/** * lattice.c * * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "DNA_armature_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_lattice_types.h" #include "DNA_curve_types.h" #include "DNA_key_types.h" #include "BKE_anim.h" #include "BKE_armature.h" #include "BKE_curve.h" #include "BKE_cdderivedmesh.h" #include "BKE_DerivedMesh.h" #include "BKE_deform.h" #include "BKE_displist.h" #include "BKE_global.h" #include "BKE_key.h" #include "BKE_lattice.h" #include "BKE_library.h" #include "BKE_main.h" #include "BKE_mesh.h" #include "BKE_modifier.h" #include "BKE_object.h" #include "BKE_screen.h" #include "BKE_utildefines.h" //XXX #include "BIF_editdeform.h" void calc_lat_fudu(int flag, int res, float *fu, float *du) { if(res==1) { *fu= 0.0; *du= 0.0; } else if(flag & LT_GRID) { *fu= -0.5f*(res-1); *du= 1.0f; } else { *fu= -1.0f; *du= 2.0f/(res-1); } } void resizelattice(Lattice *lt, int uNew, int vNew, int wNew, Object *ltOb) { BPoint *bp; int i, u, v, w; float fu, fv, fw, uc, vc, wc, du=0.0, dv=0.0, dw=0.0; float *co, (*vertexCos)[3] = NULL; /* vertex weight groups are just freed all for now */ if(lt->dvert) { free_dverts(lt->dvert, lt->pntsu*lt->pntsv*lt->pntsw); lt->dvert= NULL; } while(uNew*vNew*wNew > 32000) { if( uNew>=vNew && uNew>=wNew) uNew--; else if( vNew>=uNew && vNew>=wNew) vNew--; else wNew--; } vertexCos = MEM_mallocN(sizeof(*vertexCos)*uNew*vNew*wNew, "tmp_vcos"); calc_lat_fudu(lt->flag, uNew, &fu, &du); calc_lat_fudu(lt->flag, vNew, &fv, &dv); calc_lat_fudu(lt->flag, wNew, &fw, &dw); /* If old size is different then resolution changed in interface, * try to do clever reinit of points. Pretty simply idea, we just * deform new verts by old lattice, but scaling them to match old * size first. */ if (ltOb) { if (uNew!=1 && lt->pntsu!=1) { fu = lt->fu; du = (lt->pntsu-1)*lt->du/(uNew-1); } if (vNew!=1 && lt->pntsv!=1) { fv = lt->fv; dv = (lt->pntsv-1)*lt->dv/(vNew-1); } if (wNew!=1 && lt->pntsw!=1) { fw = lt->fw; dw = (lt->pntsw-1)*lt->dw/(wNew-1); } } co = vertexCos[0]; for(w=0,wc=fw; wtypeu, typev = lt->typev, typew = lt->typew; /* works best if we force to linear type (endpoints match) */ lt->typeu = lt->typev = lt->typew = KEY_LINEAR; /* prevent using deformed locations */ freedisplist(<Ob->disp); Mat4CpyMat4(mat, ltOb->obmat); Mat4One(ltOb->obmat); lattice_deform_verts(ltOb, NULL, NULL, vertexCos, uNew*vNew*wNew, NULL); Mat4CpyMat4(ltOb->obmat, mat); lt->typeu = typeu; lt->typev = typev; lt->typew = typew; } lt->fu = fu; lt->fv = fv; lt->fw = fw; lt->du = du; lt->dv = dv; lt->dw = dw; lt->pntsu = uNew; lt->pntsv = vNew; lt->pntsw = wNew; MEM_freeN(lt->def); lt->def= MEM_callocN(lt->pntsu*lt->pntsv*lt->pntsw*sizeof(BPoint), "lattice bp"); bp= lt->def; for (i=0; ipntsu*lt->pntsv*lt->pntsw; i++,bp++) { VECCOPY(bp->vec, vertexCos[i]); } MEM_freeN(vertexCos); } Lattice *add_lattice(char *name) { Lattice *lt; lt= alloc_libblock(&G.main->latt, ID_LT, name); lt->flag= LT_GRID; lt->typeu= lt->typev= lt->typew= KEY_BSPLINE; lt->def= MEM_callocN(sizeof(BPoint), "lattvert"); /* temporary */ resizelattice(lt, 2, 2, 2, NULL); /* creates a uniform lattice */ return lt; } Lattice *copy_lattice(Lattice *lt) { Lattice *ltn; ltn= copy_libblock(lt); ltn->def= MEM_dupallocN(lt->def); #if 0 // XXX old