/* exotic.c * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): * - Martin DeMello * Added dxf_read_arc, dxf_read_ellipse and dxf_read_lwpolyline * Copyright (C) 2004 by Etheract Software Labs * * ***** END GPL LICENSE BLOCK ***** * * eigen videoscape formaat: * * * lamp: * 3DG2 aantal_lampen type spsi spbl r, g, b, energy locx, locy, locz vecx, vecy, vecz curve / nurbs: 3DG3 5 of 11 (curve of surf) aantal_nurbs extr1 extr2 mat[0][0] mat[0][1] mat[0][2] mat[0][3] mat[1][0] mat[1][1] mat[1][2] mat[1][3] ... type pntsu, pntsv resolu, resolv orderu, orderv flagu, flagv (als type==nurb) x y z w x y z w ... (als type==bez) xyz xyz xyz h1 h2 h3 xyz xyz xyz h1 h2 h3 ... * * */ #include /* isdigit, isspace */ #include #include #include #include #include #ifndef WIN32 #include #else #include #endif #include "MEM_guardedalloc.h" #include "DNA_object_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_material_types.h" #include "DNA_lamp_types.h" #include "DNA_curve_types.h" #include "DNA_image_types.h" #include "DNA_camera_types.h" #include "DNA_scene_types.h" #include "DNA_view3d_types.h" #include "DNA_userdef_types.h" #include "BKE_bad_level_calls.h" #include "BKE_utildefines.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "BLI_editVert.h" #include "BKE_global.h" #include "BKE_main.h" #include "BKE_mesh.h" #include "BKE_library.h" #include "BKE_global.h" #include "BKE_object.h" #include "BKE_material.h" #include "BKE_exotic.h" /* #include "BKE_error.h" */ #include "BKE_screen.h" #include "BKE_displist.h" #include "BKE_DerivedMesh.h" #include "BKE_curve.h" #include "BKE_customdata.h" #include "BPY_extern.h" #include "blendef.h" #include "zlib.h" static int is_dxf(char *str); static void dxf_read(char *filename); static int is_stl(char *str); static int is_stl_ascii(char *str) { FILE *fpSTL; char buffer[1000]; int numread, i; fpSTL = fopen(str, "rb"); if ( (numread = fread( (void *) buffer, sizeof(char), 1000, fpSTL)) <= 0 ) { fclose(fpSTL); return 0; } for (i=0; i < numread; ++i) { /* if bit 8 is set we assume binary */ if (buffer[i] & 0x80) { fclose(fpSTL); return 0; } } buffer[5] = '\0'; if ( !(strstr(buffer, "solid")) && !(strstr(buffer, "SOLID")) ) { fclose(fpSTL); return 0; } fclose(fpSTL); return 1; } static int is_stl(char *str) { int i; i = strlen(str) - 3; if ( (str[i] !='s') && (str[i] !='S')) return 0; i++; if ( (str[i] !='t') && (str[i] !='T')) return 0; i++; if ( (str[i] !='l') && (str[i] !='L')) return 0; return 1; } #define READSTLVERT { \ if (fread(mvert->co, sizeof(float), 3, fpSTL) != 3) { \ char error_msg[255]; \ MEM_freeN(vertdata); \ MEM_freeN(facedata); \ fclose(fpSTL); \ sprintf(error_msg, "Problems reading face %d!", i); \ error(error_msg); \ return; \ } \ else { \ if (G.order==B_ENDIAN) { \ SWITCH_INT(mvert->co[0]); \ SWITCH_INT(mvert->co[1]); \ SWITCH_INT(mvert->co[2]); \ } \ } \ } static void simple_vertex_normal_blend(short *no, short *ble) { if(no[0]==0 && no[1]==0 && no[2]==0) { VECCOPY(no, ble); } else { no[0]= (2*no[0] + ble[0])/3; no[1]= (2*no[1] + ble[1])/3; no[2]= (2*no[2] + ble[2])/3; } } static void mesh_add_normals_flags(Mesh *me) { MVert *v1, *v2, *v3, *v4; MFace *mface; float nor[3]; int a; short sno[3]; mface= me->mface; for(a=0; atotface; a++, mface++) { v1= me->mvert+mface->v1; v2= me->mvert+mface->v2; v3= me->mvert+mface->v3; v4= me->mvert+mface->v4; CalcNormFloat(v1->co, v2->co, v3->co, nor); sno[0]= 32767.0*nor[0]; sno[1]= 32767.0*nor[1]; sno[2]= 32767.0*nor[2]; simple_vertex_normal_blend(v1->no, sno); simple_vertex_normal_blend(v2->no, sno); simple_vertex_normal_blend(v3->no, sno); if(mface->v4) { simple_vertex_normal_blend(v4->no, sno); } mface->edcode= ME_V1V2|ME_V2V3; } } static void read_stl_mesh_binary(char *str) { FILE *fpSTL; Object *ob; Mesh *me; MVert *mvert, *vertdata; MFace *mface, *facedata; unsigned int numfacets = 0, i, j, vertnum; unsigned int maxmeshsize, nummesh, lastmeshsize; unsigned int totvert, totface; fpSTL= fopen(str, "rb"); if(fpSTL==NULL) { error("Can't read file"); return; } fseek(fpSTL, 80, SEEK_SET); fread(&numfacets, 4*sizeof(char), 1, fpSTL); if (G.order==B_ENDIAN) { SWITCH_INT(numfacets); } maxmeshsize = MESH_MAX_VERTS/3; nummesh = (numfacets / maxmeshsize) + 1; lastmeshsize = numfacets % maxmeshsize; if (numfacets) { for (j=0; j < nummesh; ++j) { /* new object */ if (j == nummesh-1) { totface = lastmeshsize; } else { totface = maxmeshsize; } totvert = 3 * totface; vertdata = MEM_callocN(totvert*sizeof(MVert), "mverts"); facedata = MEM_callocN(totface*sizeof(MFace), "mface"); vertnum = 0; mvert= vertdata; mface = facedata; for (i=0; i < totface; i++) { fseek(fpSTL, 12, SEEK_CUR); /* skip the face normal */ READSTLVERT; mvert++; READSTLVERT; mvert++; READSTLVERT; mvert++; mface->v1 = vertnum++; mface->v2 = vertnum++; mface->v3 = vertnum++; mface++; fseek(fpSTL, 2, SEEK_CUR); } ob= add_object(OB_MESH); me= ob->data; me->totvert = totvert; me->totface = totface; me->mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, vertdata, totvert); me->mface = CustomData_add_layer(&me->fdata, CD_MFACE, CD_ASSIGN, facedata, totface); mesh_add_normals_flags(me); make_edges(me, 0); } waitcursor(1); } fclose(fpSTL); } #undef READSTLVERT #define STLALLOCERROR { \ char error_msg[255]; \ fclose(fpSTL); \ sprintf(error_msg, "Can't allocate storage for %d faces!", \ numtenthousand * 10000); \ error(error_msg); \ return; \ } #define STLBAILOUT(message) { \ char error_msg[255]; \ fclose(fpSTL); \ free(vertdata); \ sprintf(error_msg, "Line %d: %s", linenum, message); \ error(message); \ return; \ } #define STLREADLINE { \ if (!fgets(buffer, 2048, fpSTL)) STLBAILOUT("Can't read line!"); \ linenum++; \ } #define STLREADVERT { \ STLREADLINE; \ if ( !(cp = strstr(buffer, "vertex")) && \ !(cp = strstr(buffer, "VERTEX")) ) STLBAILOUT("Bad vertex!"); \ vp = vertdata + 3 * totvert; \ if (sscanf(cp + 6, "%f %f %f", vp, vp+1, vp+2) != 3) \ STLBAILOUT("Bad vertex!"); \ ++totvert; \ } static void read_stl_mesh_ascii(char *str) { FILE *fpSTL; char buffer[2048], *cp; Object *ob; Mesh *me; MVert *mvert; MFace *mface; float *vertdata, *vp; unsigned int numtenthousand, linenum; unsigned int i, vertnum; unsigned int totvert, totface; /* ASCII stl sucks ... we don't really know how many faces there are until the file is done, so lets allocate faces 10000 at a time */ fpSTL= fopen(str, "r"); if(fpSTL==NULL) { error("Can't read file"); return; } /* we'll use the standard malloc/realloc for now ... * lets allocate enough storage to hold 10000 triangles, * i.e. 30000 verts, i.e., 90000 floats. */ numtenthousand = 1; vertdata = malloc(numtenthousand*3*30000*sizeof(float)); // uses realloc! if (!vertdata) STLALLOCERROR; linenum = 1; /* Get rid of the first line */ STLREADLINE; totvert = 0; totface = 0; while(1) { /* Read in the next line */ STLREADLINE; /* lets check if this is the end of the file */ if ( strstr(buffer, "endsolid") || strstr(buffer, "ENDSOLID") ) break; /* Well, guess that wasn't the end, so lets make * sure we have enough storage for some more faces */ if ( (totface) && ( (totface % 10000) == 0 ) ) { ++numtenthousand; vertdata = realloc(vertdata, numtenthousand*3*30000*sizeof(float)); if (!vertdata) STLALLOCERROR; } /* Don't read normal, but check line for proper syntax anyway */ if ( !(cp = strstr(buffer, "facet")) && !(cp = strstr(buffer, "FACET")) ) STLBAILOUT("Bad normal line!"); if ( !(strstr(cp+5, "normal")) && !(strstr(cp+5, "NORMAL")) ) STLBAILOUT("Bad normal line!"); /* Read in what should be the outer loop line */ STLREADLINE; if ( !(cp = strstr(buffer, "outer")) && !(cp = strstr(buffer, "OUTER")) ) STLBAILOUT("Bad outer loop!"); if ( !(strstr(cp+5, "loop")) && !(strstr(cp+5, "LOOP")) ) STLBAILOUT("Bad outer loop!"); /* Read in the face */ STLREADVERT; STLREADVERT; STLREADVERT; /* Read in what should be the endloop line */ STLREADLINE; if ( !strstr(buffer, "endloop") && !strstr(buffer, "ENDLOOP") ) STLBAILOUT("Bad endloop!"); /* Read in what should be the endfacet line */ STLREADLINE; if ( !strstr(buffer, "endfacet") && !strstr(buffer, "ENDFACET") ) STLBAILOUT("Bad endfacet!"); /* Made it this far? Increment face count */ ++totface; } fclose(fpSTL); /* OK, lets create our mesh */ ob = add_object(OB_MESH); me = ob->data; me->totface = totface; me->totvert = totvert; me->mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, totvert); me->mface = CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, totface); /* Copy vert coords and create topology */ mvert = me->mvert; mface = me->mface; vertnum = 0; for (i=0; i < totface; ++i) { memcpy(mvert->co, vertdata+3*vertnum, 3*sizeof(float) ); mface->v1 = vertnum; mvert++; vertnum++; memcpy(mvert->co, vertdata+3*vertnum, 3*sizeof(float) ); mface->v2 = vertnum; mvert++; vertnum++; memcpy(mvert->co, vertdata+3*vertnum, 3*sizeof(float) ); mface->v3 = vertnum; mvert++; vertnum++; mface++; } free(vertdata); mesh_add_normals_flags(me); make_edges(me, 0); waitcursor(1); } #undef STLALLOCERROR #undef STLBAILOUT #undef STLREADLINE #undef STLREADVERT static void read_videoscape_mesh(char *str) { Object *ob; Mesh *me; MVert *mvert; MFace *mface; Material *ma; FILE *fp; float *vertdata, *vd, min[3], max[3], cent[3], ftemp; unsigned int color[32], col; int totcol, a, b, verts, tottria=0, totquad=0, totedge=0, poly, nr0, nr, first; int end; char s[50]; fp= fopen(str, "rb"); if(fp==NULL) { error("Can't read file"); return; } fscanf(fp, "%40s", s); fscanf(fp, "%d\n", &verts); if(verts<=0) { fclose(fp); error("Read error"); return; } if(verts>MESH_MAX_VERTS) { error("too many vertices"); fclose(fp); return; } INIT_MINMAX(min, max); vd= vertdata= MEM_mallocN(sizeof(float)*3*verts, "videoscapelezer"); for(a=0; a0) { end= fscanf(fp,"%d", &poly); if(end<=0) break; if(poly==3) tottria++; else if(poly==4) totquad++; else totedge+= poly; for(a=0;a=totcol && totcol<32) { color[totcol]= col; totcol++; } } /* new object */ ob= add_object(OB_MESH); me= ob->data; me->totvert= verts; me->totface= totedge+tottria+totquad; me->mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert); me->mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface); /* colors */ if(totcol) { ob->mat= MEM_callocN(sizeof(void *)*totcol, "ob->mat"); me->mat= MEM_callocN(sizeof(void *)*totcol, "me->mat"); me->totcol= totcol; ob->totcol= (unsigned char) me->totcol; ob->actcol= 1; } /* materials */ for(a=0; amat.first; while(ma) { if(ma->mtex[0]==0) { col= rgb_to_cpack(ma->r, ma->g, ma->b); if(color[a]==col) { me->mat[a]= ma; ma->id.us++; break; } } ma= ma->id.next; } if(ma==0) { ma= add_material("ext"); me->mat[a]= ma; cpack_to_rgb(color[a], cent, cent+1, cent+2); ma->r= cent[0]; ma->g= cent[1]; ma->b= cent[2]; automatname(ma); } } /* verts */ cent[0]= (min[0]+max[0])/2.0f; cent[1]= (min[1]+max[1])/2.0f; cent[2]= (min[2]+max[2])/2.0f; VECCOPY(ob->loc, cent); a= me->totvert; vd= vertdata; mvert= me->mvert; while(a--) { VecSubf(mvert->co, vd, cent); mvert++; vd+= 3; } /* faces */ if(me->totface) { rewind(fp); fscanf(fp, "%40s", s); fscanf(fp, "%d\n", &verts); /* fake read */ for(a=0;atotface; mface= me->mface; while(a--) { end= fscanf(fp,"%d", &poly); if(end<=0) break; if(poly==3 || poly==4) { fscanf(fp,"%d", &nr); mface->v1= MIN2(nr, me->totvert-1); fscanf(fp,"%d", &nr); mface->v2= MIN2(nr, me->totvert-1); fscanf(fp,"%d", &nr); mface->v3= MIN2(nr, me->totvert-1); if(poly==4) { if( fscanf(fp,"%d", &nr) <=0 ) break; mface->v4= MIN2(nr, me->totvert-1); } test_index_face(mface, NULL, 0, poly); mface++; } else { if( fscanf(fp,"%d", &nr0) <=0) break; first= nr0; for(b=1; btotvert-1); mface->v1= nr; mface->v2= nr0; nr0= nr; mface++; a--; } mface->v1= first; mface->v2= nr; mface++; if(end<=0) break; } end= fscanf(fp,"%i", &col); col &= 0xF0F0F0; if(end<=0) break; for(b=0; bmat_nr= b; break; } } } } fclose(fp); MEM_freeN(vertdata); mesh_add_normals_flags(me); make_edges(me, 0); waitcursor(1); } static void read_radiogour(char *str) { Object *ob; Mesh *me; MVert *mvert; MFace *mface; FILE *fp; float *vertdata, *vd, min[3], max[3], cent[3], ftemp; unsigned int *colv, *colf, *colvertdata; int itemp, a, b, verts, tottria=0, totquad=0, totedge=0, poly, nr0, nr, first; int end; char s[50]; fp= fopen(str, "rb"); if(fp==NULL) { error("Can't read file"); return; } fscanf(fp, "%40s", s); fscanf(fp, "%d\n", &verts); if(verts<=0) { fclose(fp); error("Read error"); return; } if(verts>MESH_MAX_VERTS) { error("too many vertices"); fclose(fp); return; } INIT_MINMAX(min, max); vd= vertdata= MEM_mallocN(sizeof(float)*3*verts, "videoscapelezer"); colv= colvertdata= MEM_mallocN(verts*sizeof(float), "coldata"); for(a=0; a0) { end= fscanf(fp,"%d", &poly); if(end<=0) break; if(poly==3) tottria++; else if(poly==4) totquad++; else totedge+= poly; for(a=0;aMESH_MAX_VERTS) { printf(" var1: %d, var2: %d, var3: %d \n", totedge, tottria, totquad); error("too many faces"); MEM_freeN(vertdata); MEM_freeN(colvertdata); fclose(fp); return; } /* new object */ ob= add_object(OB_MESH); me= ob->data; me->totvert= verts; me->totface= totedge+tottria+totquad; me->flag= 0; me->mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert); me->mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface); /* verts */ cent[0]= (min[0]+max[0])/2.0f; cent[1]= (min[1]+max[1])/2.0f; cent[2]= (min[2]+max[2])/2.0f; VECCOPY(ob->loc, cent); a= me->totvert; vd= vertdata; mvert= me->mvert; while(a--) { VecSubf(mvert->co, vd, cent); mvert++; vd+= 3; } /* faces */ if(me->totface) { rewind(fp); fscanf(fp, "%40s", s); fscanf(fp, "%d\n", &verts); for(a=0;atotface; mface= me->mface; while(a--) { end= fscanf(fp,"%d", &poly); if(end<=0) break; if(poly==3 || poly==4) { fscanf(fp,"%d", &nr); mface->v1= MIN2(nr, me->totvert-1); fscanf(fp,"%d", &nr); mface->v2= MIN2(nr, me->totvert-1); fscanf(fp,"%d", &nr); mface->v3= MIN2(nr, me->totvert-1); if(poly==4) { if( fscanf(fp,"%d", &nr) <=0 ) break; mface->v4= MIN2(nr, me->totvert-1); } test_index_face(mface, NULL, 0, poly); mface++; } else { if( fscanf(fp,"%d", &nr0) <=0) break; first= nr0; for(b=1; btotvert-1); mface->v1= nr; mface->v2= nr0; nr0= nr; mface++; a--; } mface->v1= first; mface->v2= nr; mface->flag= ME_SMOOTH; mface++; if(end<=0) break; } } /* mcol is 4 colors per face */ me->mcol= MEM_mallocN(4*sizeof(int)*me->totface, "mcol"); colf= (unsigned int *)me->mcol; a= me->totface; mface= me->mface; while(a--) { colf[0]= colvertdata[mface->v1]; colf[1]= colvertdata[mface->v2]; colf[2]= colvertdata[mface->v3]; colf[3]= colvertdata[mface->v4]; colf+= 4; mface++; } MEM_freeN(colvertdata); } fclose(fp); MEM_freeN(vertdata); mesh_add_normals_flags(me); make_edges(me, 0); waitcursor(1); } static void read_videoscape_lamp(char *str) { Object *ob; Lamp *la; FILE *fp; float vec[3], q1[4]; int tot, val; char s[50]; fp= fopen(str, "rb"); if(fp==NULL) { error("Can't read file"); return; } fscanf(fp, "%40s", s); fscanf(fp, "%d\n", &tot); while(tot--) { ob= add_object(OB_LAMP); la= ob->data; fscanf(fp, "%d\n", &val); la->type= val; if(la->type==1) la->type= LA_SPOT; else if(la->type==2) la->type= LA_SUN; fscanf(fp, "%f %f\n", &la->spotsize, &la->spotblend); fscanf(fp, "%f %f %f %f\n", &la->r, &la->g, &la->b, &la->energy); fscanf(fp, "%f %f %f\n", ob->loc, ob->loc+1, ob->loc+2); val= fscanf(fp, "%f %f %f\n", vec, vec+1, vec+2); vectoquat(vec, 5, 2, q1); QuatToEul(q1, ob->rot); if(val<=0) break; } fclose(fp); } static void read_videoscape_nurbs(char *str) { Object *ob; Curve *cu; Nurb *nu; BezTriple *bezt; BPoint *bp; FILE *fp; float tmat[4][4], omat[3][3], imat[3][3], mat[3][3]; int a, tot, type, val; char s[50]; fp= fopen(str, "rb"); if(fp==NULL) { error("Can't read file"); return; } fscanf(fp, "%40s", s); fscanf(fp, "%d\n", &type); if(type==5) ob= add_object(OB_SURF); else ob= add_object(OB_CURVE); cu= ob->data; fscanf(fp, "%d\n", &tot); fscanf(fp, "%d %d\n", &type, &val); cu->ext1= 0.002f*type; cu->ext2= 0.002f*val; for(a=0; a<4; a++) fscanf(fp, "%e %e %e %e\n", tmat[a], tmat[a]+1, tmat[a]+2, tmat[a]+3); VECCOPY(ob->loc, tmat[3]); Mat3CpyMat4(omat, tmat); Mat3ToEul(omat, ob->rot); EulToMat3(ob->rot, mat); Mat3Inv(imat, mat); Mat3MulMat3((float ( * )[3])tmat, imat, omat); while(tot--) { nu= (Nurb*)MEM_callocN(sizeof(Nurb),"nu from exotic"); BLI_addtail(&cu->nurb, nu); fscanf(fp, "%d\n", &type); nu->type= type; fscanf(fp, "%d %d\n", &type, &val); nu->pntsu= type; nu->pntsv= val; fscanf(fp, "%d %d\n", &type, &val); nu->resolu= type; nu->resolv= val; fscanf(fp, "%d %d\n", &type, &val); nu->orderu= type; nu->orderv= val; fscanf(fp, "%d %d\n", &type, &val); nu->flagu= type; nu->flagv= val; if( (nu->type & 7)==CU_BEZIER) { a= nu->pntsu; nu->bezt= bezt= MEM_callocN(a*sizeof(BezTriple), "bezt from exotic"); while(a--) { fscanf(fp, "%f %f %f ", bezt->vec[0], bezt->vec[0]+1, bezt->vec[0]+2); Mat4MulVecfl(tmat, bezt->vec[0]); fscanf(fp, "%f %f %f ", bezt->vec[1], bezt->vec[1]+1, bezt->vec[1]+2); Mat4MulVecfl(tmat, bezt->vec[1]); fscanf(fp, "%f %f %f ", bezt->vec[2], bezt->vec[2]+1, bezt->vec[2]+2); Mat4MulVecfl(tmat, bezt->vec[2]); fscanf(fp, "%d %d\n", &type, &val); bezt->h1= type; bezt->h2= val; bezt++; } } else { a= nu->pntsu*nu->pntsv; if(a) { nu->bp= bp= MEM_callocN(a*sizeof(BPoint), "bp from exotic"); while(a--) { fscanf(fp, "%f %f %f %f\n", bp->vec, bp->vec+1, bp->vec+2, bp->vec+3); Mat4MulVecfl(tmat, bp->vec); bp++; } val= KNOTSU(nu); nu->knotsu= MEM_mallocN(sizeof(float)*val, "knots"); for(a=0; aknotsu+a); if(nu->pntsv>1) { val= KNOTSV(nu); nu->knotsv= MEM_mallocN(sizeof(float)*val, "knots"); for(a=0; aknotsv+a); } } else { BLI_remlink(&cu->nurb, nu); MEM_freeN(nu); } } } fclose(fp); } static void read_videoscape(char *str) { int file, type; unsigned int val; unsigned short numlen; char name[FILE_MAXDIR+FILE_MAXFILE], head[FILE_MAXDIR+FILE_MAXFILE], tail[FILE_MAXFILE]; strcpy(name, str); while( TRUE ) { file= open(name, O_BINARY|O_RDONLY); if(file<=0) break; else { read(file, &type, 4); close(file); if(type==DDG1) read_videoscape_mesh(name); else if(type==DDG2) read_videoscape_lamp(name); else if(type==DDG3) read_videoscape_nurbs(name); } val = BLI_stringdec(name, head, tail, &numlen); BLI_stringenc(name, head, tail, numlen, val + 1); } } /* ***************** INVENTOR ******************* */ #define IV_MAXSTACK 3000000 #define IV_MAXFIELD 10 #define IV_MAXCOL 16 static float *iv_data_stack; static float ivcolors[IV_MAXCOL][3]; static Object *ivsurf; static ListBase ivbase; struct IvNode { struct IvNode *next, *prev; char *nodename; char *fieldname[IV_MAXFIELD]; int datalen[IV_MAXFIELD]; float *data[IV_MAXFIELD]; }; static int iv_curcol=0; static int iv_colornumber(struct IvNode *iv) { float *fp, fr = 0.0, fg = 0.0, fb = 0.0; int a; char *cp; /* search back to last material */ while(iv) { if( strcmp(iv->nodename, "Material")==0) { fp= iv->data[0]; if(fp==0) fp= iv->data[1]; if(fp) { fr= fp[0]; fg= fp[1]; fb= fp[2]; } break; } else if( strcmp(iv->nodename, "BaseColor")==0) { fp= iv->data[0]; fr= fp[0]; fg= fp[1]; fb= fp[2]; break; } else if( strcmp(iv->nodename, "PackedColor")==0) { cp= (char *)iv->data[0]; fr= cp[3]/255.0f; fg= cp[2]/255.0f; fb= cp[1]/255.0f; break; } iv= iv->prev; } if(iv==0) return 0; if(iv->datalen[0]<3) return 0; for(a=0; a=IV_MAXCOL) a= IV_MAXCOL-1; iv_curcol= a+1; ivcolors[a][0]= fr; ivcolors[a][1]= fg; ivcolors[a][2]= fb; return iv_curcol; } static int iv_finddata(struct IvNode *iv, char *field, int fieldnr) { /* search for "field", count data size and make datablock. return skipdata */ float *fp; int len, stackcount, skipdata=0; char *cpa, terminator, str[64]; long i; len= strlen(field); cpa= iv->nodename+1; while( *cpa != '}' ) { if( *cpa == *field ) { if( strncmp(cpa, field, len)==0 ) { iv->fieldname[fieldnr]= cpa; /* read until first character */ cpa+= len; skipdata+= len; *cpa= 0; cpa++; skipdata++; while( *cpa==32 || *cpa==13 || *cpa==10 || *cpa==9) cpa++; if( *cpa=='[' ) { terminator= ']'; cpa++; skipdata++; } else terminator= 13; stackcount= 0; fp= iv_data_stack; while( *cpa!=terminator && *cpa != '}' ) { /* in fact, isdigit should include the dot and minus */ if( (isdigit(*cpa) || *cpa=='.' || *cpa=='-') && (isspace(cpa[-1]) || cpa[-1]==0 || cpa[-1]==',') ) { if(cpa[1]=='x') { memcpy(str, cpa, 16); str[16]= 0; sscanf(str, "%x", (int *)fp); } else { /* atof doesn't stop after the first float * in a long string at Windows... so we copy * the float to a new string then atof... */ char *cpa_temp = strpbrk(cpa, ", \n"); i = cpa_temp - cpa; if (i>63) *fp= 0.0; else { memcpy(str, cpa, i); str[i]=0; *fp= (float) atof(str); } } stackcount++; if(stackcount>=IV_MAXSTACK) { printf("stackoverflow in IV read\n"); break; } fp++; } cpa++; skipdata++; } iv->datalen[fieldnr]= stackcount; if(stackcount) { iv->data[fieldnr]= MEM_mallocN(sizeof(float)*stackcount, "iv_finddata"); memcpy(iv->data[fieldnr], iv_data_stack, sizeof(float)*stackcount); } else iv->data[fieldnr]= 0; return skipdata; } } cpa++; skipdata++; } return skipdata; } static void read_iv_index(float *data, float *baseadr, float *index, int nr, int coordtype) { /* write in data: baseadr with offset index (and number nr) */ float *fp; int ofs; while(nr--) { ofs= (int) *index; fp= baseadr+coordtype*ofs; VECCOPY(data, fp); data+= 3; index++; } } static void read_inventor(char *str, struct ListBase *listb) { struct IvNode *iv, *ivp, *ivn; char *maindata, *md, *cpa; float *index, *data, *fp; int file, filelen, count, lll, face, nr = 0; int skipdata, ok, a, b, tot, first, colnr, coordtype, polytype, *idata; struct DispList *dl; ivbase.first= ivbase.last= 0; iv_curcol= 0; ivsurf= 0; file= open(str, O_BINARY|O_RDONLY); if(file== -1) { error("Can't read file\n"); return; } filelen= BLI_filesize(file); if(filelen < 1) { close(file); return; } maindata= MEM_mallocN(filelen, "leesInventor"); read(file, maindata, filelen); close(file); iv_data_stack= MEM_mallocN(sizeof(float)*IV_MAXSTACK, "ivstack"); /* preprocess: remove comments */ md= maindata+20; count= 20; while(count=filelen) break; } } md++; count++; } /* now time to collect: which are the nodes and fields? */ md= maindata; count= 0; while(count32 && *cpa<128) cpa--; cpa++; *md= 0; ok= 0; skipdata= 0; iv= MEM_callocN(sizeof(struct IvNode), "leesInventor"); iv->nodename= cpa; if(strcmp(cpa, "Coordinate3")==0 || strcmp(cpa, "Coordinate4")==0) { skipdata= iv_finddata(iv, "point", 0); ok= 1; } else if(strcmp(cpa, "VertexProperty")==0) { skipdata= iv_finddata(iv, "vertex", 0); ok= 1; } else if(strcmp(cpa, "IndexedLineSet")==0) { skipdata= iv_finddata(iv, "coordIndex", 0); ok= 1; } else if(strcmp(cpa, "IndexedTriangleMesh")==0) { skipdata= iv_finddata(iv, "coordIndex", 0); ok= 1; } else if(strcmp(cpa, "IndexedFaceSet")==0) { skipdata= iv_finddata(iv, "coordIndex", 0); ok= 1; } else if(strcmp(cpa, "FaceSet")==0) { skipdata= iv_finddata(iv, "numVertices", 0); ok= 1; } else if(strcmp(cpa, "Material")==0) { iv_finddata(iv, "diffuseColor", 0); iv_finddata(iv, "ambientColor", 1); ok= 1; } else if(strcmp(cpa, "BaseColor")==0) { iv_finddata(iv, "rgb", 0); ok= 1; } else if(strcmp(cpa, "PackedColor")==0) { iv_finddata(iv, "rgba", 0); ok= 