/* effect.c * * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/effect.c * \ingroup bke */ #include #include "BLI_storage.h" /* _LARGEFILE_SOURCE */ #include #include #include "MEM_guardedalloc.h" #include "DNA_curve_types.h" #include "DNA_effect_types.h" #include "DNA_group_types.h" #include "DNA_ipo_types.h" #include "DNA_key_types.h" #include "DNA_lattice_types.h" #include "DNA_listBase.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_material_types.h" #include "DNA_object_types.h" #include "DNA_object_force.h" #include "DNA_particle_types.h" #include "DNA_texture_types.h" #include "DNA_scene_types.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_jitter.h" #include "BLI_listbase.h" #include "BLI_noise.h" #include "BLI_rand.h" #include "BLI_utildefines.h" #include "PIL_time.h" #include "BKE_action.h" #include "BKE_anim.h" /* needed for where_on_path */ #include "BKE_armature.h" #include "BKE_blender.h" #include "BKE_collision.h" #include "BKE_constraint.h" #include "BKE_deform.h" #include "BKE_depsgraph.h" #include "BKE_displist.h" #include "BKE_DerivedMesh.h" #include "BKE_cdderivedmesh.h" #include "BKE_effect.h" #include "BKE_global.h" #include "BKE_group.h" #include "BKE_ipo.h" #include "BKE_key.h" #include "BKE_lattice.h" #include "BKE_mesh.h" #include "BKE_material.h" #include "BKE_main.h" #include "BKE_modifier.h" #include "BKE_object.h" #include "BKE_particle.h" #include "BKE_scene.h" #include "RE_render_ext.h" #include "RE_shader_ext.h" /* fluid sim particle import */ #ifndef DISABLE_ELBEEM #include "DNA_object_fluidsim.h" #include "LBM_fluidsim.h" #include #include #endif // DISABLE_ELBEEM //XXX #include "BIF_screen.h" EffectorWeights *BKE_add_effector_weights(Group *group) { EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights"); int i; for(i=0; iweight[i] = 1.0f; weights->global_gravity = 1.0f; weights->group = group; return weights; } PartDeflect *object_add_collision_fields(int type) { PartDeflect *pd; pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect"); pd->forcefield = type; pd->pdef_sbdamp = 0.1f; pd->pdef_sbift = 0.2f; pd->pdef_sboft = 0.02f; pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128; pd->f_strength = 1.0f; pd->f_damp = 1.0f; /* set sensible defaults based on type */ switch(type) { case PFIELD_VORTEX: pd->shape = PFIELD_SHAPE_PLANE; break; case PFIELD_WIND: pd->shape = PFIELD_SHAPE_PLANE; pd->f_flow = 1.0f; /* realistic wind behavior */ break; case PFIELD_TEXTURE: pd->f_size = 1.0f; break; } pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION; return pd; } /* temporal struct, used for reading return of mesh_get_mapped_verts_nors() */ typedef struct VeNoCo { float co[3], no[3]; } VeNoCo; /* ***************** PARTICLES ***************** */ /* deprecated, only keep this for readfile.c */ PartEff *give_parteff(Object *ob) { PartEff *paf; paf= ob->effect.first; while(paf) { if(paf->type==EFF_PARTICLE) return paf; paf= paf->next; } return NULL; } void free_effect(Effect *eff) { PartEff *paf; if(eff->type==EFF_PARTICLE) { paf= (PartEff *)eff; if(paf->keys) MEM_freeN(paf->keys); } MEM_freeN(eff); } void free_effects(ListBase *lb) { Effect *eff; eff= lb->first; while(eff) { BLI_remlink(lb, eff); free_effect(eff); eff= lb->first; } } /* -------------------------- Effectors ------------------ */ void free_partdeflect(PartDeflect *pd) { if(!pd) return; if(pd->tex) pd->tex->id.us--; if(pd->rng) rng_free(pd->rng); MEM_freeN(pd); } static void precalculate_effector(EffectorCache *eff) { unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra); if(!eff->pd->rng) eff->pd->rng = rng_new(eff->pd->seed + cfra); else rng_srandom(eff->pd->rng, eff->pd->seed + cfra); if(eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) { Curve *cu= eff->ob->data; if(cu->flag & CU_PATH) { if(cu->path==NULL || cu->path->data==NULL) makeDispListCurveTypes(eff->scene, eff->ob, 0); if(cu->path && cu->path->data) { where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius, NULL); mul_m4_v3(eff->ob->obmat, eff->guide_loc); mul_mat3_m4_v3(eff->ob->obmat, eff->guide_dir); } } } else