animation system id_us_plus((ID *)ltn->ipo); #endif // XXX old animation system ltn->key= copy_key(ltn->key); if(ltn->key) ltn->key->from= (ID *)ltn; if(lt->dvert) { int tot= lt->pntsu*lt->pntsv*lt->pntsw; ltn->dvert = MEM_mallocN (sizeof (MDeformVert)*tot, "Lattice MDeformVert"); copy_dverts(ltn->dvert, lt->dvert, tot); } return ltn; } void free_lattice(Lattice *lt) { if(lt->def) MEM_freeN(lt->def); if(lt->dvert) free_dverts(lt->dvert, lt->pntsu*lt->pntsv*lt->pntsw); if(lt->editlatt) { if(lt->editlatt->def) MEM_freeN(lt->editlatt->def); if(lt->editlatt->dvert) free_dverts(lt->editlatt->dvert, lt->pntsu*lt->pntsv*lt->pntsw); MEM_freeN(lt->editlatt); } } void make_local_lattice(Lattice *lt) { Object *ob; Lattice *ltn; int local=0, lib=0; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if(lt->id.lib==0) return; if(lt->id.us==1) { lt->id.lib= 0; lt->id.flag= LIB_LOCAL; new_id(0, (ID *)lt, 0); return; } ob= G.main->object.first; while(ob) { if(ob->data==lt) { if(ob->id.lib) lib= 1; else local= 1; } ob= ob->id.next; } if(local && lib==0) { lt->id.lib= 0; lt->id.flag= LIB_LOCAL; new_id(0, (ID *)lt, 0); } else if(local && lib) { ltn= copy_lattice(lt); ltn->id.us= 0; ob= G.main->object.first; while(ob) { if(ob->data==lt) { if(ob->id.lib==0) { ob->data= ltn; ltn->id.us++; lt->id.us--; } } ob= ob->id.next; } } } void init_latt_deform(Object *oblatt, Object *ob) { /* we make an array with all differences */ Lattice *lt= oblatt->data; BPoint *bp; DispList *dl = find_displist(&oblatt->disp, DL_VERTS); float *co = dl?dl->verts:NULL; float *fp, imat[4][4]; float fu, fv, fw; int u, v, w; if(lt->editlatt) lt= lt->editlatt; bp = lt->def; fp= lt->latticedata= MEM_mallocN(sizeof(float)*3*lt->pntsu*lt->pntsv*lt->pntsw, "latticedata"); /* for example with a particle system: ob==0 */ if(ob==NULL) { /* in deformspace, calc matrix */ Mat4Invert(lt->latmat, oblatt->obmat); /* back: put in deform array */ Mat4Invert(imat, lt->latmat); } else { /* in deformspace, calc matrix */ Mat4Invert(imat, oblatt->obmat); Mat4MulMat4(lt->latmat, ob->obmat, imat); /* back: put in deform array */ Mat4Invert(imat, lt->latmat); } for(w=0,fw=lt->fw; wpntsw; w++,fw+=lt->dw) { for(v=0,fv=lt->fv; vpntsv; v++, fv+=lt->dv) { for(u=0,fu=lt->fu; upntsu; u++, bp++, co+=3, fp+=3, fu+=lt->du) { if (dl) { fp[0] = co[0] - fu; fp[1] = co[1] - fv; fp[2] = co[2] - fw; } else { fp[0] = bp->vec[0] - fu; fp[1] = bp->vec[1] - fv; fp[2] = bp->vec[2] - fw; } Mat4Mul3Vecfl(imat, fp); } } } } void calc_latt_deform(Object *ob, float *co, float weight) { Lattice *lt= ob->data; float u, v, w, tu[4], tv[4], tw[4]; float *fpw, *fpv, *fpu, vec[3]; int ui, vi, wi, uu, vv, ww; if(lt->editlatt) lt= lt->editlatt; if(lt->latticedata==NULL) return; /* co is in local coords, treat with latmat */ VECCOPY(vec, co); Mat4MulVecfl(lt->latmat, vec); /* u v w coords */ if(lt->pntsu>1) { u= (vec[0]-lt->fu)/lt->du; ui= (int)floor(u); u -= ui; key_curve_position_weights(u, tu, lt->typeu); } else { tu[0]= tu[2]= tu[3]= 0.0; tu[1]= 1.0; ui= 0; } if(lt->pntsv>1) { v= (vec[1]-lt->fv)/lt->dv; vi= (int)floor(v); v -= vi; key_curve_position_weights(v, tv, lt->typev); } else { tv[0]= tv[2]= tv[3]= 0.0; tv[1]= 1.0; vi= 0; } if(lt->pntsw>1) { w= (vec[2]-lt->fw)/lt->dw; wi= (int)floor(w); w -= wi; key_curve_position_weights(w, tw, lt->typew); } else { tw[0]= tw[2]= tw[3]= 0.0; tw[1]= 1.0; wi= 0; } for(ww= wi-1; ww<=wi+2; ww++) { w= tw[ww-wi+1]; if(w!