1; } else if(strcmp(cpa, "QuadMesh")==0) { iv_finddata(iv, "verticesPerColumn", 0); iv_finddata(iv, "verticesPerRow", 1); ok= 1; } else if(strcmp(cpa, "IndexedTriangleStripSet")==0) { skipdata= iv_finddata(iv, "coordIndex", 0); ok= 1; } else if(strcmp(cpa, "TriangleStripSet")==0) { skipdata= iv_finddata(iv, "numVertices", 0); ok= 1; } else if(strcmp(cpa, "IndexedNurbsSurface")==0 || strcmp(cpa, "NurbsSurface")==0) { iv_finddata(iv, "numUControlPoints", 0); iv_finddata(iv, "numVControlPoints", 1); iv_finddata(iv, "uKnotVector", 2); iv_finddata(iv, "vKnotVector", 3); ok= 1; } else { /* to the end */ while( *md != '}') { md++; count++; if(countnext; if( strncmp(iv->nodename, "Indexed", 7)==0) { /* seek back: same name? */ ivp= iv->prev; while(ivp) { if(strcmp(iv->nodename, ivp->nodename)==0) break; if(strcmp(ivp->nodename, "Coordinate3")==0 || strcmp(ivp->nodename, "Coordinate4")==0 || strcmp(ivp->nodename, "VertexProperty")==0) { ivp= 0; break; } ivp= ivp->prev; } if(ivp) { /* add iv to ivp */ tot= iv->datalen[0] + ivp->datalen[0]; if(tot) { data= MEM_mallocN(tot*sizeof(float), "samenvoeg iv"); memcpy(data, ivp->data[0], sizeof(float)*ivp->datalen[0]); memcpy(data+ivp->datalen[0], iv->data[0], sizeof(float)*iv->datalen[0]); ivp->datalen[0]+= iv->datalen[0]; MEM_freeN(ivp->data[0]); ivp->data[0]= data; BLI_remlink(&ivbase, iv); MEM_freeN(iv->data[0]); MEM_freeN(iv); } } } iv= ivn; } /* convert Nodes to DispLists */ iv= ivbase.first; while(iv) { /* printf(" Node: %s\n", iv->nodename); */ /* if(iv->fieldname[0]) printf(" Field: %s len %d\n", iv->fieldname[0], iv->datalen[0]); */ coordtype= 3; if( strcmp(iv->nodename, "IndexedLineSet")==0 ) { colnr= iv_colornumber(iv); /* seek back to data */ ivp= iv; while(ivp->prev) { ivp= ivp->prev; if( strcmp(ivp->nodename, "Coordinate3")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "Coordinate4")==0 ) { coordtype= 4; break; } } if(ivp) { /* count the nr of lines */ tot= 0; index= iv->data[0]; lll = iv->datalen[0]-1; for(a=0; atype= DL_SEGM; dl->nr= 2; dl->parts= tot/2; dl->col= colnr; data= (float *)(dl+1); index= iv->data[0]; for(a=0; adata[0], index, 2, coordtype); data+= 6; } index++; } } } else if( strcmp(iv->nodename, "FaceSet")==0 ) { colnr= iv_colornumber(iv); /* seek back to data */ ivp= iv; while(ivp->prev) { ivp= ivp->prev; if( strcmp(ivp->nodename, "Coordinate3")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "Coordinate4")==0 ) { coordtype= 4; break; } } if(ivp) { /* count triangles */ tot= 0; index= iv->data[0]; polytype= (int) index[0]; for(a=0; adatalen[0]; a++) { if(index[0]== polytype) tot++; /* one kind? */ index++; } tot*= polytype; /* nr of vertices */ dl= MEM_callocN(sizeof(struct DispList)+tot*3*sizeof(float), "leesInventor4"); BLI_addtail(listb, dl); dl->type= DL_POLY; dl->nr= polytype; dl->parts= tot/polytype; dl->col= colnr; data= (float *)(dl+1); index= ivp->data[0]; first= 1; for(a=0; adatalen[0]; a++) { VECCOPY(data, index); data+= 3; index+= 3; VECCOPY(data, index); data+= 3; index+= 3; VECCOPY(data, index); data+= 3; index+= 3; if(polytype==4) { VECCOPY(data, index); data+= 3; index+= 3; } } } } else if( strcmp(iv->nodename, "TriangleStripSet")==0 ) { colnr= iv_colornumber(iv); /* seek back to data */ ivp= iv; while(ivp->prev) { ivp= ivp->prev; if( strcmp(ivp->nodename, "Coordinate3")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "Coordinate4")==0 ) { coordtype= 4; break; } } if(ivp) { /* count triangles */ tot= 0; face= 0; index= iv->data[0]; /* strip size */ for(a=0; adatalen[0]; a++) { tot+= (int) index[0]; face+= ((int) index[0]) - 2; index++; } dl= MEM_callocN(sizeof(struct DispList), "leesInventor4"); dl->verts= MEM_callocN( tot*3*sizeof(float), "dl verts"); dl->index= MEM_callocN( face*3*sizeof(int), "dl index"); dl->type= DL_INDEX3; dl->nr= tot; dl->parts= face; BLI_addtail(listb, dl); dl->col= colnr; index= iv->data[0]; /* strip size */ fp= ivp->data[0]; /* vertices */ data= dl->verts; idata= dl->index; first= 0; for(a=0; adatalen[0]; a++) { /* vertices */ for(b=0; bnodename, "IndexedFaceSet")==0 ) { colnr= iv_colornumber(iv); /* seek back to data */ ivp= iv; while(ivp->prev) { ivp= ivp->prev; if( strcmp(ivp->nodename, "Coordinate3")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "Coordinate4")==0 ) { coordtype= 4; break; } } if(ivp) { /* count triangles */ face= 0; index= iv->data[0]; lll = iv->datalen[0]-2; for(a=0; adatalen[0]/coordtype; if(tot) { dl= MEM_callocN(sizeof(struct DispList), "leesInventor5"); BLI_addtail(listb, dl); dl->type= DL_INDEX3; dl->nr= tot; dl->parts= face; dl->col= colnr; dl->verts= MEM_callocN( tot*3*sizeof(float), "dl verts"); dl->index= MEM_callocN(sizeof(int)*3*face, "dl index"); /* vertices */ fp= ivp->data[0]; data= dl->verts; for(b=tot; b>0; b--) { VECCOPY(data, fp); data+= 3; fp+= coordtype; } /* indices */ index= iv->data[0]; idata= dl->index; first= 1; lll=iv->datalen[0]-2; for(a=0; anodename, "IndexedTriangleMesh")==0 || strcmp(iv->nodename, "IndexedTriangleStripSet")==0 ) { colnr= iv_colornumber(iv); /* seek back to data */ ivp= iv; while(ivp->prev) { ivp= ivp->prev; if( strcmp(ivp->nodename, "Coordinate3")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "Coordinate4")==0 ) { coordtype= 4; break; } } if(ivp) { /* count triangles */ face= 0; index= iv->data[0]; lll=iv->datalen[0]-2; for(a=0; adatalen[0]/coordtype; dl= MEM_callocN(sizeof(struct DispList), "leesInventor6"); BLI_addtail(listb, dl); dl->type= DL_INDEX3; dl->nr= tot; dl->parts= face; dl->col= colnr; dl->verts= MEM_callocN( tot*3*sizeof(float), "dl verts"); dl->index= MEM_callocN(sizeof(int)*3*face, "dl index"); /* vertices */ fp= ivp->data[0]; data= dl->verts; for(b=tot; b>0; b--) { VECCOPY(data, fp); data+= 3; fp+= coordtype; } /* indices */ index= iv->data[0]; idata= dl->index; lll=iv->datalen[0]-2; for(a=lll; a>0; a--) { if(index[0]!= -1 && index[1]!= -1 && index[2]!= -1) { idata[0]= (int) index[0]; idata[1]= (int) index[1]; idata[2]= (int) index[2]; idata+= 3; } index++; } } } else if( strcmp(iv->nodename, "QuadMesh")==0 ) { colnr= iv_colornumber(iv); /* seek back to data */ ivp= iv; while(ivp->prev) { ivp= ivp->prev; if( strcmp(ivp->nodename, "Coordinate3")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "VertexProperty")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "Coordinate4")==0 ) { coordtype= 4; break; } } if(ivp) { tot= (int) (floor(*(iv->data[0])+0.5) * floor(*(iv->data[1])+0.5)); if(tot>0) { dl= MEM_callocN(sizeof(struct DispList)+tot*3*sizeof(float), "leesInventor8"); BLI_addtail(listb, dl); dl->type= DL_SURF; dl->parts= (int) floor(*(iv->data[0])+0.5); dl->nr= (int) floor(*(iv->data[1])+0.5); dl->col= colnr; data= (float *)(dl+1); memcpy(data, ivp->data[0], tot*3*sizeof(float)); } } } else if(strcmp(iv->nodename, "IndexedNurbsSurface")==0 || strcmp(iv->nodename, "NurbsSurface")==0) { colnr= iv_colornumber(iv); /* sek back to data */ ivp= iv; while(ivp->prev) { ivp= ivp->prev; if( strcmp(ivp->nodename, "Coordinate3")==0 ) { coordtype= 3; break; } if( strcmp(ivp->nodename, "Coordinate4")==0 ) { coordtype= 4; break; } } if(ivp) { a= (int) *(iv->data[0]); b= (int) *(iv->data[1]); tot= a*b; if( (a>=4 || b>=4) && tot>6) { Object *ob; Curve *cu; Nurb *nu; BPoint *bp; if(ivsurf==0) { ob= add_object(OB_SURF); ivsurf= ob; } else ob= ivsurf; cu= ob->data; nu = (Nurb*) MEM_callocN(sizeof(Nurb),"addNurbprim") ; BLI_addtail(&cu->nurb, nu); nu->type= CU_NURBS; nu->pntsu= a; nu->pntsv= b; nu->resolu= 2*a; nu->resolv= 2*b; nu->flagu= 0; nu->flagv= 0; nu->bp = bp = (BPoint*)MEM_callocN(tot * sizeof(BPoint), "addNurbprim3"); a= tot; data= ivp->data[0]; while(a--) { VECCOPY(bp->vec, data); if(coordtype==4) { bp->vec[3]= data[3]; VecMulf(bp->vec, 1.0f/data[3]); } else bp->vec[3]= 1.0; data+= coordtype; bp++; } /* iv->datalen[2] / [3] is number of knots */ nu->orderu= iv->datalen[2] - nu->pntsu; nu->orderv= iv->datalen[3] - nu->pntsv; nu->knotsu= MEM_mallocN( sizeof(float)*(iv->datalen[2]), "knots"); memcpy(nu->knotsu, iv->data[2], sizeof(float)*(iv->datalen[2])); nu->knotsv= MEM_mallocN( sizeof(float)*(iv->datalen[3]), "knots"); memcpy(nu->knotsv, iv->data[3], sizeof(float)*(iv->datalen[3])); switchdirectionNurb(nu); } else { dl= MEM_callocN(sizeof(struct DispList)+tot*3*sizeof(float), "leesInventor3"); BLI_addtail(listb, dl); dl->type= DL_SURF; dl->nr= (int) *(iv->data[0]); dl->parts= (int) *(iv->data[1]); dl->col= colnr; data= (float *)(dl+1); a= tot; fp= ivp->data[0]; while(a--) { VECCOPY(data, fp); fp+= coordtype; data+= 3; } } } } iv= iv->next; } /* free */ iv= ivbase.first; while(iv) { for(a=0; adata[a]) MEM_freeN(iv->data[a]); } iv= iv->next; } BLI_freelistN(&ivbase); MEM_freeN(maindata); MEM_freeN(iv_data_stack); } /* ************************************************************ */ static void displist_to_mesh(DispList *dlfirst) { Object *ob; Mesh *me; Material *ma; DispList *dl; MVert *mvert; MFace *mface; float *data, vec[3], min[3], max[3]; int a, b, startve, *idata, totedge=0, tottria=0, totquad=0, totvert=0, totface, totcol=0, colnr; int p1, p2, p3, p4; unsigned int maxvertidx; /* count first */ INIT_MINMAX(min, max); dl= dlfirst; while(dl) { /* PATCH 1 (polyfill) can't be done, there's no listbase here. do that first! */ /* PATCH 2 */ if(dl->type==DL_SEGM && dl->nr>2) { data= (float *)(dl+1); if(data[0]==data[3*(dl->nr-1)]) { if(data[1]==data[3*(dl->nr-1)+1]) { if(data[2]==data[3*(dl->nr-1)+2]) { dl->type= DL_POLY; dl->nr--; } } } } /* colors */ if(dl->col > totcol) totcol= dl->col; /* size and count */ if(dl->type==DL_SURF) { a= dl->nr; b= dl->parts; if(dl->flag & DL_CYCL_U) a++; if(dl->flag & DL_CYCL_V) b++; totquad+= a*b; totvert+= dl->nr*dl->parts; data= (float *)(dl+1); for(a= dl->nr*dl->parts; a>0; a--) { DO_MINMAX(data, min, max); data+= 3; } } else if(dl->type==DL_POLY) { if(dl->nr==3 || dl->nr==4) { if(dl->nr==3) tottria+= dl->parts; else totquad+= dl->parts; totvert+= dl->nr*dl->parts; data= (float *)(dl+1); for(a= dl->nr*dl->parts; a>0; a--) { DO_MINMAX(data, min, max); data+= 3; } } else if(dl->nr>4) { tottria+= dl->nr*dl->parts; totvert+= dl->nr*dl->parts; data= (float *)(dl+1); for(a= dl->nr*dl->parts; a>0; a--) { DO_MINMAX(data, min, max); data+= 3; } } } else if(dl->type==DL_INDEX3) { tottria+= dl->parts; totvert+= dl->nr; data= dl->verts; for(a= dl->nr; a>0; a--) { DO_MINMAX(data, min, max); data+= 3; } } else if(dl->type==DL_SEGM) { tottria+= (dl->nr-1)*dl->parts; totvert+= dl->nr*dl->parts; data= (float *)(dl+1); for(a= dl->nr*dl->parts; a>0; a--) { DO_MINMAX(data, min, max); data+= 3; } } dl= dl->next; } if(totvert==0) { return; } if(totcol>16) { error("Found more than 16 different colors"); totcol= 16; } vec[0]= (min[0]+max[0])/2; vec[1]= (min[1]+max[1])/2; vec[2]= (min[2]+max[2])/2; ob= add_object(OB_MESH); VECCOPY(ob->loc, vec); where_is_object(ob); me= ob->data; /* colors */ if(totcol) { ob->mat= MEM_callocN(sizeof(void *)*totcol, "ob->mat"); me->mat= MEM_callocN(sizeof(void *)*totcol, "me->mat"); me->totcol= totcol; ob->totcol= (unsigned char) me->totcol; ob->actcol= 1; } /* materials */ for(a=0; amat.first; while(ma) { if(ma->mtex[0]==0) { if(ivcolors[a][0]==ma->r && ivcolors[a][1]==ma->g && ivcolors[a][2]==ma->b) { me->mat[a]= ma; ma->id.us++; break; } } ma= ma->id.next; } if(ma==0) { ma= add_material("ext"); me->mat[a]= ma; ma->r= ivcolors[a][0]; ma->g= ivcolors[a][1]; ma->b= ivcolors[a][2]; automatname(ma); } } totface= totquad+tottria+totedge; printf("Import: %d vertices %d faces\n", totvert, totface); me->totvert= totvert; me->totface= totface; me->mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert); me->mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface); maxvertidx= totvert-1; mvert= me->mvert; mface= me->mface; startve= 0; dl= dlfirst; while(dl) { colnr= (dl->col>15 ? 