if(eff->pd->shape == PFIELD_SHAPE_SURFACE) { eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface ); if(eff->ob->type == OB_CURVE) eff->flag |= PE_USE_NORMAL_DATA; } else if(eff->psys) psys_update_particle_tree(eff->psys, eff->scene->r.cfra); } static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd) { EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache"); eff->scene = scene; eff->ob = ob; eff->psys = psys; eff->pd = pd; eff->frame = -1; precalculate_effector(eff); return eff; } static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src) { EffectorCache *eff = NULL; if( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f ) return; if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal ) return; if(*effectors == NULL) *effectors = MEM_callocN(sizeof(ListBase), "effectors list"); eff = new_effector_cache(scene, ob, NULL, ob->pd); /* make sure imat is up to date */ invert_m4_m4(ob->imat, ob->obmat); BLI_addtail(*effectors, eff); } static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src) { ParticleSettings *part= psys->part; if( !psys_check_enabled(ob, psys) ) return; if( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0) return; if( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) { if(*effectors == NULL) *effectors = MEM_callocN(sizeof(ListBase), "effectors list"); BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd)); } if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) { if(*effectors == NULL) *effectors = MEM_callocN(sizeof(ListBase), "effectors list"); BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2)); } } /* returns ListBase handle with objects taking part in the effecting */ ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights) { Base *base; unsigned int layer= ob_src->lay; ListBase *effectors = NULL; if(weights->group) { GroupObject *go; for(go= weights->group->gobject.first; go; go= go->next) { if( (go->ob->lay & layer) ) { if( go->ob->pd && go->ob->pd->forcefield ) add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src); if( go->ob->particlesystem.first ) { ParticleSystem *psys= go->ob->particlesystem.first; for( ; psys; psys=psys->next ) add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src); } } } } else { for(base = scene->base.first; base; base= base->next) { if( (base->lay & layer) ) { if( base->object->pd && base->object->pd->forcefield ) add_object_to_effectors(&effectors, scene, weights, base->object, ob_src); if( base->object->particlesystem.first ) { ParticleSystem *psys= base->object->particlesystem.first; for( ; psys; psys=psys->next ) add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src); } } } } return effectors; } void pdEndEffectors(ListBase **effectors) { if(*effectors) { EffectorCache *eff = (*effectors)->first; for(; eff; eff=eff->next) { if(eff->guide_data) MEM_freeN(eff->guide_data); } BLI_freelistN(*effectors); MEM_freeN(*effectors); *effectors = NULL; } } void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point) { ParticleSettings *part = sim->psys->part; point->loc = state->co; point->vel = state->vel; point->index = pa - sim->psys->particles; point->size = pa->size; point->charge = 0.0f; if(part->pd && part->pd->forcefield == PFIELD_CHARGE) point->charge += part->pd->f_strength; if(part->pd2 && part->pd2->forcefield == PFIELD_CHARGE) point->charge += part->pd2->f_strength; point->vel_to_sec = 1.0f; point->vel_to_frame = psys_get_timestep(sim); point->flag = 0; if(sim->psys->part->flag & PART_ROT_DYN) { point->ave = state->ave; point->rot = state->rot; } else point->ave = point->rot = NULL; point->psys = sim->psys; } void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point) { point->loc = loc; point->vel = vel; point->index = index; point->size = 0.0f; point->vel_to_sec = (float)scene->r.frs_sec; point->vel_to_frame = 1.0f; point->flag = 0; point->ave = point->rot = NULL; point->psys = NULL; } void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point) { point->loc = loc; point->vel = vel; point->index = index; point->size = 0.0f; point->vel_to_sec = (float)scene->r.frs_sec; point->vel_to_frame = 1.0f; point->flag = PE_WIND_AS_SPEED; point->ave = point->rot = NULL; point->psys = NULL; } /************************************************/ /* Effectors */ /************************************************/ // triangle - ray callback function static void eff_tri_ray_hit(void *UNUSED(userData), int UNUSED(index), const BVHTreeRay *UNUSED(ray), BVHTreeRayHit *hit) { // whenever we hit a bounding box, we don't check further hit->dist = -1; hit->index = 1; } // get visibility of a wind ray static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point) { ListBase *colls = colliders; ColliderCache *col; float norm[3], len = 0.0; float visibility = 1.0, absorption = 0.0; if(!(eff->pd->flag & PFIELD_VISIBILITY)) return visibility; if(!colls) colls = get_collider_cache(eff->scene, eff->ob, NULL); if(!colls) return visibility; negate_v3_v3(norm, efd->vec_to_point); len = normalize_v3(norm); // check all collision objects for(col = colls->first; col; col = col->next) { CollisionModifierData *collmd = col->collmd; if(col->ob == eff->ob) continue; if(collmd->bvhtree) { BVHTreeRayHit hit; hit.index = -1; hit.dist = len + FLT_EPSILON; // check if the way is blocked if(BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0) { absorption= col->ob->pd->absorption; // visibility is only between 0 and 1, calculated from 1-absorption visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f); if(visibility <= 0.0f) break; } } } if(!colliders) free_collider_cache(&colls); return visibility; } // noise function for wind e.g. static float wind_func(struct RNG *rng, float strength) { int random = (rng_getInt(rng)+1) % 128; // max 2357 float force = rng_getFloat(rng) + 1.0f; float ret; float sign = 0; sign = ((float)random > 64.0f) ? 1.0f: -1.0f; // dividing by 2 is not giving equal sign distribution ret = sign*((float)random / force)*strength/128.0f; return ret; } /* maxdist: zero effect from this distance outwards (if usemax) */ /* mindist: full effect up to this distance (if usemin) */ /* power: falloff with formula 1/r^power */ static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power) { /* first quick checks */ if(usemax && fac > maxdist) return 0.0f; if(usemin && fac < mindist) return 1.0f; if(!usemin) mindist = 0.0; return pow((double)(1.0f+fac-mindist), (double)(-power)); } static float falloff_func_dist(PartDeflect *pd, float fac) { return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power); } static float falloff_func_rad(PartDeflect *pd, float fac) { return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r); } float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *UNUSED(point), EffectorWeights *weights) { float temp[3]; float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f; float fac, r_fac; fac = dot_v3v3(efd->nor, efd->vec_to_point2); if(eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f) falloff=0.0f; else if(eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f) falloff=0.0f; else switch(eff->pd->falloff){ case PFIELD_FALL_SPHERE: falloff*= falloff_func_dist(eff->pd, efd->distance); break; case PFIELD_FALL_TUBE: falloff*= falloff_func_dist(eff->pd, ABS(fac)); if(falloff == 0.0f) break; VECADDFAC(temp, efd->vec_to_point, efd->nor, -fac); r_fac= len_v3(temp); falloff*= falloff_func_rad(eff->pd, r_fac); break; case PFIELD_FALL_CONE: falloff*= falloff_func_dist(eff->pd, ABS(fac)); if(falloff == 0.0f) break; r_fac=saacos(fac/len_v3(efd->vec_to_point))*180.0f/(float)M_PI; falloff*= falloff_func_rad(eff->pd, r_fac); break; } return falloff; } int closest_point_on_surface(SurfaceModifierData *surmd, float *co, float *surface_co, float *surface_nor, float *surface_vel) { BVHTreeNearest nearest; nearest.index = -1; nearest.dist = FLT_MAX; BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree); if(nearest.index != -1) { VECCOPY(surface_co, nearest.co); if(surface_nor) { VECCOPY(surface_nor, nearest.no); } if(surface_vel) { MFace *mface = CDDM_get_face(surmd->dm, nearest.index); VECCOPY(surface_vel, surmd->v[mface->v1].co); add_v3_v3(surface_vel, surmd->v[mface->v2].co); add_v3_v3(surface_vel, surmd->v[mface->v3].co); if(mface->v4) add_v3_v3(surface_vel, surmd->v[mface->v4].co); mul_v3_fl(surface_vel, mface->v4 ? 