=0.0) { if(ww>0) { if(wwpntsw) fpw= lt->latticedata + 3*ww*lt->pntsu*lt->pntsv; else fpw= lt->latticedata + 3*(lt->pntsw-1)*lt->pntsu*lt->pntsv; } else fpw= lt->latticedata; for(vv= vi-1; vv<=vi+2; vv++) { v= w*tv[vv-vi+1]; if(v!=0.0) { if(vv>0) { if(vvpntsv) fpv= fpw + 3*vv*lt->pntsu; else fpv= fpw + 3*(lt->pntsv-1)*lt->pntsu; } else fpv= fpw; for(uu= ui-1; uu<=ui+2; uu++) { u= weight*v*tu[uu-ui+1]; if(u!=0.0) { if(uu>0) { if(uupntsu) fpu= fpv + 3*uu; else fpu= fpv + 3*(lt->pntsu-1); } else fpu= fpv; co[0]+= u*fpu[0]; co[1]+= u*fpu[1]; co[2]+= u*fpu[2]; } } } } } } } void end_latt_deform(Object *ob) { Lattice *lt= ob->data; if(lt->editlatt) lt= lt->editlatt; if(lt->latticedata) MEM_freeN(lt->latticedata); lt->latticedata= NULL; } /* calculations is in local space of deformed object so we store in latmat transform from path coord inside object */ typedef struct { float dmin[3], dmax[3], dsize, dloc[3]; float curvespace[4][4], objectspace[4][4], objectspace3[3][3]; int no_rot_axis; } CurveDeform; static void init_curve_deform(Object *par, Object *ob, CurveDeform *cd, int dloc) { Mat4Invert(ob->imat, ob->obmat); Mat4MulMat4(cd->objectspace, par->obmat, ob->imat); Mat4Invert(cd->curvespace, cd->objectspace); Mat3CpyMat4(cd->objectspace3, cd->objectspace); // offset vector for 'no smear' if(dloc) { Mat4Invert(par->imat, par->obmat); VecMat4MulVecfl(cd->dloc, par->imat, ob->obmat[3]); } else cd->dloc[0]=cd->dloc[1]=cd->dloc[2]= 0.0f; cd->no_rot_axis= 0; } /* this makes sure we can extend for non-cyclic. *vec needs 4 items! */ static int where_on_path_deform(Object *ob, float ctime, float *vec, float *dir, float *quat, float *radius) /* returns OK */ { Curve *cu= ob->data; BevList *bl; float ctime1; int cycl=0; /* test for cyclic */ bl= cu->bev.first; if (!bl->nr) return 0; if(bl && bl->poly> -1) cycl= 1; if(cycl==0) { ctime1= CLAMPIS(ctime, 0.0, 1.0); } else ctime1= ctime; /* vec needs 4 items */ if(where_on_path(ob, ctime1, vec, dir, quat, radius)) { if(cycl==0) { Path *path= cu->path; float dvec[3]; if(ctime < 0.0) { VecSubf(dvec, path->data[1].vec, path->data[0].vec); VecMulf(dvec, ctime*(float)path->len); VECADD(vec, vec, dvec); if(quat) QUATCOPY(quat, path->data[0].quat); if(radius) *radius= path->data[0].radius; } else if(ctime > 1.0) { VecSubf(dvec, path->data[path->len-1].vec, path->data[path->len-2].vec); VecMulf(dvec, (ctime-1.0)*(float)path->len); VECADD(vec, vec, dvec); if(quat) QUATCOPY(quat, path->data[path->len-1].quat); if(radius) *radius= path->data[path->len-1].radius; } } return 1; } return 0; } /* for each point, rotate & translate to curve */ /* use path, since it has constant distances */ /* co: local coord, result local too */ /* returns quaternion for rotation, using cd->no_rot_axis */ /* axis is using another define!!! */ static int calc_curve_deform(Scene *scene, Object *par, float *co, short axis, CurveDeform *cd, float *quatp) { Curve *cu= par->data; float fac, loc[4], dir[3], cent[3], radius; short upflag, index; if(axis==MOD_CURVE_POSX || axis==MOD_CURVE_NEGX) { upflag= OB_POSZ; cent[0]= 0.0; cent[1]= co[1]; cent[2]= co[2]; index= 