15: dl->col); if(colnr) colnr--; if(dl->type==DL_SURF) { data= (float *)(dl+1); for(a=dl->parts*dl->nr; a>0; a--) { mvert->co[0]= data[0] -vec[0]; mvert->co[1]= data[1] -vec[1]; mvert->co[2]= data[2] -vec[2]; data+=3; mvert++; } for(a=0; aparts; a++) { if (surfindex_displist(dl, a, &b, &p1, &p2, &p3, &p4)==0) break; p1+= startve; p2+= startve; p3+= startve; p4+= startve; for(; bnr; b++) { mface->v1= p1; mface->v2= p2; mface->v3= p4; mface->v4= p3; mface->mat_nr= colnr; test_index_face(mface, NULL, 0, 4); mface++; p4= p3; p3++; p2= p1; p1++; } } startve += dl->parts*dl->nr; } else if(dl->type==DL_POLY) { if(dl->nr==3 || dl->nr==4) { data= (float *)(dl+1); for(a=dl->parts*dl->nr; a>0; a--) { mvert->co[0]= data[0] -vec[0]; mvert->co[1]= data[1] -vec[1]; mvert->co[2]= data[2] -vec[2]; data+=3; mvert++; } for(a=0; aparts; a++) { if(dl->nr==3) { mface->v1= startve+a*dl->nr; mface->v2= startve+a*dl->nr+1; mface->v3= startve+a*dl->nr+2; mface->mat_nr= colnr; test_index_face(mface, NULL, 0, 3); mface++; } else { mface->v1= startve+a*dl->nr; mface->v2= startve+a*dl->nr+1; mface->v3= startve+a*dl->nr+2; mface->v4= startve+a*dl->nr+3; mface->mat_nr= colnr; test_index_face(mface, NULL, 0, 4); mface++; } } startve += dl->parts*dl->nr; } else if(dl->nr>4) { data= (float *)(dl+1); for(a=dl->parts*dl->nr; a>0; a--) { mvert->co[0]= data[0] -vec[0]; mvert->co[1]= data[1] -vec[1]; mvert->co[2]= data[2] -vec[2]; data+=3; mvert++; } for(b=0; bparts; b++) { for(a=0; anr; a++) { mface->v1= startve+a; if(a==dl->nr-1) mface->v2= startve; else mface->v2= startve+a+1; mface->mat_nr= colnr; mface++; } startve += dl->nr; } } } else if(dl->type==DL_INDEX3) { data= dl->verts; for(a=dl->nr; a>0; a--) { mvert->co[0]= data[0] -vec[0]; mvert->co[1]= data[1] -vec[1]; mvert->co[2]= data[2] -vec[2]; data+=3; mvert++; } idata= dl->index; for(b=dl->parts; b>0; b--) { mface->v1= startve+idata[0]; mface->v2= startve+idata[1]; mface->v3= startve+idata[2]; mface->mat_nr= colnr; if (mface->v1>maxvertidx) mface->v1= maxvertidx; if (mface->v2>maxvertidx) mface->v2= maxvertidx; if (mface->v3>maxvertidx) mface->v3= maxvertidx; test_index_face(mface, NULL, 0, 3); mface++; idata+= 3; } startve += dl->nr; } else if(dl->type==DL_SEGM) { data= (float *)(dl+1); for(a=dl->parts*dl->nr; a>0; a--) { mvert->co[0]= data[0] -vec[0]; mvert->co[1]= data[1] -vec[1]; mvert->co[2]= data[2] -vec[2]; data+=3; mvert++; } for(b=0; bparts; b++) { for(a=0; anr-1; a++) { mface->v1= startve+a; mface->v2= startve+a+1; mface->mat_nr= colnr; mface++; } startve += dl->nr; } } dl= dl->next; } mesh_add_normals_flags(me); make_edges(me, 0); } static void displist_to_objects(ListBase *lbase) { DispList *dl, *first, *prev, *next; ListBase tempbase; int maxaantal, curcol, totvert=0, vert; /* irst this: is still active */ if(ivsurf) { where_is_object(ivsurf); docenter_new(); } dl= lbase->first; while(dl) { next= dl->next; /* PATCH 1: polyfill */ if(dl->type==DL_POLY && dl->nr>4) { /* solution: put them together in separate listbase */ ; } /* PATCH 2: poly's of 2 points */ if(dl->type==DL_POLY && dl->nr==2) dl->type= DL_SEGM; dl= next; } /* count vertices */ dl= lbase->first; while(dl) { if(dl->type==DL_SURF) totvert+= dl->nr*dl->parts; else if(dl->type==DL_POLY) { if(dl->nr==3 || dl->nr==4) totvert+= dl->nr*dl->parts; else if(dl->nr>4) totvert+= dl->nr*dl->parts; } else if(dl->type==DL_INDEX3) totvert+= dl->nr; else if(dl->type==DL_SEGM) totvert+= dl->nr*dl->parts; dl= dl->next; } if(totvert==0) { if(ivsurf==0) error("Found no data"); if(lbase->first) BLI_freelistN(lbase); return; } maxaantal= 32000; if(totvert>maxaantal) { /* try to put colors together */ curcol= 0; tempbase.first= tempbase.last= 0; while(lbase->first) { dl= lbase->first; while(dl) { next= dl->next; if(dl->col==curcol) { BLI_remlink(lbase, dl); BLI_addtail(&tempbase, dl); dl->col= 0; } dl= next; } /* in tempbase are all 'curcol' */ totvert= 0; dl= first= tempbase.first; while(dl) { vert= 0; if(dl->type==DL_SURF) vert= dl->nr*dl->parts; else if(dl->type==DL_POLY) { if(dl->nr==3 || dl->nr==4) vert= dl->nr*dl->parts; else if(dl->nr>4) vert= dl->nr*dl->parts; } else if(dl->type==DL_INDEX3) totvert+= dl->nr; else if(dl->type==DL_SEGM) vert= dl->nr*dl->parts; totvert+= vert; if(totvert > maxaantal || dl->next==0) { if(dl->next==0) { displist_to_mesh(first); } else if(dl->prev) { prev= dl->prev; prev->next= 0; displist_to_mesh(first); prev->next= dl; first= dl; totvert= 0; } } dl= dl->next; } freedisplist(&tempbase); curcol++; } } else displist_to_mesh(lbase->first); freedisplist(lbase); } int BKE_read_exotic(char *name) { ListBase lbase={0, 0}; int len; gzFile gzfile; char str[32]; int *s0 = (int*) str; int retval = 0; // make sure we're not trying to read a directory.... len= strlen(name); if (name[len-1] !='/' && name[len-1] != '\\') { gzfile = gzopen(name,"rb"); if (NULL == gzfile ) { error("Can't open file: %s", name); retval= -1; } else { gzread(gzfile, str, 31); gzclose(gzfile); if ((*s0 != FORM) && (strncmp(str, "BLEN", 4) != 0) && !BLI_testextensie(name,".blend.gz")) { waitcursor(1); if(*s0==GOUR) { if(G.obedit) { error("Unable to perform function in EditMode"); } else { read_radiogour(name); retval = 1; } } else if ELEM4(*s0, DDG1, DDG2, DDG3, DDG4) { if(G.obedit) { error("Unable to perform function in EditMode"); } else { read_videoscape(name); retval = 1; } } else if(strncmp(str, "#Inventor V1.0", 14)==0) { if( strncmp(str+15, "ascii", 5)==0) { read_inventor(name, &lbase); displist_to_objects(&lbase); retval = 1; } else { error("Can only read Inventor 1.0 ascii"); } } else if((strncmp(str, "#VRML V1.0 asc", 14)==0)) { read_inventor(name, &lbase); displist_to_objects(&lbase); retval = 1; } else if(is_dxf(name)) { dxf_read(name); retval = 1; } else if(is_stl(name)) { if (is_stl_ascii(name)) read_stl_mesh_ascii(name); else read_stl_mesh_binary(name); retval = 1; } // TODO: this should not be in the kernel... else { // unknown format, call Python importloader if (BPY_call_importloader(name)) { retval = 1; } else { error("Unknown file type or error, check console"); } } waitcursor(0); } } } return (retval); } /* ************************ WRITE ************************** */ char temp_dir[160]= {0, 0}; static void write_vert_stl(Object *ob, MVert *verts, int index, FILE *fpSTL) { float vert[3]; VECCOPY(vert, verts[(index)].co); Mat4MulVecfl(ob->obmat, vert); if (G.order==B_ENDIAN) { SWITCH_INT(vert[0]); SWITCH_INT(vert[1]); SWITCH_INT(vert[2]); } fwrite(vert, sizeof(float), 3, fpSTL); } static int write_derivedmesh_stl(FILE *fpSTL, Object *ob, DerivedMesh *dm) { MVert *mvert = dm->getVertArray(dm); MFace *mface = dm->getFaceArray(dm); int i, numfacets = 0, totface = dm->getNumFaces(dm); float zero[3] = {0.0f, 0.0f, 0.0f}; for (i=0; iv1, fpSTL); write_vert_stl(ob, mvert, mface->v2, fpSTL); write_vert_stl(ob, mvert, mface->v3, fpSTL); fprintf(fpSTL, " "); numfacets++; if(mface->v4) { /* quad = 2 tri's */ fwrite(zero, sizeof(float), 3, fpSTL); write_vert_stl(ob, mvert, mface->v1, fpSTL); write_vert_stl(ob, mvert, mface->v3, fpSTL); write_vert_stl(ob, mvert, mface->v4, fpSTL); fprintf(fpSTL, " "); numfacets++; } } return numfacets; } static int write_object_stl(FILE *fpSTL, Object *ob, Mesh *me) { int numfacets = 0; DerivedMesh *dm = mesh_get_derived_final(ob, CD_MASK_BAREMESH); numfacets += write_derivedmesh_stl(fpSTL, ob, dm); dm->release(dm); return numfacets; } void write_stl(char *str) { Object *ob; Mesh *me; Base *base; FILE *fpSTL; int numfacets = 0; if(BLI_testextensie(str,".blend")) str[ strlen(str)-6]= 0; if(BLI_testextensie(str,".ble")) str[ strlen(str)-4]= 0; if(BLI_testextensie(str,".stl")==0) strcat(str, ".stl"); if (!during_script()) { if (BLI_exists(str)) if(saveover(str)==0) return; } fpSTL= fopen(str, "wb"); if(fpSTL==NULL) { if (!during_script()) error("Can't write file"); return; } strcpy(temp_dir, str); waitcursor(1); /* The header part of the STL */ /* First 80 characters are a title or whatever you want. Lets make the first 32 of those spam and the rest the filename. Those first 80 characters will be followed by 4 bytes which will be overwritten later with an integer holding how many facets are written (we set them to ' ' for now). */ fprintf(fpSTL, "Binary STL output from Blender: %-48.48s ", str); /* Write all selected mesh objects */ base= G.scene->base.first; while(base) { if (base->flag & SELECT) { ob = base->object; if (ob->type == OB_MESH) { me = ob->data; if (me) numfacets += write_object_stl(fpSTL, ob, me); } } base= base->next; } /* time to write the number of facets in the 4 bytes starting at byte 81 */ fseek(fpSTL, 80, SEEK_SET); if (G.order==B_ENDIAN) { SWITCH_INT(numfacets); } fwrite(&numfacets, 4*sizeof(char), 1, fpSTL); fclose(fpSTL); waitcursor(0); } static void write_videoscape_mesh(Object *ob, char *str) { EditMesh *em = G.editMesh; Mesh *me; Material *ma; MFace *mface; FILE *fp; EditVert *eve; EditFace *evl; unsigned int kleur[32]; float co[3]; int a; long tot; char *cp; if(ob && ob->type==OB_MESH); else { return; } kleur[0]= 0x00C0C0C0; cp= (char *)kleur; for(a=0; atotcol; a++, cp+=4) { ma= give_current_material(ob, a+1); if(ma) { cp[0]= (unsigned char) (255.0*ma->emit); cp[1]= (unsigned char) (255.0*ma->b); cp[2]= (unsigned char) (255.0*ma->g); cp[3]= (unsigned char) (255.0*ma->r); if(G.order==L_ENDIAN) SWITCH_INT(kleur[a]); } else kleur[a]= 0x00C0C0C0; if(a>30) break; } fp= fopen(str, "wb"); if(fp==NULL) return; fprintf(fp,"3DG1\n"); if(G.obedit) { fprintf(fp, "%d\n", G.totvert); tot= 0; eve= em->verts.first; while(eve) { VECCOPY(co, eve->co); Mat4MulVecfl(ob->obmat, co); fprintf(fp, "%f %f %f\n", co[0], co[1], co[2] ); eve->tmp.l = tot; tot++; eve= eve->next; } evl= em->faces.first; while(evl) { if(evl->v4==0) { fprintf(fp, "3 %ld %ld %ld 0x%x\n", (long int) evl->v1->tmp.l, (long int) evl->v2->tmp.l, (long int) evl->v3->tmp.l, kleur[evl->mat_nr]); } else { fprintf(fp, "4 %ld %ld %ld %ld 0x%x\n", (long int) evl->v1->tmp.l, (long int) evl->v2->tmp.l, (long int) evl->v3->tmp.l, (long int) evl->v4->tmp.l, kleur[evl->mat_nr]); } evl= evl->next; } } else { DerivedMesh *dm = mesh_get_derived_deform(ob, CD_MASK_BAREMESH); me= ob->data; fprintf(fp, "%d\n", me->totvert); mface= me->mface; for(a=0; atotvert; a++) { dm->getVertCo(dm, a, co); Mat4MulVecfl(ob->obmat, co); fprintf(fp, "%f %f %f\n", co[0], co[1], co[2] ); } for(a=0; atotface; a++, mface++) { if(mface->v4==0) { fprintf(fp, "3 %d %d %d 0x%x\n", mface->v1, mface->v2, mface->v3, kleur[mface->mat_nr]); } else { fprintf(fp, "4 %d %d %d %d 0x%x\n", mface->v1, mface->v2, mface->v3, mface->v4, kleur[mface->mat_nr]); } } dm->release(dm); } fclose(fp); } void write_videoscape(char *str) { Base *base; int file, val, lampdone=0; unsigned short numlen; char head[FILE_MAXFILE], tail[FILE_MAXFILE]; if(BLI_testextensie(str,".trace")) str[ strlen(str)-6]= 0; if(BLI_testextensie(str,".blend")) str[ strlen(str)-6]= 0; if(BLI_testextensie(str,".ble")) str[ strlen(str)-4]= 0; if(BLI_testextensie(str,".obj")==0) strcat(str, ".obj"); file= open(str,O_BINARY|O_RDONLY); close(file); if(file>-1) if(!during_script() && saveover(str)==0) return; strcpy(temp_dir, str); base= G.scene->base.first; while(base) { if((base->flag & SELECT) && (base->lay & G.scene->lay)) { if(base->object->type==OB_MESH) { write_videoscape_mesh(base->object, str); val = BLI_stringdec(str, head, tail, &numlen); BLI_stringenc(str, head, tail, numlen, val + 1); } else if(base->object->type==OB_CURVE || base->object->type==OB_SURF) { /* write_videoscape_nurbs(base->object, str); */ /* val = stringdec(str, head, tail, &numlen); */ /* stringenc(str, head, tail, numlen, val + 1); */ } else if(lampdone==0 && base->object->type==OB_LAMP) { /* lampdone= 1; */ /* write_videoscape_lamps(str); */ /* val = stringdec(str, head, tail, &numlen); */ /* stringenc(str, head, tail, numlen, val + 1); */ } } base= base->next; } /* remove when higher numbers exist */ while(remove(str)==0) { val = BLI_stringdec(str, head, tail, &numlen); BLI_stringenc(str, head, tail, numlen, val + 1); } } /* ******************************* WRITE VRML ***************************** */ static void replace_chars(char *str1, char *str2) { int a= strlen(str2); str1[a]= 0; while(a--) { if(str2[a]=='.' || str2[a]==' ') str1[a]= '_'; else str1[a]= str2[a]; } } static void write_material_vrml(FILE *fp, Material *ma) { char str[32]; replace_chars(str, ma->id.name+2); fprintf(fp, "\tDEF %s\n", str); fprintf(fp, "\tMaterial {\n"); fprintf(fp, "\t\tdiffuseColor %f %f %f\n", ma->r, ma->g, ma->b); fprintf(fp, "\t\tspecularColor %f %f %f\n", ma->specr, ma->specg, ma->specb); fprintf(fp, "\t\tshininess %f \n", ((float)ma->har)/100.0); fprintf(fp, "\t\ttransparency %f \n", 1.0-ma->alpha); fprintf(fp, "\t}\n"); } unsigned int *mcol_to_vcol(Mesh *me) { MFace *mface; unsigned int *mcol, *mcoln, *mcolmain; int a; if(me->totface==0 || me->mcol==0) return 0; mcoln= mcolmain= MEM_mallocN(sizeof(int)*me->totvert, "mcoln"); mcol = (unsigned int *)me->mcol; mface= me->mface; for(a=me->totface; a>0; a--, mface++) { mcoln[mface->v1]= mcol[0]; mcoln[mface->v2]= mcol[1]; mcoln[mface->v3]= mcol[2]; if(mface->v4) mcoln[mface->v4]= mcol[3]; mcol+= 4; } return mcolmain; } void mcol_to_rgba(unsigned int col, float *r, float *g, float *b, float *a) { char *cp; cp = (char *)&col; *r= cp[3]; *r /= 255.0; *g= cp[2]; *g /= 255.0; *b= cp[1]; *b /= 255.0; *a= cp[0]; *a /= 255.0; } static void write_mesh_vrml(FILE *fp, Mesh *me) { Material *ma; MVert *mvert; MFace *mface; MTFace *tface; Image *ima; int a, b, totcol, texind; char str[32]; replace_chars(str, me->id.name+2); fprintf(fp, "\tDEF %s\n", str); fprintf(fp, "\tSeparator {\n"); if(me->mtface) { ima= ((MTFace *)me->mtface)->tpage; if(ima) { fprintf(fp, "\t\tTexture2 {\n"); fprintf(fp, "\t\t\tfilename %s\n", ima->name); fprintf(fp, "\t\t\twrapS REPEAT \n"); fprintf(fp, "\t\t\twrapT REPEAT \n"); fprintf(fp, "\t\t}\n"); } } if(me->mcol) { unsigned int *mcol, *mcolmain; float r, g, b, cola; fprintf(fp, "\t\tMaterial {\n"); fprintf(fp, "\t\t\tdiffuseColor [\n"); a= me->totvert; mcol= mcolmain= mcol_to_vcol(me); if(mcol) { while(a--) { mcol_to_rgba(*mcol, &r, &g, &b, &cola); fprintf(fp, "\t\t\t\t %f %f %f,\n", r, g, b); mcol++; } MEM_freeN(mcolmain); } fprintf(fp, "\t\t\t]\n"); fprintf(fp, "\t\t}\n"); fprintf(fp, "\t\tMaterialBinding { value PER_VERTEX_INDEXED }\n"); } fprintf(fp, "\t\tCoordinate3 {\n"); fprintf(fp, "\t\t\tpoint [\n"); a= me->totvert; mvert= me->mvert; while(a--) { fprintf(fp, "\t\t\t\t %f %f %f,\n", mvert->co[0], mvert->co[1], mvert->co[2]); mvert++; } fprintf(fp, "\t\t\t]\n"); fprintf(fp, "\t\t}\n"); totcol= me->totcol; if(totcol==0) totcol= 1; texind= 0; // index for uv coords for(b=0; bmcol==0) { if(me->mat) { ma= me->mat[b]; if(ma) { replace_chars(str, ma->id.name+2); fprintf(fp, "\t\tUSE %s\n\n", str); } } } if(me->mtface) { fprintf(fp, "\t\tTextureCoordinate2 {\n"); fprintf(fp, "\t\t\tpoint [\n"); a= me->totface; mface= me->mface; tface= me->mtface; while(a--) { if(mface->mat_nr==b) { fprintf(fp, "\t\t\t\t %f %f,\n", tface->uv[0][0], tface->uv[0][1]); fprintf(fp, "\t\t\t\t %f %f,\n", tface->uv[1][0], tface->uv[1][1]); fprintf(fp, "\t\t\t\t %f %f,\n", tface->uv[2][0], tface->uv[2][1]); if(mface->v4) fprintf(fp, "\t\t\t\t %f %f,\n", tface->uv[3][0], tface->uv[3][1]); } mface++; tface++; } fprintf(fp, "\t\t\t]\n"); fprintf(fp, "\t\t}\n"); } fprintf(fp, "\t\tIndexedFaceSet {\n"); fprintf(fp, "\t\t\tcoordIndex [\n"); a= me->totface; mface= me->mface; while(a--) { if(mface->mat_nr==b) { if(mface->v4) fprintf(fp, "\t\t\t\t %d, %d, %d, %d, -1,\n", mface->v1, mface->v2, mface->v3, mface->v4); else fprintf(fp, "\t\t\t\t %d, %d, %d, -1,\n", mface->v1, mface->v2, mface->v3); } mface++; } fprintf(fp, "\t\t\t]\n"); if(me->mtface) { fprintf(fp, "\t\t\ttextureCoordIndex [\n"); a= me->totface; mface= me->mface; while(a--) { if(mface->mat_nr==b) { if(mface->v4) { fprintf(fp, "\t\t\t\t %d, %d, %d, %d, -1,\n", texind, texind+1, texind+2, texind+3); texind+= 4; } else { fprintf(fp, "\t\t\t\t %d, %d, %d, -1,\n", texind, texind+1, texind+2); texind+= 3; } } mface++; } fprintf(fp, "\t\t\t]\n"); } fprintf(fp, "\t\t}\n"); } fprintf(fp, "\t}\n"); } static void write_camera_vrml(FILE *fp, Object *ob) { Camera *cam; if(ob==0) return; Mat4Invert(ob->imat, ob->obmat); fprintf(fp, "\tMatrixTransform {\n"); fprintf(fp, "\tmatrix \n"); fprintf(fp, "\t\t%f %f %f %f\n", ob->imat[0][0], ob->imat[0][1], ob->imat[0][2], ob->imat[0][3]); fprintf(fp, "\t\t%f %f %f %f\n", ob->imat[1][0], ob->imat[1][1], ob->imat[1][2], ob->imat[1][3]); fprintf(fp, "\t\t%f %f %f %f\n", ob->imat[2][0], ob->imat[2][1], ob->imat[2][2], ob->imat[2][3]); fprintf(fp, "\t\t%f %f %f %f\n", ob->imat[3][0], ob->imat[3][1], ob->imat[3][2], ob->imat[3][3]); fprintf(fp, "\t}\n"); cam= ob->data; fprintf(fp, "\tPerspectiveCamera {\n"); fprintf(fp, "\t\tfocalDistance %f\n", cam->lens/10.0); fprintf(fp, "\t}\n"); } static void write_object_vrml(FILE *fp, Object *ob) { ID *id; char str[32]; fprintf(fp, "\tSeparator {\n"); fprintf(fp, "\t\tMatrixTransform {\n"); fprintf(fp, "\t\tmatrix \n"); fprintf(fp, "\t\t\t%f %f %f %f\n", ob->obmat[0][0], ob->obmat[0][1], ob->obmat[0][2], ob->obmat[0][3]); fprintf(fp, "\t\t\t%f %f %f %f\n", ob->obmat[1][0], ob->obmat[1][1], ob->obmat[1][2], ob->obmat[1][3]); fprintf(fp, "\t\t\t%f %f %f %f\n", ob->obmat[2][0], ob->obmat[2][1], ob->obmat[2][2], ob->obmat[2][3]); fprintf(fp, "\t\t\t%f %f %f %f\n", ob->obmat[3][0], ob->obmat[3][1], ob->obmat[3][2], ob->obmat[3][3]); fprintf(fp, "\t\t}\n"); id= ob->data; replace_chars(str, id->name+2); fprintf(fp, "\t\tUSE %s\n", str); fprintf(fp, "\t}\n"); } void write_vrml(char *str) { Mesh *me; Material *ma; Base *base; FILE *fp; if(BLI_testextensie(str,".blend")) str[ strlen(str)-6]= 0; if(BLI_testextensie(str,".ble")) str[ strlen(str)-4]= 0; if(BLI_testextensie(str,".wrl")==0) strcat(str, ".wrl"); if(!during_script() && saveover(str)==0) return; fp= fopen(str, "w"); if(fp==NULL && !during_script()) { error("Can't write file"); return; } strcpy(temp_dir, str); waitcursor(1); /* FIRST: write all the datablocks */ fprintf(fp, "#VRML V1.0 ascii\n\n# Blender V%d\n\n# 'Switch' is used as a hack, to ensure it is not part of the drawing\n\n", G.version); fprintf(fp, "Separator {\n"); fprintf(fp, "Switch {\n"); ma= G.main->mat.first; while(ma) { if(ma->id.us) { write_material_vrml(fp, ma); } ma= ma->id.next; } /* only write meshes we're using in this scene */ flag_listbase_ids(&G.main->mesh, LIB_DOIT, 0); for(base= G.scene->base.first; base; base= base->next) if(base->object->type== OB_MESH) ((ID *)base->object->data)->flag |= LIB_DOIT; me= G.main->mesh.first; while(me) { if(me->id.flag & LIB_DOIT) { /* is the mesh used in this scene ? */ write_mesh_vrml(fp, me); } me= me->id.next; } /* THEN:Hidden Objects */ fprintf(fp, "\n\t# Hidden Objects, in invisible layers\n\n"); base= G.scene->base.first; while(base) { if(base->object->type== OB_MESH) { if( (base->lay & G.scene->lay)==0 ) { write_object_vrml(fp, base->object); } } base= base->next; } fprintf(fp, "}\n"); fprintf(fp, "\n# Visible Objects\n\n"); fprintf(fp, "Separator {\n"); /* The camera */ write_camera_vrml(fp, G.scene->camera); /* THEN:The Objects */ base= G.scene->base.first; while(base) { if(base->object->type== OB_MESH) { if(base->lay & G.scene->lay) { write_object_vrml(fp, base->object); } } base= base->next; } fprintf(fp, "}\n"); fprintf(fp, "}\n"); fclose(fp); waitcursor(0); } /* ******************************* WRITE DXF ***************************** */ #define write_group(id,data) fprintf(fp, "%d\n%s\n", id, data) /* A completely wacky function to try and make good indexed (AutoCAD index) values out of straight rgb ones... crazy */ static int rgb_to_dxf_col (float rf, float gf, float bf) { int r= (int) (rf*255.0f); int g= (int) (gf*255.0f); int b= (int) (bf*255.0f); float h,s,v; int ret; /* Grayscale value */ if (((int)r/10)==((int)g/10) && ((int)g/10)==((int)b/10)) ret= 250+((int)r/51); /* A nice chroma value */ else { rgb_to_hsv (rf,gf,bf,&h,&s,&v); ret= (int) (10.0f + (h*239.0f)); CLAMP(ret,10,249); /* If its whitish make the index odd */ if (s<.5 || v>.5) if(ret%2) ret++; } return ret; } /* And its completely wacky complement */ static void dxf_col_to_rgb (int cid, float *rf, float *gf, float *bf) { float h, s, v; /* Grayscale values */ if (cid>=250 && cid <= 255) { *rf= *gf= *bf= (float) ((cid-250)*51)/255; CLAMP(*rf, 0.0, 1.0); CLAMP(*gf, 0.0, 1.0); CLAMP(*bf, 0.0, 1.0); /* Pure values */ } else if (cid<10) { switch (cid) { case 1: *rf=1.0; *gf=0.0; *bf=0.0; break; case 2: *rf=1.0; *gf=1.0; *bf=0.0; break; case 3: *gf=1.0; *rf=0.0; *bf=0.0; break; case 4: *rf=0.0; *gf=1.0; *bf=1.0; break; case 5: *rf=0.0; *gf=0.0; *bf=1.0; break; case 6: *rf=1.0; *gf=0.0; *bf=1.0; break; case 7: default: *rf= *gf= *bf= 1.0; break; } } else { /* Get chroma values */ h= (float) (cid-10)/239; CLAMP(h, 0.0, 1.0); /* If its odd make it a bit whitish */ if (cid%2) { s=.75; v= 0.25; } else { s= 0.25; v= 0.75;} hsv_to_rgb (h, s, v, rf, gf, bf); } } static void write_mesh_dxf(FILE *fp, Mesh *me) { Material *ma; MVert *mvert; MFace *mface; int a; char str[32]; replace_chars(str, me->id.name+2); write_group(0, "BLOCK"); write_group(2, str); /* The name */ write_group(8, "Meshes"); /* DXF Layer */ write_group(70, "64"); /* DXF block flags */ write_group(10, "0.0"); /* X of base */ write_group(20, "0.0"); /* Y of base */ write_group(30, "0.0"); /* Z of base */ write_group(3, str); /* The name (again) */ write_group(0, "POLYLINE"); /* Start the mesh */ write_group(66, "1"); /* Vertices follow flag */ write_group(8,"Meshes"); /* DXF Layer */ if (me->totcol) { ma= me->mat[0]; if(ma) { sprintf(str,"%d",rgb_to_dxf_col(ma->r,ma->g,ma->b)); write_group(62, str); /* Color index */ } } write_group(70, "64"); /* Polymesh mesh flag */ fprintf(fp, "71\n%d\n", me->totvert); /* Total vertices */ fprintf(fp, "72\n%d\n", me->totface); /* Total faces */ /* Write the vertices */ a= me->totvert; mvert= me->mvert; while(a--) { write_group(0, "VERTEX"); /* Start a new vertex */ write_group(8, "Meshes"); /* DXF Layer */ fprintf (fp, "10\n%f\n", mvert->co[0]); /* X cord */ fprintf (fp, "20\n%f\n", mvert->co[1]); /* Y cord */ fprintf (fp, "30\n%f\n", mvert->co[2]); /* Z cord */ write_group(70, "192"); /* Polymesh vertex flag */ mvert++; } /* Write the face entries */ a= me->totface; mface= me->mface; while(a--) { write_group(0, "VERTEX"); /* Start a new face */ write_group(8, "Meshes"); /* Write a face color */ if (me->totcol) { ma= me->mat[mface->mat_nr]; if(ma) { sprintf(str,"%d",rgb_to_dxf_col(ma->r,ma->g,ma->b)); write_group(62, str); /* Color index */ } } else write_group(62, "254"); /* Color Index */ /* Not sure what this really corresponds too */ write_group(10, "0.0"); /* X of base */ write_group(20, "0.0"); /* Y of base */ write_group(30, "0.0"); /* Z of base */ write_group(70, "128"); /* Polymesh face flag */ if(mface->v4) { fprintf (fp, "71\n%d\n", mface->v1+1); fprintf (fp, "72\n%d\n", mface->v2+1); fprintf (fp, "73\n%d\n", mface->v3+1); fprintf (fp, "74\n%d\n", mface->v4+1); } else { fprintf (fp, "71\n%d\n", mface->v1+1); fprintf (fp, "72\n%d\n", mface->v2+1); fprintf (fp, "73\n%d\n", mface->v3+1); } mface++; } write_group(0, "SEQEND"); write_group(0, "ENDBLK"); } static void write_object_dxf(FILE *fp, Object *ob, int layer) { ID *id; char str[32]; id= ob->data; write_group(0, "INSERT"); /* Start an insert group */ sprintf(str, "%d", layer); write_group(8, str); replace_chars(str, id->name+2); write_group(2, str); fprintf (fp, "10\n%f\n", ob->loc[0]); /* X of base */ fprintf (fp, "20\n%f\n", ob->loc[1]); /* Y of base */ fprintf (fp, "30\n%f\n", ob->loc[2]); /* Z of base */ fprintf (fp, "41\n%f\n", ob->size[0]); /* X scale */ fprintf (fp, "42\n%f\n", ob->size[1]); /* Y scale */ fprintf (fp, "43\n%f\n", ob->size[2]); /* Z scale */ fprintf (fp, "50\n%f\n", (float) ob->rot[2]*180/M_PI); /* Can only write the Z rot */ } void write_dxf(char *str) { Mesh *me; Base *base; FILE *fp; if(BLI_testextensie(str,".blend")) str[ strlen(str)-6]= 0; if(BLI_testextensie(str,".ble")) str[ strlen(str)-4]= 0; if(BLI_testextensie(str,".dxf")==0) strcat(str, ".dxf"); if (!during_script()) { if (BLI_exists(str)) if(saveover(str)==0) return; } fp= fopen(str, "w"); if(fp==NULL && !during_script()) { error("Can't write file"); return; } strcpy(temp_dir, str); waitcursor(1); /* The header part of the DXF */ write_group(0, "SECTION"); write_group(2, "HEADER"); write_group(0, "ENDSEC"); /* The blocks part of the DXF */ write_group(0, "SECTION"); write_group(2, "BLOCKS"); /* only write meshes we're using in this scene */ flag_listbase_ids(&G.main->mesh, LIB_DOIT, 0); for(base= G.scene->base.first; base; base= base->next) if(base->object->type== OB_MESH) ((ID *)base->object->data)->flag |= LIB_DOIT; /* Write all the meshes */ me= G.main->mesh.first; while(me) { if(me->id.flag & LIB_DOIT) { /* is the mesh used in this scene ? */ write_mesh_dxf(fp, me); } me= me->id.next; } write_group(0, "ENDSEC"); /* The entities part of the DXF */ write_group(0, "SECTION"); write_group(2, "ENTITIES"); /* Write all the mesh objects */ base= G.scene->base.first; while(base) { if(base->object->type== OB_MESH) { write_object_dxf(fp, base->object, base->lay); } base= base->next; } write_group(0, "ENDSEC"); /* Thats all */ write_group(0, "EOF"); fclose(fp); waitcursor(0); } static int dxf_line= 0; static FILE *dxf_fp= NULL; /* exotic.c(2863) : note C6311: c:/Program Files/Microsoft Visual * Studio/VC98/include\ctype.h(268) : see previous definition of * 'iswspace' */ #define ton_iswspace(c) (c==' '||c=='\n'||c=='\t') static void clean_wspace (char *str) { char *from, *to; char t; from= str; to=str; while (*from!=0) { t= *from; *to= t; if(!ton_iswspace(*from)) to++; from++; } *to=0; } static int all_wspace(char *str) { while(*str != 0) { if (!ton_iswspace(*str)) return 0; str++; } return 1; } static int all_digits(char *str) { while(*str != 0) { if (!isdigit(*str)) return 0; str++; } return 1; } static int dxf_get_layer_col(char *layer) { return 1; } static int dxf_get_layer_num(char *layer) { int ret = 0; if (all_digits(layer) && atoi(layer)<(1<<20)) ret= atoi(layer); if (ret == 0) ret = G.scene->lay; return ret; } static void dos_clean(char *str) { while (*str) { if (*str == 0x0d) { *str='\n'; *(++str)= 0; break; } str++; } } static void myfgets(char *str, int len, FILE *fp) { char c; while(len>0 && (c=getc(dxf_fp)) ) { *str= c; str++; len--; /* three types of enters, \n \r and \r\n */ if(c == '\n') break; if(c=='\r') { c= getc(dxf_fp); // read the linefeed from stream if(c != 10) ungetc(c, dxf_fp); // put back, if it's not one... break; } } } static int read_groupf(char *str) { short c; int ret=-1; char tmp[256]; strcpy(str, " "); while ((c=getc(dxf_fp)) && ton_iswspace(c)); ungetc(c, dxf_fp); if (c==EOF) return -1; myfgets(tmp, 255, dxf_fp); dos_clean(tmp); if(sscanf(tmp, "%d\n", &ret)!=1) return -2; myfgets(tmp, 255, dxf_fp); dos_clean(tmp); if (!all_wspace(tmp)) { if (sscanf(tmp, "%s\n", str)!=1) return -2; } clean_wspace(str); dxf_line+=2; return ret; } #define id_test(id) if(id<0) {char errmsg[128];fclose(dxf_fp); if(id==-1) sprintf(errmsg, "Error inputting dxf, near line %d", dxf_line); else if(id==-2) sprintf(errmsg, "Error reading dxf, near line %d", dxf_line);error(errmsg); return;} #define read_group(id,str) {id= read_groupf(str); id_test(id);} #define group_is(idtst,str) (id==idtst&&strcmp(val,str)==0) #define group_isnt(idtst,str) (id!=idtst||strcmp(val,str)!=0) #define id_check(idtst,str) if(group_isnt(idtst,str)) { fclose(dxf_fp); error("Error parsing dxf, near line %d", dxf_line); return;} static int id; static char val[256]; static short error_exit=0; static short hasbumped=0; static int is_dxf(char *str) { dxf_line=0; dxf_fp= fopen(str, "r"); if (dxf_fp==NULL) return 0; id= read_groupf(val); if ((id==0 && strcmp(val, "SECTION")==0)||id==999) return 1; fclose(dxf_fp); return 0; } /* NOTES ON THE READER */ /* -- It turns out that most DXF writers like (LOVE) to write meshes as a long string of 3DFACE entities. This means the natural way to read a DXF file (every entity corresponds to an object) is completely unusable, reading in 10,000 faces each as an object just doesn't cut it. Thus the 3DFACE entry reader holds state, and only finalizes to an object when a) the layer name changes, b) the entry type changes, c) we are done reading. PS... I decided to do the same thing with LINES, apparently the same thing happens sometimes as well. PPS... I decided to do the same thing with everything. Now it is all really nasty and should be rewritten. -- Added circular and elliptical arcs and lwpolylines. These are all self-contained and have the size known in advance, and so I haven't used the held state. -- martin */ static void dxf_add_mat (Object *ob, Mesh *me, float color[3], char *layer) { Material *ma; if (!me) return; if(ob) ob->mat= MEM_callocN(sizeof(void *)*1, "ob->mat"); if(ob) ob->actcol= 1; me->totcol= 1; me->mat= MEM_callocN(sizeof(void *)*1, "me->mat"); if (color[0]<0) { if (strlen(layer)) dxf_col_to_rgb(dxf_get_layer_col(layer), &color[0], &color[1], &color[2]); color[0]= color[1]= color[2]= 0.8f; } ma= G.main->mat.first; while(ma) { if(ma->mtex[0]==0) { if(color[0]==ma->r && color[1]==ma->g && color[2]==ma->b) { me->mat[0]= ma; ma->id.us++; break; } } ma= ma->id.next; } if(ma==0) { ma= add_material("ext"); me->mat[0]= ma; ma->r= color[0]; ma->g= color[1]; ma->b= color[2]; automatname(ma); } } /* General DXF vars */ static float cent[3]={0.0, 0.0, 0.0}; static char layname[32]=""; static char entname[32]=""; static float color[3]={-1.0, -1.0, -1.0}; static float *vcenter; static float zerovec[3]= {0.0, 0.0, 0.0}; #define reset_vars cent[0]= cent[1]= cent[2]=0.0; strcpy(layname, ""); color[0]= color[1]= color[2]= -1.0 static void dxf_get_mesh(Mesh** m, Object** o, int noob) { Mesh *me = NULL; Object *ob; if (!noob) { *o = add_object(OB_MESH); ob = *o; if (strlen(entname)) new_id(&G.main->object, (ID *)ob, entname); else if (strlen(layname)) new_id(&G.main->object, (ID *)ob, layname); if (strlen(layname)) ob->lay= dxf_get_layer_num(layname); else ob->lay= G.scene->lay; // not nice i know... but add_object() sets active base, which needs layer setting too (ton) G.scene->basact->lay= ob->lay; *m = ob->data; me= *m; vcenter= ob->loc; } else { *o = NULL; *m = add_mesh("Mesh"); G.totmesh++; me = *m; ob = *o; ((ID *)me)->us=0; if (strlen(entname)) new_id(&G.main->mesh, (ID *)me, entname); else if (strlen(layname)) new_id(&G.main->mesh, (ID *)me, layname); vcenter = zerovec; } me->totvert=0; me->totface=0; me->mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, 0); me->mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, 0); } static void dxf_read_point(int noob) { /* Blender vars */ Object *ob; Mesh *me; MVert *mvert; reset_vars; read_group(id, val); while(id!=0) { if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); } else if (id==10) { cent[0]= (float) atof(val); } else if (id==20) { cent[1]= (float) atof(val); } else if (id==30) { cent[2]= (float) atof(val); } else if (id==60) { /* short invisible= atoi(val); */ } else if (id==62) { int colorid= atoi(val); CLAMP(colorid, 1, 255); dxf_col_to_rgb(colorid, &color[0], &color[1], &color[2]); } read_group(id, val); } dxf_get_mesh(&me, &ob, noob); me->totvert= 1; me->mvert= MEM_callocN(me->totvert*sizeof(MVert), "mverts"); CustomData_set_layer(&me->vdata, CD_MVERT, me->mvert); dxf_add_mat (ob, me, color, layname); mvert= me->mvert; mvert->co[0]= mvert->co[1]= mvert->co[2]= 0; if (ob) VECCOPY(ob->loc, cent); hasbumped=1; } /* Line state vars */ static Object *linehold=NULL; static Mesh *linemhold=NULL; static char oldllay[32]; static short lwasline=0; /* last was face 3d? */ static void dxf_close_line(void) { linemhold=NULL; if (linehold==NULL) return; linehold=NULL; } static void dxf_read_line(int noob) { /* Entity specific vars */ float epoint[3]={0.0, 0.0, 0.0}; short vspace=0; /* Whether or not coords are relative */ /* Blender vars */ Object *ob; Mesh *me; MVert *mvert, *vtmp; MFace *mface, *ftmp; reset_vars; read_group(id, val); while(id!=0) { if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); } else if (id==10) { cent[0]= (float) atof(val); } else if (id==20) { cent[1]= (float) atof(val); } else if (id==30) { cent[2]= (float) atof(val); } else if (id==11) { epoint[0]= (float) atof(val); } else if (id==21) { epoint[1]= (float) atof(val); } else if (id==31) { epoint[2]= (float) atof(val); } else if (id==60) { /* short invisible= atoi(val); */ } else if (id==62) { int colorid= atoi(val); CLAMP(colorid, 1, 255); dxf_col_to_rgb(colorid, &color[0], &color[1], &color[2]); } else if (id==67) { vspace= atoi(val); } read_group(id, val); } /* Check to see if we need to make a new object */ if(!lwasline || strcmp(layname, oldllay)!