0.25f : 0.333f); } return 1; } return 0; } int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity) { float cfra = eff->scene->r.cfra; int ret = 0; if(eff->pd && eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) { /* closest point in the object surface is an effector */ float vec[3]; /* using velocity corrected location allows for easier sliding over effector surface */ copy_v3_v3(vec, point->vel); mul_v3_fl(vec, point->vel_to_frame); add_v3_v3(vec, point->loc); ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL); efd->size = 0.0f; } else if(eff->pd && eff->pd->shape==PFIELD_SHAPE_POINTS) { if(eff->ob->derivedFinal) { DerivedMesh *dm = eff->ob->derivedFinal; dm->getVertCo(dm, *efd->index, efd->loc); dm->getVertNo(dm, *efd->index, efd->nor); mul_m4_v3(eff->ob->obmat, efd->loc); mul_mat3_m4_v3(eff->ob->obmat, efd->nor); normalize_v3(efd->nor); efd->size = 0.0f; /**/ ret = 1; } } else if(eff->psys) { ParticleData *pa = eff->psys->particles + *efd->index; ParticleKey state; /* exclude the particle itself for self effecting particles */ if(eff->psys == point->psys && *efd->index == point->index) ; else { ParticleSimulationData sim= {NULL}; sim.scene= eff->scene; sim.ob= eff->ob; sim.psys= eff->psys; /* TODO: time from actual previous calculated frame (step might not be 1) */ state.time = cfra - 1.0f; ret = psys_get_particle_state(&sim, *efd->index, &state, 0); /* TODO */ //if(eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) { // if(pa->dietime < eff->psys->cfra) // eff->flag |= PE_VELOCITY_TO_IMPULSE; //} copy_v3_v3(efd->loc, state.co); /* rather than use the velocity use rotated x-axis (defaults to velocity) */ efd->nor[0] = 1.f; efd->nor[1] = efd->nor[2] = 0.f; mul_qt_v3(state.rot, efd->nor); if(real_velocity) copy_v3_v3(efd->vel, state.vel); efd->size = pa->size; } } else { /* use center of object for distance calculus */ Object *ob = eff->ob; Object obcopy = *ob; /* XXX this is not thread-safe, but used from multiple threads by particle system */ where_is_object_time(eff->scene, ob, cfra); /* use z-axis as normal*/ normalize_v3_v3(efd->nor, ob->obmat[2]); if(eff->pd && eff->pd->shape == PFIELD_SHAPE_PLANE) { float temp[3], translate[3]; sub_v3_v3v3(temp, point->loc, ob->obmat[3]); project_v3_v3v3(translate, temp, efd->nor); /* for vortex the shape chooses between old / new force */ if(eff->pd->forcefield == PFIELD_VORTEX) add_v3_v3v3(efd->loc, ob->obmat[3], translate); else /* normally efd->loc is closest point on effector xy-plane */ sub_v3_v3v3(efd->loc, point->loc, translate); } else { VECCOPY(efd->loc, ob->obmat[3]); } if(real_velocity) { VECCOPY(efd->vel, ob->obmat[3]); where_is_object_time(eff->scene, ob, cfra - 1.0f); sub_v3_v3v3(efd->vel, efd->vel, ob->obmat[3]); } *eff->ob = obcopy; efd->size = 0.0f; ret = 1; } if(ret) { sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc); efd->distance = len_v3(efd->vec_to_point); /* rest length for harmonic effector, will have to see later if this could be extended to other effectors */ if(eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size) mul_v3_fl(efd->vec_to_point, (efd->distance-eff->pd->f_size)/efd->distance); if(eff->flag & PE_USE_NORMAL_DATA) { VECCOPY(efd->vec_to_point2, efd->vec_to_point); VECCOPY(efd->nor2, efd->nor); } else { /* for some effectors we need the object center every time */ sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]); normalize_v3_v3(efd->nor2, eff->ob->obmat[2]); } } return ret; } static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p, int *step) { if(eff->pd->shape == PFIELD_SHAPE_POINTS) { efd->index = p; *p = 0; *tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1; if(*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) { *p = point->index % *tot; *tot = *p+1; } } else if(eff->psys) { efd->index = p; *p = 0; *tot = eff->psys->totpart; if(eff->pd->forcefield == PFIELD_CHARGE) { /* Only the charge