol, fac); rgb_float_to_uchar(r_face_colors[i], fcol); } else { copy_v4_v4_uchar(r_face_colors[i], col_fallback); } } } static void statvis_calc_intersect( BMEditMesh *em, const float (*vertexCos)[3], /* result */ unsigned char (*r_face_colors)[4]) { BMesh *bm = em->bm; int i; /* fallback */ // const char col_fallback[4] = {64, 64, 64, 255}; float fcol[3]; unsigned char col[3]; struct BMBVHTree *bmtree; BVHTreeOverlap *overlap; unsigned int overlap_len; memset(r_face_colors, 64, sizeof(int) * em->bm->totface); BM_mesh_elem_index_ensure(bm, BM_FACE); if (vertexCos) { BM_mesh_elem_index_ensure(bm, BM_VERT); } bmtree = BKE_bmbvh_new_from_editmesh(em, 0, vertexCos, false); overlap = BKE_bmbvh_overlap(bmtree, bmtree, &overlap_len); /* same for all faces */ BKE_defvert_weight_to_rgb(fcol, 1.0f); rgb_float_to_uchar(col, fcol); if (overlap) { for (i = 0; i < overlap_len; i++) { BMFace *f_hit_pair[2] = { em->looptris[overlap[i].indexA][0]->f, em->looptris[overlap[i].indexB][0]->f, }; int j; for (j = 0; j < 2; j++) { BMFace *f_hit = f_hit_pair[j]; int index; index = BM_elem_index_get(f_hit); copy_v3_v3_uchar(r_face_colors[index], col); } } MEM_freeN(overlap); } BKE_bmbvh_free(bmtree); } static void statvis_calc_distort( BMEditMesh *em, const float (*vertexCos)[3], const float (*polyNos)[3], /* values for calculating */ const float min, const float max, /* result */ unsigned char (*r_face_colors)[4]) { BMIter iter; BMesh *bm = em->bm; BMFace *f; const float *f_no; int index; const float minmax_irange = 1.0f / (max - min); /* fallback */ const unsigned char col_fallback[4] = {64, 64, 64, 255}; /* now convert into global space */ BM_ITER_MESH_INDEX (f, &iter, bm, BM_FACES_OF_MESH, index) { float fac; if (f->len == 3) { fac = -1.0f; } else { BMLoop *l_iter, *l_first; if (vertexCos) { f_no = polyNos[index]; } else { f_no = f->no; } fac = 0.0f; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { float no_corner[3]; if (vertexCos) { normal_tri_v3(no_corner, vertexCos[BM_elem_index_get(l_iter->prev->v)], vertexCos[BM_elem_index_get(l_iter->v)], vertexCos[BM_elem_index_get(l_iter->next->v)]); } else { BM_loop_calc_face_normal_safe(l_iter, no_corner); } /* simple way to detect (what is most likely) concave */ if (dot_v3v3(f_no, no_corner) < 0.0f) { negate_v3(no_corner); } fac = max_ff(fac, angle_normalized_v3v3(f_no, no_corner)); } while ((l_iter = l_iter->next) != l_first); fac *= 2.0f; } /* remap */ if (fac >= min) { float fcol[3]; fac = (fac - min) * minmax_irange; CLAMP(fac, 0.0f, 1.0f); BKE_defvert_weight_to_rgb(fcol, fac); rgb_float_to_uchar(r_face_colors[index], fcol); } else { copy_v4_v4_uchar(r_face_colors[index], col_fallback); } } } static void statvis_calc_sharp( BMEditMesh *em, const float (*vertexCos)[3], /* values for calculating */ const float min, const float max, /* result */ unsigned char (*r_vert_colors)[4]) { float *vert_angles = (float *)r_vert_colors; /* cheating */ BMIter iter; BMesh *bm = em->bm; BMEdge *e; //float f_no[3]; const float minmax_irange = 1.0f / (max - min); int i; /* fallback */ const unsigned char col_fallback[4] = {64, 64, 64, 255}; (void)vertexCos; /* TODO */ copy_vn_fl(vert_angles, em->bm->totvert, -M_PI); /* first assign float values to verts */ BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { float angle = BM_edge_calc_face_angle_signed(e); float *col1 = &vert_angles[BM_elem_index_get(e->v1)]; float *col2 = &vert_angles[BM_elem_index_get(e->v2)]; *col1 = max_ff(*col1, angle); *col2 = max_ff(*col2, angle); } /* convert floats into color! */ for (i = 0; i < bm->totvert; i++) { float fac = vert_angles[i]; /* important not '<=' */ if (fac > min) { float fcol[3]; fac = (fac - min) * minmax_irange; CLAMP(fac, 0.0f, 1.0f); BKE_defvert_weight_to_rgb(fcol, fac); rgb_float_to_uchar(r_vert_colors[i], fcol); } else { copy_v4_v4_uchar(r_vert_colors[i], col_fallback); } } } void BKE_editmesh_statvis_calc( BMEditMesh *em, DerivedMesh *dm, const MeshStatVis *statvis) { EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm; BLI_assert(dm == NULL || dm->type == DM_TYPE_EDITBMESH); switch (statvis->type) { case SCE_STATVIS_OVERHANG: { BKE_editmesh_color_ensure(em, BM_FACE); statvis_calc_overhang( em, bmdm ? bmdm->emd.polyNos : NULL, statvis->overhang_min / (float)M_PI, statvis->overhang_max / (float)M_PI, statvis->overhang_axis, em->derivedFaceColor); break; } case SCE_STATVIS_THICKNESS: { const float scale = 1.0f / mat4_to_scale(em->ob->obmat); BKE_editmesh_color_ensure(em, BM_FACE); statvis_calc_thickness( em, bmdm ? bmdm->emd.vertexCos : NULL, statvis->thickness_min * scale, statvis->thickness_max * scale, statvis->thickness_samples, em->derivedFaceColor); break; } case SCE_STATVIS_INTERSECT: { BKE_editmesh_color_ensure(em, BM_FACE); statvis_calc_intersect( em, bmdm ? bmdm->emd.vertexCos : NULL, em->derivedFaceColor); break; } case SCE_STATVIS_DISTORT: { BKE_editmesh_color_ensure(em, BM_FACE); if (bmdm) emDM_ensurePolyNormals(bmdm); statvis_calc_distort( em, bmdm ? bmdm->emd.vertexCos : NULL, bmdm ? bmdm->emd.polyNos : NULL, statvis->distort_min, statvis->distort_max, em->derivedFaceColor); break; } case SCE_STATVIS_SHARP: { BKE_editmesh_color_ensure(em, BM_VERT); statvis_calc_sharp( em, bmdm ? bmdm->emd.vertexCos : NULL, statvis->sharp_min, statvis->sharp_max, /* in this case they are vertex colors */ em->derivedVertColor); break; } } } /* -------------------------------------------------------------------- */ /* Editmesh Vert Coords */ struct CageUserData { int totvert; float (*cos_cage)[3]; BLI_bitmap *visit_bitmap; }; static void cage_mapped_verts_callback( void *userData, int index, const float co[3], const float UNUSED(no_f[3]), const short UNUSED(no_s[3])) { struct CageUserData *data = userData; if ((index >= 0 && index < data->totvert) && (!BLI_BITMAP_TEST(data->visit_bitmap, index))) { BLI_BITMAP_ENABLE(data->visit_bitmap, index); copy_v3_v3(data->cos_cage[index], co); } } float (*BKE_editmesh_vertexCos_get(struct Depsgraph *depsgraph, BMEditMesh *em, Scene *scene, int *r_numVerts))[3] { DerivedMesh *cage, *final; BLI_bitmap *visit_bitmap; struct CageUserData data; float (*cos_cage)[3]; cage = editbmesh_get_derived_cage_and_final(depsgraph, scene, em->ob, em, CD_MASK_BAREMESH, &final); cos_cage = MEM_callocN(sizeof(*cos_cage) * em->bm->totvert, "bmbvh cos_cage"); /* when initializing cage verts, we only want the first cage coordinate for each vertex, * so that e.g. mirror or array use original vertex coordinates and not mirrored or duplicate */ visit_bitmap = BLI_BITMAP_NEW(em->bm->totvert, __func__); data.totvert = em->bm->totvert; data.cos_cage = cos_cage; data.visit_bitmap = visit_bitmap; cage->foreachMappedVert(cage, cage_mapped_verts_callback, &data, DM_FOREACH_NOP); MEM_freeN(visit_bitmap); if (r_numVerts) { *r_numVerts = em->bm->totvert; } return cos_cage; }