=0) dxf_close_line(); if(linemhold != NULL && linemhold->totvert>MESH_MAX_VERTS) dxf_close_line(); if (linemhold==NULL) { dxf_get_mesh(&me, &ob, noob); if(ob) VECCOPY(ob->loc, cent); dxf_add_mat (ob, me, color, layname); linehold= ob; linemhold= me; } else { ob= linehold; me= linemhold; } me->totvert+= 2; me->totface++; vtmp= MEM_callocN(me->totvert*sizeof(MVert), "mverts"); ftmp= MEM_callocN(me->totface*sizeof(MFace), "mface"); if(me->mvert) { memcpy(vtmp, me->mvert, (me->totvert-2)*sizeof(MVert)); MEM_freeN(me->mvert); } me->mvert= CustomData_set_layer(&me->vdata, CD_MVERT, vtmp); vtmp=NULL; if(me->mface) { memcpy(ftmp, me->mface, (me->totface-1)*sizeof(MFace)); MEM_freeN(me->mface); } me->mface= CustomData_set_layer(&me->fdata, CD_MFACE, ftmp); ftmp=NULL; mvert= &me->mvert[(me->totvert-2)]; VecSubf(mvert->co, cent, vcenter); mvert++; if (vspace) { VECCOPY(mvert->co, epoint); } else VecSubf(mvert->co, epoint, vcenter); mface= &(((MFace*)me->mface)[me->totface-1]); mface->v1= me->totvert-2; mface->v2= me->totvert-1; mface->mat_nr= 0; hasbumped=1; } /* 2D Polyline state vars */ static Object *p2dhold=NULL; static Mesh *p2dmhold=NULL; static char oldplay[32]; static short lwasp2d=0; static void dxf_close_2dpoly(void) { p2dmhold= NULL; if (p2dhold==NULL) return; p2dhold=NULL; } static void dxf_read_ellipse(int noob) { /* * The Parameter option of the ELLIPSE command uses the following equation to define an elliptical arc. * * p(u)=c+a*cos(u)+b*sin(u) * * The variables a, b, c are determined when you select the endpoints for the * first axis and the distance for the second axis. a is the negative of 1/2 * of the major axis length, b is the negative of 1/2 the minor axis length, * and c is the center point (2-D) of the ellipse. * * Because this is actually a vector equation and the variable c is actually * a point with X and Y values, it really should be written as: * * p(u)=(Cx+a*cos(u))*i+(Cy+b*sin(u))*j * * where * * Cx is the X value of the point c * Cy is the Y value of the point c * a is -(1/2 of the major axis length) * b is -(1/2 of the minor axis length) * i and j represent unit vectors in the X and Y directions * * http://astronomy.swin.edu.au/~pbourke/geomformats/dxf2000/ellipse_command39s_parameter_option_dxf_06.htm * (reproduced with permission) * * NOTE: The start and end angles ('parameters') are in radians, whereas those for the circular arc are * in degrees. The 'sense' of u appears to be determined by the extrusion direction (see more detailed comment * in the code) * * TODO: The code is specific to ellipses in the x-y plane right now. * */ /* Entity specific vars */ float epoint[3]={0.0, 0.0, 0.0}; float center[3]={0.0, 0.0, 0.0}; float extrusion[3]={0.0, 0.0, 1.0}; float axis_endpoint[3] = {0.0, 0.0, 0.0}; /* major axis endpoint */ short vspace=0; /* Whether or not coords are relative */ float a, b, x, y, z; float phid = 0.0f, phi = 0.0f, theta = 0.0f; float start_angle = 0.0f; float end_angle = 2*M_PI; float axis_ratio = 1.0f; float temp; int v, tot; int isArc=0; /* Blender vars */ Object *ob; Mesh *me; MVert *mvert; MFace *mface; reset_vars; read_group(id, val); while(id!=0) { if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); } else if (id==10) { center[0]= (float) atof(val); } else if (id==20) { center[1]= (float) atof(val); } else if (id==30) { center[2]= (float) atof(val); } else if (id==11) { axis_endpoint[0]= (float) atof(val); } else if (id==21) { axis_endpoint[1]= (float) atof(val); } else if (id==31) { axis_endpoint[2]= (float) atof(val); } else if (id==40) { axis_ratio = (float) atof(val); } else if (id==41) { printf("dxf: start = %f", atof(val) * 180/M_PI); start_angle = -atof(val) + M_PI_2; } else if (id==42) { printf("dxf: end = %f", atof(val) * 180/M_PI); end_angle = -atof(val) + M_PI_2; } else if (id==62) { int colorid= atoi(val); CLAMP(colorid, 1, 255); dxf_col_to_rgb(colorid, &color[0], &color[1], &color[2]); } else if (id==67) { vspace= atoi(val); } else if (id==100) { isArc = 1; } else if (id==210) { extrusion[0] = atof(val); } else if (id==220) { extrusion[1] = atof(val); } else if (id==230) { extrusion[2] = atof(val); } read_group(id, val); } if(!lwasline || strcmp(layname, oldllay)!=0) dxf_close_line(); if(linemhold != NULL && linemhold->totvert>MESH_MAX_VERTS) dxf_close_line(); /* The 'extrusion direction' seems akin to a face normal, * insofar as it determines the direction of increasing phi. * This is again x-y plane specific; it should be fixed at * some point. */ if (extrusion[2] < 0) { temp = start_angle; start_angle = M_PI - end_angle; end_angle = M_PI - temp; } if(end_angle > start_angle) end_angle -= 2 * M_PI; phi = start_angle; x = axis_endpoint[0]; y = axis_endpoint[1]; z = axis_endpoint[2]; a = sqrt(x*x + y*y + z*z); b = a * axis_ratio; theta = atan2(y, x); x = a * sin(phi); y = b * cos(phi); #ifndef DEBUG_CENTER epoint[0] = center[0] + x*cos(theta) - y*sin(theta); epoint[1] = center[1] + x*sin(theta) + y*cos(theta); epoint[2] = center[2]; cent[0]= epoint[0]; cent[1]= epoint[1]; cent[2]= epoint[2]; #else cent[0]= center[0]; cent[1]= center[1]; cent[2]= center[2]; #endif dxf_get_mesh(&me, &ob, noob); strcpy(oldllay, layname); if(ob) VECCOPY(ob->loc, cent); dxf_add_mat (ob, me, color, layname); tot = 32; /* # of line segments to divide the arc into */ phid = (end_angle - start_angle)/tot; me->totvert += tot+1; me->totface += tot+1; me->mvert = (MVert*) MEM_callocN(me->totvert*sizeof(MVert), "mverts"); me->mface = (MFace*) MEM_callocN(me->totface*sizeof(MVert), "mface"); CustomData_set_layer(&me->vdata, CD_MVERT, me->mvert); CustomData_set_layer(&me->fdata, CD_MFACE, me->mface); printf("vertex and face buffers allocated\n"); for(v = 0; v <= tot; v++) { x = a * sin(phi); y = b * cos(phi); epoint[0] = center[0] + x*cos(theta) - y*sin(theta); epoint[1] = center[1] + x*sin(theta) + y*cos(theta); epoint[2] = center[2]; mvert= &me->mvert[v]; if (vspace) { VECCOPY(mvert->co, epoint); } else { VecSubf(mvert->co, epoint, vcenter); } if (v > 0) { mface= &(((MFace*)me->mface)[v-1]); mface->v1 = v-1; mface->v2 = v; mface->mat_nr = 0; } hasbumped = 1; VECCOPY(cent, epoint); phi+=phid; } } static void dxf_read_arc(int noob) { /* Entity specific vars */ float epoint[3]={0.0, 0.0, 0.0}; float center[3]={0.0, 0.0, 0.0}; float extrusion[3]={0.0, 0.0, 1.0}; short vspace=0; /* Whether or not coords are relative */ float dia = 0.0f; float phid = 0.0f, phi = 0.0f; float start_angle = 0.0f; float end_angle = 2*M_PI; float temp; int v, tot = 32; int isArc=0; /* Blender vars */ Object *ob; Mesh *me; MVert *mvert; MFace *mface; reset_vars; read_group(id, val); while(id!=0) { if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); } else if (id==10) { center[0]= (float) atof(val); } else if (id==20) { center[1]= (float) atof(val); } else if (id==30) { center[2]= (float) atof(val); } else if (id==40) { dia = (float) atof(val); } else if (id==62) { int colorid= atoi(val); CLAMP(colorid, 1, 255); dxf_col_to_rgb(colorid, &color[0], &color[1], &color[2]); } else if (id==67) { vspace= atoi(val); } else if (id==100) { isArc = 1; } else if (id==50) { start_angle = (90 - atoi(val)) * M_PI/180.0; } else if (id==51) { end_angle = (90 - atoi(val)) * M_PI/180.0; } else if (id==210) { extrusion[0] = atof(val); } else if (id==220) { extrusion[1] = atof(val); } else if (id==230) { extrusion[2] = atof(val); } read_group(id, val); } if(!lwasline || strcmp(layname, oldllay)!=0) dxf_close_line(); if(linemhold != NULL && linemhold->totvert>MESH_MAX_VERTS) dxf_close_line(); /* Same xy-plane-specific extrusion direction code as in read_ellipse * (read_arc and read_ellipse should ideally be rewritten to share code) */ if (extrusion[2] < 0) { temp = start_angle; start_angle = M_PI - end_angle; end_angle = M_PI - temp; } phi = start_angle; if(end_angle > start_angle) end_angle -= 2 * M_PI; cent[0]= center[0]+dia*sin(phi); cent[1]= center[1]+dia*cos(phi); cent[2]= center[2]; dxf_get_mesh(&me, &ob, noob); strcpy(oldllay, layname); if(ob) VECCOPY(ob->loc, cent); dxf_add_mat (ob, me, color, layname); tot = 32; /* # of line segments to divide the arc into */ phid = (end_angle - start_angle)/tot; /* fix so that arcs have the same 'resolution' as circles? */ me->totvert += tot+1; me->totface += tot+1; me->mvert = (MVert*) MEM_callocN(me->totvert*sizeof(MVert), "mverts"); me->mface = (MFace*) MEM_callocN(me->totface*sizeof(MVert), "mface"); CustomData_set_layer(&me->vdata, CD_MVERT, me->mvert); CustomData_set_layer(&me->fdata, CD_MFACE, me->mface); for(v = 0; v <= tot; v++) { epoint[0]= center[0]+dia*sin(phi); epoint[1]= center[1]+dia*cos(phi); epoint[2]= center[2]; mvert= &me->mvert[v]; if (vspace) { VECCOPY(mvert->co, epoint); } else { VecSubf(mvert->co, epoint, vcenter); } if (v > 0) { mface= &(((MFace*)me->mface)[v-1]); mface->v1 = v-1; mface->v2 = v; mface->mat_nr = 0; } hasbumped=1; VECCOPY(cent, epoint); phi+=phid; } } static void dxf_read_polyline(int noob) { /* Entity specific vars */ short vspace=0; /* Whether or not coords are relative */ int flag=0; int vflags=0; int vids[4]; int nverts; /* Blender vars */ Object *ob; Mesh *me; float vert[3]; MVert *mvert, *vtmp; MFace *mface, *ftmp; reset_vars; read_group(id, val); while(id!=0) { if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); } else if (id==10) { cent[0]= (float) atof(val); } else if (id==20) { cent[1]= (float) atof(val); } else if (id==30) { cent[2]= (float) atof(val); } else if (id==60) { /* short invisible= atoi(val); */ } else if (id==62) { int colorid= atoi(val); CLAMP(colorid, 1, 255); dxf_col_to_rgb(colorid, &color[0], &color[1], &color[2]); } else if (id==67) { vspace= atoi(val); } else if (id==70) { flag= atoi(val); } read_group(id, val); } if (flag & 9) { // 1= closed curve, 8= 3d curve if(!lwasp2d || strcmp(layname, oldplay)!=0) dxf_close_2dpoly(); if(p2dmhold != NULL && p2dmhold->totvert>MESH_MAX_VERTS) dxf_close_2dpoly(); if (p2dmhold==NULL) { dxf_get_mesh(&me, &ob, noob); strcpy(oldplay, layname); if(ob) VECCOPY(ob->loc, cent); dxf_add_mat (ob, me, color, layname); p2dhold= ob; p2dmhold= me; } else { ob= p2dhold; me= p2dmhold; } nverts=0; while (group_is(0, "VERTEX")) { read_group(id, val); while(id!=0) { if (id==10) { vert[0]= (float) atof(val); } else if (id==20) { vert[1]= (float) atof(val); } else if (id==30) { vert[2]= (float) atof(val); } read_group(id, val); } nverts++; me->totvert++; vtmp= MEM_callocN(me->totvert*sizeof(MVert), "mverts"); if (me->mvert) { memcpy (vtmp, me->mvert, (me->totvert-1)*sizeof(MVert)); MEM_freeN(me->mvert); } me->mvert= CustomData_set_layer(&me->vdata, CD_MVERT, vtmp); vtmp= NULL; mvert= &me->mvert[me->totvert-1]; if (vspace) { VECCOPY(mvert->co, vert); } else VecSubf(mvert->co, vert, vcenter); } /* make edges */ if(nverts>1) { int a, oldtotface; oldtotface= me->totface; me->totface+= nverts-1; ftmp= MEM_callocN(me->totface*sizeof(MFace), "mface"); if(me->mface) { memcpy(ftmp, me->mface, oldtotface*sizeof(MFace)); MEM_freeN(me->mface); } me->mface= CustomData_set_layer(&me->fdata, CD_MFACE, ftmp); ftmp=NULL; mface= me->mface; mface+= oldtotface; for(a=1; av1= (me->totvert-nverts)+a-1; mface->v2= (me->totvert-nverts)+a; mface->mat_nr= 0; } } lwasp2d=1; } else if (flag&64) { dxf_get_mesh(&me, &ob, noob); if(ob) VECCOPY(ob->loc, cent); dxf_add_mat (ob, me, color, layname); while (group_is(0, "VERTEX")) { vflags= 0; vids[0]= vids[1]= vids[2]= vids[3]= 0; vflags=0; read_group(id, val); while(id!=0) { if(id==8) { ; /* Layer def, skip */ } else if (id==10) { vert[0]= (float) atof(val); } else if (id==20) { vert[1]= (float) atof(val); } else if (id==30) { vert[2]= (float) atof(val); } else if (id==70) { vflags= atoi(val); } else if (id==71) { vids[0]= abs(atoi(val)); } else if (id==72) { vids[1]= abs(atoi(val)); } else if (id==73) { vids[2]= abs(atoi(val)); } else if (id==74) { vids[3]= abs(atoi(val)); } read_group(id, val); } if (vflags & 128 && vflags & 64) { me->totvert++; /* If we are nearing the limit scan to the next entry */ if(me->totvert > MESH_MAX_VERTS) while(group_isnt(0, "SEQEND")) read_group(id, val); vtmp= MEM_callocN(me->totvert*sizeof(MVert), "mverts"); if(me->mvert) { memcpy(vtmp, me->mvert, (me->totvert-1)*sizeof(MVert)); MEM_freeN(me->mvert); } me->mvert= CustomData_set_layer(&me->vdata, CD_MVERT, vtmp); vtmp=NULL; mvert= &me->mvert[(me->totvert-1)]; if (vspace) { VECCOPY(mvert->co, vert); } else VecSubf(mvert->co, vert, vcenter); } else if (vflags & 128) { if(vids[2]==0) { error("(PL) Error parsing dxf, not enough vertices near line %d", dxf_line); error_exit=1; fclose(dxf_fp); return; } me->totface++; ftmp= MEM_callocN(me->totface*sizeof(MFace), "mfaces"); if(me->mface) { memcpy(ftmp, me->mface, (me->totface-1)*sizeof(MFace)); MEM_freeN(me->mface); } me->mface= CustomData_set_layer(&me->fdata, CD_MFACE, ftmp); ftmp=NULL; mface= &(((MFace*)me->mface)[me->totface-1]); mface->v1= vids[0]-1; mface->v2= vids[1]-1; mface->v3= vids[2]-1; if(vids[3] && vids[3]!