of the effected particle is used for interaction, not fall-offs. If the fall-offs aren't the same this will be unphysical, but for animation this could be the wanted behavior. If you want physical correctness the fall-off should be spherical 2.0 anyways. */ efd->charge = eff->pd->f_strength; } else if(eff->pd->forcefield == PFIELD_HARMONIC && (eff->pd->flag & PFIELD_MULTIPLE_SPRINGS)==0) { /* every particle is mapped to only one harmonic effector particle */ *p= point->index % eff->psys->totpart; *tot= *p + 1; } if(eff->psys->part->effector_amount) { int totpart = eff->psys->totpart; int amount = eff->psys->part->effector_amount; *step = (totpart > amount) ? totpart/amount : 1; } } else { *p = 0; *tot = 1; } } static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force) { TexResult result[4]; float tex_co[3], strength, force[3]; float nabla = eff->pd->tex_nabla; int hasrgb; short mode = eff->pd->tex_mode; if(!eff->pd->tex) return; result[0].nor = result[1].nor = result[2].nor = result[3].nor = NULL; strength= eff->pd->f_strength * efd->falloff; VECCOPY(tex_co,point->loc); if(eff->pd->flag & PFIELD_TEX_2D) { float fac=-dot_v3v3(tex_co, efd->nor); VECADDFAC(tex_co, tex_co, efd->nor, fac); } if(eff->pd->flag & PFIELD_TEX_OBJECT) { mul_m4_v3(eff->ob->imat, tex_co); } hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL,NULL, 0, result); if(hasrgb && mode==PFIELD_TEX_RGB) { force[0] = (0.5f - result->tr) * strength; force[1] = (0.5f - result->tg) * strength; force[2] = (0.5f - result->tb) * strength; } else { strength/=nabla; tex_co[0] += nabla; multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+1); tex_co[0] -= nabla; tex_co[1] += nabla; multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+2); tex_co[1] -= nabla; tex_co[2] += nabla; multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+3); if(mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we dont have rgb fall back to grad */ force[0] = (result[0].tin - result[1].tin) * strength; force[1] = (result[0].tin - result[2].tin) * strength; force[2] = (result[0].tin - result[3].tin) * strength; } else { /*PFIELD_TEX_CURL*/ float dbdy, dgdz, drdz, dbdx, dgdx, drdy; dbdy = result[2].tb - result[0].tb; dgdz = result[3].tg - result[0].tg; drdz = result[3].tr - result[0].tr; dbdx = result[1].tb - result[0].tb; dgdx = result[1].tg - result[0].tg; drdy = result[2].tr - result[0].tr; force[0] = (dbdy - dgdz) * strength; force[1] = (drdz - dbdx) * strength; force[2] = (dgdx - drdy) * strength; } } if(eff->pd->flag & PFIELD_TEX_2D){ float fac = -dot_v3v3(force, efd->nor); VECADDFAC(force, force, efd->nor, fac); } add_v3_v3(total_force, force); } static void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force) { PartDeflect *pd = eff->pd; RNG *rng = pd->rng; float force[3]={0,0,0}; float temp[3]; float fac; float strength = pd->f_strength; float damp = pd->f_damp; float noise_factor = pd->f_noise; if(noise_factor > 0.0f) { strength += wind_func(rng, noise_factor); if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)) damp += wind_func(rng, noise_factor); } VECCOPY(force, efd->vec_to_point); switch(pd->forcefield){ case PFIELD_WIND: VECCOPY(force, efd->nor); mul_v3_fl(force, strength * efd->falloff); break; case PFIELD_FORCE: normalize_v3(force); mul_v3_fl(force, strength * efd->falloff); break; case PFIELD_VORTEX: /* old vortex force */ if(pd->shape == PFIELD_SHAPE_POINT) { cross_v3_v3v3(force, efd->nor, efd->vec_to_point); normalize_v3(force); mul_v3_fl(force, strength * efd->distance * efd->falloff); } else { /* new vortex force */ cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2); mul_v3_fl(temp, strength * efd->falloff); cross_v3_v3v3(force, efd->nor2, temp); mul_v3_fl(force, strength * efd->falloff); VECADDFAC(temp, temp, point->vel, -point->vel_to_sec); add_v3_v3(force, temp); } break; case PFIELD_MAGNET: if(eff->pd->shape == PFIELD_SHAPE_POINT) /* magnetic field of a moving charge */ cross_v3_v3v3(temp, efd->nor, efd->vec_to_point); else copy_v3_v3(temp, efd->nor); normalize_v3(temp); mul_v3_fl(temp, strength * efd->falloff); cross_v3_v3v3(force, point->vel, temp); mul_v3_fl(force, point->vel_to_sec); break; case PFIELD_HARMONIC: mul_v3_fl(force, -strength * efd->falloff); copy_v3_v3(temp, point->vel); mul_v3_fl(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec); add_v3_v3(force, temp); break; case PFIELD_CHARGE: mul_v3_fl(force, point->charge * strength * efd->falloff); break; case PFIELD_LENNARDJ: fac = pow((efd->size + point->size) / efd->distance, 6.0); fac = - fac * (1.0f - fac) / efd->distance; /* limit the repulsive term drastically to avoid huge forces */ fac = ((fac>2.0f) ? 