0; } else if(axis==MOD_CURVE_POSY || axis==MOD_CURVE_NEGY) { upflag= OB_POSZ; cent[0]= co[0]; cent[1]= 0.0; cent[2]= co[2]; index= 1; } else { upflag= OB_POSY; cent[0]= co[0]; cent[1]= co[1]; cent[2]= 0.0; index= 2; } /* to be sure, mostly after file load */ if(cu->path==NULL) { makeDispListCurveTypes(scene, par, 0); if(cu->path==NULL) return 0; // happens on append... } /* options */ if(ELEM3(axis, OB_NEGX, OB_NEGY, OB_NEGZ)) { if(cu->flag & CU_STRETCH) fac= (-co[index]-cd->dmax[index])/(cd->dmax[index] - cd->dmin[index]); else fac= (cd->dloc[index])/(cu->path->totdist) - (co[index]-cd->dmax[index])/(cu->path->totdist); } else { if(cu->flag & CU_STRETCH) fac= (co[index]-cd->dmin[index])/(cd->dmax[index] - cd->dmin[index]); else fac= (cd->dloc[index])/(cu->path->totdist) + (co[index]-cd->dmin[index])/(cu->path->totdist); } #if 0 // XXX old animation system /* we want the ipo to work on the default 100 frame range, because there's no actual time involved in path position */ // huh? by WHY!!!!???? - Aligorith if(cu->ipo) { fac*= 100.0f; if(calc_ipo_spec(cu->ipo, CU_SPEED, &fac)==0) fac/= 100.0; } #endif // XXX old animation system if( where_on_path_deform(par, fac, loc, dir, NULL, &radius)) { /* returns OK */ float q[4], mat[3][3], quat[4]; if(cd->no_rot_axis) /* set by caller */ dir[cd->no_rot_axis-1]= 0.0f; /* -1 for compatibility with old track defines */ vectoquat(dir, axis-1, upflag, quat); /* the tilt */ if(loc[3]!=0.0) { Normalize(dir); q[0]= (float)cos(0.5*loc[3]); fac= (float)sin(0.5*loc[3]); q[1]= -fac*dir[0]; q[2]= -fac*dir[1]; q[3]= -fac*dir[2]; QuatMul(quat, q, quat); } QuatToMat3(quat, mat); if(cu->flag & CU_PATH_RADIUS) { float tmat[3][3], rmat[3][3]; Mat3Scale(tmat, radius); Mat3MulMat3(rmat, mat, tmat); Mat3CpyMat3(mat, rmat); } /* local rotation */ Mat3MulVecfl(mat, cent); /* translation */ VECADD(co, cent, loc); if(quatp) QUATCOPY(quatp, quat); return 1; } return 0; } void curve_deform_verts(Scene *scene, Object *cuOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3], int numVerts, char *vgroup, short defaxis) { Curve *cu; int a, flag; CurveDeform cd; int use_vgroups; if(cuOb->type != OB_CURVE) return; cu = cuOb->data; flag = cu->flag; cu->flag |= (CU_PATH|CU_FOLLOW); // needed for path & bevlist init_curve_deform(cuOb, target, &cd, (cu->flag & CU_STRETCH)==0); /* check whether to use vertex groups (only possible if target is a Mesh) * we want either a Mesh with no derived data, or derived data with * deformverts */ if(target && target->type==OB_MESH) { /* if there's derived data without deformverts, don't use vgroups */ if(dm && !dm->getVertData(dm, 0, CD_MDEFORMVERT)) use_vgroups = 0; else use_vgroups = 1; } else use_vgroups = 0; if(vgroup && vgroup[0] && use_vgroups) { bDeformGroup *curdef; Mesh *me= target->data; int index; /* find the group (weak loop-in-loop) */ for(index = 0, curdef = target->defbase.first; curdef; curdef = curdef->next, index++) if (!strcmp(curdef->name, vgroup)) break; if(curdef && (me->dvert || dm)) { MDeformVert *dvert = me->dvert; float vec[3]; int j; INIT_MINMAX(cd.dmin, cd.dmax); for(a = 0; a < numVerts; a++, dvert++) { if(dm) dvert = dm->getVertData(dm, a, CD_MDEFORMVERT); for(j = 0; j < dvert->totweight; j++) { if(dvert->dw[j].def_nr == index) { Mat4MulVecfl(cd.curvespace, vertexCos[a]); DO_MINMAX(vertexCos[a], cd.dmin, cd.dmax); break; } } } dvert = me->dvert; for(a = 0; a < numVerts; a++, dvert++) { if(dm) dvert = dm->getVertData(dm, a, CD_MDEFORMVERT); for(j = 0; j < dvert->totweight; j++) { if(dvert->dw[j].def_nr == index) { VECCOPY(vec, vertexCos[a]); calc_curve_deform(scene, cuOb, vec, defaxis, &cd, NULL); VecLerpf(vertexCos[a], vertexCos[a], vec, dvert->dw[j].weight); Mat4MulVecfl(cd.objectspace, vertexCos[a]); break; } } } } } else { INIT_MINMAX(cd.dmin, cd.dmax); for(a = 0; a < numVerts; a++) { Mat4MulVecfl(cd.curvespace, vertexCos[a]); DO_MINMAX(vertexCos[a], cd.dmin, cd.dmax); } for(a = 0; a < numVerts; a++) { calc_curve_deform(scene, cuOb, vertexCos[a], defaxis, &cd, NULL); Mat4MulVecfl(cd.objectspace, vertexCos[a]); } } cu->flag = flag; } /* input vec and orco = local coord in armature space */ /* orco is original not-animated or deformed reference point */ /* result written in vec and mat */ void curve_deform_vector(Scene *scene, Object *cuOb, Object *target, float *orco, float *vec, float mat[][3], int no_rot_axis) { CurveDeform cd; float quat[4]; if(cuOb->type != OB_CURVE) { Mat3One(mat); return; } init_curve_deform(cuOb, target, &cd, 0); /* 0 no dloc */ cd.no_rot_axis= no_rot_axis; /* option to only rotate for XY, for example */ VECCOPY(cd.dmin, orco); VECCOPY(cd.dmax, orco); Mat4MulVecfl(cd.curvespace, vec); if(calc_curve_deform(scene, cuOb, vec, target->trackflag+1, &cd, quat)) { float qmat[3][3]; QuatToMat3(quat, qmat); Mat3MulMat3(mat, qmat, cd.objectspace3); } else Mat3One(mat); Mat4MulVecfl(cd.objectspace, vec); } void lattice_deform_verts(Object *laOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3], int numVerts, char *vgroup) { int a; int use_vgroups; if(laOb->type != OB_LATTICE) return; init_latt_deform(laOb, target); /* check whether to use vertex groups (only possible if target is a Mesh) * we want either a Mesh with no derived data, or derived data with * deformverts */ if(target && target->type==OB_MESH) { /* if there's derived data without deformverts, don't use vgroups */ if(dm && !dm->getVertData(dm, 0, CD_MDEFORMVERT)) use_vgroups = 0; else use_vgroups = 1; } else use_vgroups = 0; if(vgroup && vgroup[0] && use_vgroups) { bDeformGroup *curdef; Mesh *me = target->data; int index = 0; /* find the group (weak loop-in-loop) */ for(curdef = target->defbase.first; curdef; curdef = curdef->next, index++) if(!strcmp(curdef->name, vgroup)) break; if(curdef && (me->dvert || dm)) { MDeformVert *dvert = me->dvert; int j; for(a = 0; a < numVerts; a++, dvert++) { if(dm) dvert = dm->getVertData(dm, a, CD_MDEFORMVERT); for(j = 0; j < dvert->totweight; j++) { if (dvert->dw[j].def_nr == index) { calc_latt_deform(laOb, vertexCos[a], dvert->dw[j].weight); } } } } } else { for(a = 0; a < numVerts; a++) { calc_latt_deform(laOb, vertexCos[a], 1.0f); } } end_latt_deform(laOb); } int object_deform_mball(Object *ob) { if(ob->parent && ob->parent->type==OB_LATTICE && ob->partype==PARSKEL) { DispList *dl; for (dl=ob->disp.first; dl; dl=dl->next) { lattice_deform_verts(ob->parent, ob, NULL, (float(*)[3]) dl->verts, dl->nr, NULL); } return 1; } else { return 0; } } static BPoint *latt_bp(Lattice *lt, int u, int v, int w) { return lt->def+ u + v*lt->pntsu + w*lt->pntsu*lt->pntsv; } void outside_lattice(Lattice *lt) { BPoint *bp, *bp1, *bp2; int u, v, w; float fac1, du=0.0, dv=0.0, dw=0.0; if(lt->flag & LT_OUTSIDE) { bp= lt->def; if(lt->pntsu>1) du= 1.0f/((float)lt->pntsu-1); if(lt->pntsv>1) dv= 1.0f/((float)lt->pntsv-1); if(lt->pntsw>1) dw= 1.0f/((float)lt->pntsw-1); for(w=0; wpntsw; w++) { for(v=0; vpntsv; v++) { for(u=0; upntsu; u++, bp++) { if(u==0 || v==0 || w==0 || u==lt->pntsu-1 || v==lt->pntsv-1 || w==lt->pntsw-1); else { bp->hide= 1; bp->f1 &= ~SELECT; /* u extrema */ bp1= latt_bp(lt, 0, v, w); bp2= latt_bp(lt, lt->pntsu-1, v, w); fac1= du*u; bp->vec[0]= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0]; bp->vec[1]= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1]; bp->vec[2]= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2]; /* v extrema */ bp1= latt_bp(lt, u, 0, w); bp2= latt_bp(lt, u, lt->pntsv-1, w); fac1= dv*v; bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0]; bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1]; bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2]; /* w extrema */ bp1= latt_bp(lt, u, v, 0); bp2= latt_bp(lt, u, v, lt->pntsw-1); fac1= dw*w; bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0]; bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1]; bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2]; VecMulf(bp->vec, 0.3333333f); } } } } } else { bp= lt->def; for(w=0; wpntsw; w++) for(v=0; vpntsv; v++) for(u=0; upntsu; u++, bp++) bp->hide= 0; } } float (*lattice_getVertexCos(struct Object *ob, int *numVerts_r))[3] { Lattice *lt = ob->data; int i, numVerts; float (*vertexCos)[3]; if(lt->editlatt) lt= lt->editlatt; numVerts = *numVerts_r = lt->pntsu*lt->pntsv*lt->pntsw; vertexCos = MEM_mallocN(sizeof(*vertexCos)*numVerts,"lt_vcos"); for (i=0; idef[i].vec); } return vertexCos; } void lattice_applyVertexCos(struct Object *ob, float (*vertexCos)[3]) { Lattice *lt = ob->data; int i, numVerts = lt->pntsu*lt->pntsv*lt->pntsw; for (i=0; idef[i].vec, vertexCos[i]); } } void lattice_calc_modifiers(Scene *scene, Object *ob) { Lattice *lt= ob->data; ModifierData *md = modifiers_getVirtualModifierList(ob); float (*vertexCos)[3] = NULL; int numVerts, editmode = (lt->editlatt!=NULL); freedisplist(&ob->disp); if (!editmode) { do_ob_key(scene, ob); } for (; md; md=md->next) { ModifierTypeInfo *mti = modifierType_getInfo(md->type); md->scene= scene; if (!(md->mode&eModifierMode_Realtime)) continue; if (editmode && !(md->mode&eModifierMode_Editmode)) continue; if (mti->isDisabled && mti->isDisabled(md)) continue; if (mti->type!=eModifierTypeType_OnlyDeform) continue; if (!vertexCos) vertexCos = lattice_getVertexCos(ob, &numVerts); mti->deformVerts(md, ob, NULL, vertexCos, numVerts, 0, 0); } /* always displist to make this work like derivedmesh */ if (!vertexCos) vertexCos = lattice_getVertexCos(ob, &numVerts); { DispList *dl = MEM_callocN(sizeof(*dl), "lt_dl"); dl->type = DL_VERTS; dl->parts = 1; dl->nr = numVerts; dl->verts = (float*) vertexCos; BLI_addtail(&ob->disp, dl); } } struct MDeformVert* lattice_get_deform_verts(struct Object *oblatt) { if(oblatt->type == OB_LATTICE) { Lattice *lt = (Lattice*)oblatt->data; if(lt->editlatt) lt= lt->editlatt; return lt->dvert; } return NULL; }