=vids[0]) { mface->v4= vids[3]-1; test_index_face(mface, NULL, 0, 4); } else test_index_face(mface, NULL, 0, 3); mface->mat_nr= 0; } else { error("Error parsing dxf, unknown polyline information near %d", dxf_line); error_exit=1; fclose(dxf_fp); return; } } } } static void dxf_read_lwpolyline(int noob) { /* Entity specific vars */ short vspace=0; /* Whether or not coords are relative */ int flag=0; int nverts=0; int v; /* Blender vars */ Object *ob; Mesh *me; float vert[3]; MVert *mvert; MFace *mface; reset_vars; id = -1; /* block structure is * {...} * 90 => nverts * 70 => flags * nverts.times { 10 => x, 20 => y } */ while(id!=70) { read_group(id, val); if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); } else if (id==38) { vert[2]= (float) atof(val); } else if (id==60) { /* short invisible= atoi(val); */ } else if (id==62) { int colorid= atoi(val); CLAMP(colorid, 1, 255); dxf_col_to_rgb(colorid, &color[0], &color[1], &color[2]); } else if (id==67) { vspace= atoi(val); } else if (id==70) { flag= atoi(val); } else if (id==90) { nverts= atoi(val); } } printf("nverts %d\n", nverts); if (nverts == 0) return; dxf_get_mesh(&me, &ob, noob); strcpy(oldllay, layname); if(ob) VECCOPY(ob->loc, cent); dxf_add_mat (ob, me, color, layname); me->totvert += nverts; me->totface += nverts; me->mvert = (MVert*) MEM_callocN(me->totvert*sizeof(MVert), "mverts"); me->mface = (MFace*) MEM_callocN(me->totface*sizeof(MVert), "mface"); CustomData_set_layer(&me->vdata, CD_MVERT, me->mvert); CustomData_set_layer(&me->fdata, CD_MFACE, me->mface); for (v = 0; v < nverts; v++) { read_group(id,val); if (id == 10) { vert[0]= (float) atof(val); } else { error("Error parsing dxf, expected (10, ) at line %d", dxf_line); } read_group(id,val); if (id == 20) { vert[1]= (float) atof(val); } else { error("Error parsing dxf, expected (20, ) at line %d", dxf_line); } mvert = &me->mvert[v]; if (vspace) { VECCOPY(mvert->co, vert); } else { VecSubf(mvert->co, vert, vcenter); } if (v > 0) { mface= &(((MFace*)me->mface)[v-1]); mface->v1 = v-1; mface->v2 = v; mface->mat_nr = 0; } } /* flag & 1 -> closed polyline * TODO: give the polyline actual 2D faces if it is closed */ if (flag&1) { if(me->mface) { mface= &(((MFace*)me->mface)[nverts - 1]); mface->v1 = nverts-1; mface->v2 = 0; mface->mat_nr = 0; } } } /* 3D Face state vars */ static Object *f3dhold=NULL; static Mesh *f3dmhold=NULL; static char oldflay[32]; static short lwasf3d=0; /* last was face 3d? */ /* how can this function do anything useful (ton)? */ static void dxf_close_3dface(void) { f3dmhold= NULL; if (f3dhold==NULL) return; f3dhold=NULL; } static void dxf_read_3dface(int noob) { /* Entity specific vars */ float vert2[3]={0.0, 0.0, 0.0}; float vert3[3]={0.0, 0.0, 0.0}; float vert4[3]={0.0, 0.0, 0.0}; short vspace=0; int nverts=0; /* Blender vars */ Object *ob; Mesh *me; MVert *mvert, *vtmp; MFace *mface, *ftmp; reset_vars; read_group(id, val); while(id!=0) { if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); /* First vert/origin */ } else if (id==10) { cent[0]= (float) atof(val); if (nverts<1)nverts++; } else if (id==20) { cent[1]= (float) atof(val); if (nverts<1)nverts++; } else if (id==30) { cent[2]= (float) atof(val); if (nverts<1)nverts++; /* Second vert */ } else if (id==11) { vert2[0]= (float) atof(val); if (nverts<2)nverts++; } else if (id==21) { vert2[1]= (float) atof(val); if (nverts<2)nverts++; } else if (id==31) { vert2[2]= (float) atof(val); if (nverts<2)nverts++; /* Third vert */ } else if (id==12) { vert3[0]= (float) atof(val); if (nverts<3)nverts++; } else if (id==22) { vert3[1]= (float) atof(val); if (nverts<3)nverts++; } else if (id==32) { vert3[2]= (float) atof(val); if (nverts<3)nverts++; /* Fourth vert */ } else if (id==13) { vert4[0]= (float) atof(val); if (nverts<4)nverts++; } else if (id==23) { vert4[1]= (float) atof(val); if (nverts<4)nverts++; } else if (id==33) { vert4[2]= (float) atof(val); if (nverts<4)nverts++; /* Other */ } else if (id==60) { /* short invisible= atoi(val); */ } else if (id==62) { int colorid= atoi(val); CLAMP(colorid, 1, 255); dxf_col_to_rgb(colorid, &color[0], &color[1], &color[2]); } else if (id==67) { vspace= atoi(val); } read_group(id, val); } /* Check to see if we need to make a new object */ if(!lwasf3d || strcmp(layname, oldflay)!=0) dxf_close_3dface(); if(f3dmhold != NULL && f3dmhold->totvert>MESH_MAX_VERTS) dxf_close_3dface(); if(nverts<3) { error("(3DF) Error parsing dxf, not enough vertices near line %d", dxf_line); error_exit=1; fclose(dxf_fp); return; } if (f3dmhold==NULL) { dxf_get_mesh(&me, &ob, noob); strcpy(oldflay, layname); if(ob) VECCOPY(ob->loc, cent); dxf_add_mat (ob, me, color, layname); f3dhold= ob; f3dmhold= me; } else { ob= f3dhold; me= f3dmhold; } me->totvert+= nverts; me->totface++; vtmp= MEM_callocN(me->totvert*sizeof(MVert), "mverts"); ftmp= MEM_callocN(me->totface*sizeof(MFace), "mface"); if(me->mvert) { memcpy(vtmp, me->mvert, (me->totvert-nverts)*sizeof(MVert)); MEM_freeN(me->mvert); } me->mvert= CustomData_set_layer(&me->vdata, CD_MVERT, vtmp); vtmp=NULL; if(me->mface) { memcpy(ftmp, me->mface, (me->totface-1)*sizeof(MFace)); MEM_freeN(me->mface); } me->mface= CustomData_set_layer(&me->fdata, CD_MFACE, ftmp); ftmp=NULL; mvert= &me->mvert[(me->totvert-nverts)]; VecSubf(mvert->co, cent, vcenter); mvert++; if (vspace) { VECCOPY(mvert->co, vert2); } else VecSubf(mvert->co, vert2, vcenter); mvert++; if (vspace) { VECCOPY(mvert->co, vert3); } else VecSubf(mvert->co, vert3, vcenter); if (nverts==4) { mvert++; if (vspace) { VECCOPY(mvert->co, vert4); } else VecSubf(mvert->co, vert4, vcenter); } mface= &(((MFace*)me->mface)[me->totface-1]); mface->v1= (me->totvert-nverts)+0; mface->v2= (me->totvert-nverts)+1; mface->v3= (me->totvert-nverts)+2; if (nverts==4) mface->v4= (me->totvert-nverts)+3; mface->mat_nr= 0; test_index_face(mface, NULL, 0, nverts); hasbumped=1; } static void dxf_read(char *filename) { Mesh *lastMe = G.main->mesh.last; /* clear ugly global variables, that can hang because on error the code below returns... tsk (ton) */ dxf_line=0; dxf_close_3dface(); dxf_close_2dpoly(); dxf_close_line(); dxf_fp= fopen(filename, "r"); if (dxf_fp==NULL) return; while (1) { read_group(id, val); if (group_is(0, "EOF")) break; if (id==999) continue; id_check(0, "SECTION"); read_group(id, val); if (group_is(2, "HEADER")) { } else if (group_is(2, "TABLES")) { } else if (group_is(2, "OBJECTS")) { } else if (group_is(2, "CLASSES")) { } else if (group_is(2, "BLOCKS")) { while(1) { read_group(id, val); if (group_is(0, "BLOCK")) { while(group_isnt(0, "ENDBLK")) { read_group(id, val); if(id==2) { BLI_strncpy(entname, val, sizeof(entname)); } else if (id==3) { /* Now the object def should follow */ if(strlen(entname)==0) { error("Error parsing dxf, no mesh name near %d", dxf_line); fclose(dxf_fp); return; } /* Now the object def should follow */ while(group_isnt(0, "ENDBLK")) { read_group(id, val); if(group_is(0, "POLYLINE")) { dxf_read_polyline(1); if(error_exit) return; lwasf3d=0; lwasline=0; while(group_isnt(0, "SEQEND")) read_group(id, val); } else if(group_is(0, "LWPOLYLINE")) { dxf_read_lwpolyline(1); if(error_exit) return; lwasf3d=0; lwasline=0; while(group_isnt(0, "SEQEND")) read_group(id, val); } else if(group_is(0, "ATTRIB")) { while(group_isnt(0, "SEQEND")) read_group(id, val); lwasf3d=0; lwasp2d=0; lwasline=0; } else if(group_is(0, "POINT")) { dxf_read_point(1); if(error_exit) return; lwasf3d=0; lwasp2d=0; lwasline=0; } else if(group_is(0, "LINE")) { dxf_read_line(1); if(error_exit) return; lwasline=1; lwasp2d=0; lwasf3d=0; } else if(group_is(0, "3DFACE")) { dxf_read_3dface(1); if(error_exit) return; lwasf3d=1; lwasp2d=0; lwasline=0; } else if (group_is(0, "CIRCLE")) { dxf_read_arc(1); } else if (group_is(0, "ELLIPSE")) { dxf_read_ellipse(1); } else if (group_is(0, "ENDBLK")) { break; } } } else if (group_is(0, "ENDBLK")) { break; } } while(id!=0) read_group(id, val); } else if(group_is(0, "ENDSEC")) { break; } } } else if (group_is(2, "ENTITIES")) { while(group_isnt(0, "ENDSEC")) { char obname[32]=""; char layname[32]=""; float cent[3]={0.0, 0.0, 0.0}; float obsize[3]={1.0, 1.0, 1.0}; float obrot[3]={0.0, 0.0, 0.0}; if(!hasbumped) read_group(id, val); hasbumped=0; if (group_is(0, "INSERT")) { Base *base; Object *ob; void *obdata; read_group(id, val); while(id!=0) { if(id==2) { BLI_strncpy(obname, val, sizeof(obname)); } else if (id==8) { BLI_strncpy(layname, val, sizeof(layname)); } else if (id==10) { cent[0]= (float) atof(val); } else if (id==20) { cent[1]= (float) atof(val); } else if (id==30) { cent[2]= (float) atof(val); } else if (id==41) { obsize[0]= (float) atof(val); } else if (id==42) { obsize[1]= (float) atof(val); } else if (id==43) { obsize[2]= (float) atof(val); } else if (id==50) { obrot[2]= (float) (atof(val)*M_PI/180.0); } else if (id==60) { /* short invisible= atoi(val); */ } read_group(id, val); } if(strlen(obname)==0) { error("Error parsing dxf, no object name near %d", dxf_line); fclose(dxf_fp); return; } obdata= find_id("ME", obname); if (obdata) { ob= alloc_libblock(&G.main->object, ID_OB, obname); ob->type= OB_MESH; ob->dt= OB_SHADED; if(U.flag & USER_MAT_ON_OB) ob->colbits= -1; ob->trackflag= OB_POSY; ob->upflag= OB_POSZ; ob->ipoflag = OB_OFFS_OB+OB_OFFS_PARENT; ob->dupon= 1; ob->dupoff= 0; ob->dupsta= 1; ob->dupend= 100; ob->recalc= OB_RECALC; /* needed because of weird way of adding libdata directly */ G.totobj++; ob->data= obdata; ((ID*)ob->data)->us++; VECCOPY(ob->loc, cent); VECCOPY(ob->size, obsize); VECCOPY(ob->rot, obrot); ob->mat= MEM_callocN(sizeof(void *)*1, "ob->mat"); ob->totcol= (unsigned char) ((Mesh*)ob->data)->totcol; ob->actcol= 1; /* note: materials are either linked to mesh or object, if both then you have to increase user counts. below line is not needed. I leave it commented out here as warning (ton) */ //for (i=0; itotcol; i++) ob->mat[i]= ((Mesh*)ob->data)->mat[i]; if (strlen(layname)) ob->lay= dxf_get_layer_num(layname); else ob->lay= G.scene->lay; /* link to scene */ base= MEM_callocN( sizeof(Base), "add_base"); BLI_addhead(&G.scene->base, base); base->lay= ob->lay; base->object= ob; } hasbumped=1; lwasf3d=0; lwasp2d=0; lwasline=0; } else if(group_is(0, "POLYLINE")) { dxf_read_polyline(0); if(error_exit) return; lwasf3d=0; lwasline=0; while(group_isnt(0, "SEQEND")) read_group(id, val); } else if(group_is(0, "LWPOLYLINE")) { dxf_read_lwpolyline(0); if(error_exit) return; lwasf3d=0; lwasline=0; //while(group_isnt(0, "SEQEND")) read_group(id, val); } else if(group_is(0, "ATTRIB")) { while(group_isnt(0, "SEQEND")) read_group(id, val); lwasf3d=0; lwasp2d=0; lwasline=0; } else if(group_is(0, "POINT")) { dxf_read_point(0); if(error_exit) return; lwasf3d=0; lwasp2d=0; lwasline=0; } else if(group_is(0, "LINE")) { dxf_read_line(0); if(error_exit) return; lwasline=1; lwasp2d=0; lwasf3d=0; } else if(group_is(0, "3DFACE")) { dxf_read_3dface(0); if(error_exit) return; lwasline=0; lwasp2d=0; lwasf3d=1; } else if (group_is(0, "CIRCLE") || group_is(0, "ARC")) { dxf_read_arc(0); } else if (group_is(0, "ELLIPSE")) { dxf_read_ellipse(0); } else if(group_is(0, "ENDSEC")) { break; } } } while(group_isnt(0, "ENDSEC")) read_group(id, val); } id_check(0, "EOF"); fclose (dxf_fp); /* Close any remaining state held stuff */ dxf_close_3dface(); dxf_close_2dpoly(); dxf_close_line(); if (lastMe) { lastMe = lastMe->id.next; } else { lastMe = G.main->mesh.first; } for (; lastMe; lastMe=lastMe->id.next) { mesh_add_normals_flags(lastMe); make_edges(lastMe, 0); } }