2.0f : fac); mul_v3_fl(force, strength * fac); break; case PFIELD_BOID: /* Boid field is handled completely in boids code. */ return; case PFIELD_TURBULENCE: if(pd->flag & PFIELD_GLOBAL_CO) { VECCOPY(temp, point->loc); } else { VECADD(temp, efd->vec_to_point2, efd->nor2); } force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2,0,2); force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2,0,2); force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2,0,2); mul_v3_fl(force, strength * efd->falloff); break; case PFIELD_DRAG: VECCOPY(force, point->vel); fac = normalize_v3(force) * point->vel_to_sec; strength = MIN2(strength, 2.0f); damp = MIN2(damp, 2.0f); mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp)); break; } if(pd->flag & PFIELD_DO_LOCATION) { VECADDFAC(total_force, total_force, force, 1.0f/point->vel_to_sec); if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)==0 && pd->f_flow != 0.0f) { VECADDFAC(total_force, total_force, point->vel, -pd->f_flow * efd->falloff); } } if(pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) { float xvec[3] = {1.0f, 0.0f, 0.0f}; float dave[3]; mul_qt_v3(point->rot, xvec); cross_v3_v3v3(dave, xvec, force); if(pd->f_flow != 0.0f) { VECADDFAC(dave, dave, point->ave, -pd->f_flow * efd->falloff); } add_v3_v3(point->ave, dave); } } /* -------- pdDoEffectors() -------- generic force/speed system, now used for particles and softbodies scene = scene where it runs in, for time and stuff lb = listbase with objects that take part in effecting opco = global coord, as input force = force accumulator speed = actual current speed which can be altered cur_time = "external" time in frames, is constant for static particles loc_time = "local" time in frames, range <0-1> for the lifetime of particle par_layer = layer the caller is in flags = only used for softbody wind now guide = old speed of particle */ void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse) { /* Modifies the force on a particle according to its relation with the effector object Different kind of effectors include: Forcefields: Gravity-like attractor (force power is related to the inverse of distance to the power of a falloff value) Vortex fields: swirling effectors (particles rotate around Z-axis of the object. otherwise, same relation as) (Forcefields, but this is not done through a force/acceleration) Guide: particles on a path (particles are guided along a curve bezier or old nurbs) (is independent of other effectors) */ EffectorCache *eff; EffectorData efd; int p=0, tot = 1, step = 1; /* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */ /* Check for min distance here? (yes would be cool to add that, ton) */ if(effectors) for(eff = effectors->first; eff; eff=eff->next) { /* object effectors were fully checked to be OK to evaluate! */ get_effector_tot(eff, &efd, point, &tot, &p, &step); for(; p 0.0f) efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point); if(efd.falloff <= 0.0f) ; /* don't do anything */ else if(eff->pd->forcefield == PFIELD_TEXTURE) do_texture_effector(eff, &efd, point, force); else { float temp1[3]={0,0,0}, temp2[3]; VECCOPY(temp1, force); do_physical_effector(eff, &efd, point, force); // for softbody backward compatibility if(point->flag & PE_WIND_AS_SPEED && impulse){ VECSUB(temp2, force, temp1); VECSUB(impulse, impulse, temp2); } } } else if(eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) { /* special case for harmonic effector */ VECADD(impulse, impulse, efd.vel); } } } }