/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2012 Blender Foundation. * All rights reserved. * * Contributor(s): Blender Foundation, * Sergey Sharybin, * Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/mask_evaluate.c * \ingroup bke * * Functions for evaluating the mask beziers into points for the outline and feather. */ #include #include #include "MEM_guardedalloc.h" #include "BLI_utildefines.h" #include "BLI_path_util.h" #include "BLI_string.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "DNA_mask_types.h" #include "DNA_node_types.h" #include "DNA_scene_types.h" #include "DNA_object_types.h" #include "DNA_screen_types.h" #include "DNA_space_types.h" #include "DNA_movieclip_types.h" #include "DNA_tracking_types.h" #include "DNA_sequence_types.h" #include "BKE_curve.h" #include "BKE_global.h" #include "BKE_library.h" #include "BKE_main.h" #include "BKE_mask.h" #include "BKE_node.h" #include "BKE_sequencer.h" #include "BKE_tracking.h" #include "BKE_movieclip.h" unsigned int BKE_mask_spline_resolution(MaskSpline *spline, int width, int height) { float max_segment = 0.01f; unsigned int i, resol = 1; if (width != 0 && height != 0) { max_segment = 1.0f / (float)max_ii(width, height); } for (i = 0; i < spline->tot_point; i++) { MaskSplinePoint *point = &spline->points[i]; BezTriple *bezt_curr, *bezt_next; float a, b, c, len; unsigned int cur_resol; bezt_curr = &point->bezt; bezt_next = BKE_mask_spline_point_next_bezt(spline, spline->points, point); if (bezt_next == NULL) { break; } a = len_v3v3(bezt_curr->vec[1], bezt_curr->vec[2]); b = len_v3v3(bezt_curr->vec[2], bezt_next->vec[0]); c = len_v3v3(bezt_next->vec[0], bezt_next->vec[1]); len = a + b + c; cur_resol = len / max_segment; resol = MAX2(resol, cur_resol); if (resol >= MASK_RESOL_MAX) { break; } } return CLAMPIS(resol, 1, MASK_RESOL_MAX); } unsigned int BKE_mask_spline_feather_resolution(MaskSpline *spline, int width, int height) { const float max_segment = 0.005; unsigned int resol = BKE_mask_spline_resolution(spline, width, height); float max_jump = 0.0f; int i; /* avoid checking the featrher if we already hit the maximum value */ if (resol >= MASK_RESOL_MAX) { return MASK_RESOL_MAX; } for (i = 0; i < spline->tot_point; i++) { MaskSplinePoint *point = &spline->points[i]; float prev_u, prev_w; int j; prev_u = 0.0f; prev_w = point->bezt.weight; for (j = 0; j < point->tot_uw; j++) { const float w_diff = (point->uw[j].w - prev_w); const float u_diff = (point->uw[j].u - prev_u); /* avoid divide by zero and very high values, * though these get clamped eventually */ if (u_diff > FLT_EPSILON) { float jump = fabsf(w_diff / u_diff); max_jump = max_ff(max_jump, jump); } prev_u = point->uw[j].u; prev_w = point->uw[j].w; } } resol += max_jump / max_segment; return CLAMPIS(resol, 1, MASK_RESOL_MAX); } int BKE_mask_spline_differentiate_calc_total(const MaskSpline *spline, const unsigned int resol) { if (spline->flag & MASK_SPLINE_CYCLIC) { return spline->tot_point * resol; } else { return ((spline->tot_point - 1) * resol) + 1; } } float (*BKE_mask_spline_differentiate_with_resolution_ex(MaskSpline *spline, int *tot_diff_point, const unsigned int resol ))[2] { MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline); MaskSplinePoint *point_curr, *point_prev; float (*diff_points)[2], (*fp)[2]; const int tot = BKE_mask_spline_differentiate_calc_total(spline, resol); int a; if (spline->tot_point <= 1) { /* nothing to differentiate */ *tot_diff_point = 0; return NULL; } /* len+1 because of 'forward_diff_bezier' function */ *tot_diff_point = tot; diff_points = fp = MEM_mallocN((tot + 1) * sizeof(*diff_points), "mask spline vets"); a = spline->tot_point - 1; if (spline->flag & MASK_SPLINE_CYCLIC) a++; point_prev = points_array; point_curr = point_prev + 1; while (a--) { BezTriple *bezt_prev; BezTriple *bezt_curr; int j; if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC)) point_curr = points_array; bezt_prev = &point_prev->bezt; bezt_curr = &point_curr->bezt; for (j = 0; j < 2; j++) { BKE_curve_forward_diff_bezier(bezt_prev->vec[1][j], bezt_prev->vec[2][j], bezt_curr->vec[0][j], bezt_curr->vec[1][j], &(*fp)[j], resol, 2 * sizeof(float)); } fp += resol; if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) { copy_v2_v2(*fp, bezt_curr->vec[1]); } point_prev = point_curr; point_curr++; } return diff_points; } float (*BKE_mask_spline_differentiate_with_resolution(MaskSpline *spline, int width, int height, int *tot_diff_point ))[2] { int unsigned resol = BKE_mask_spline_resolution(spline, width, height); return BKE_mask_spline_differentiate_with_resolution_ex(spline, tot_diff_point, resol); } float (*BKE_mask_spline_differentiate(MaskSpline *spline, int *tot_diff_point))[2] { return BKE_mask_spline_differentiate_with_resolution(spline, 0, 0, tot_diff_point); } /* ** feather points self-intersection collapse routine ** */ typedef struct FeatherEdgesBucket { int tot_segment; int (*segments)[2]; int alloc_segment; } FeatherEdgesBucket; static void feather_bucket_add_edge(FeatherEdgesBucket *bucket, int start, int end) { const int alloc_delta = 256; if (bucket->tot_segment >= bucket->alloc_segment) { if (!bucket->segments) { bucket->segments = MEM_callocN(alloc_delta * sizeof(*bucket->segments), "feather bucket segments"); } else { bucket->segments = MEM_reallocN(bucket->segments, (alloc_delta + bucket->tot_segment) * sizeof(*bucket->segments)); } bucket->alloc_segment += alloc_delta; } bucket->segments[bucket->tot_segment][0] = start; bucket->segments[bucket->tot_segment][1] = end; bucket->tot_segment++; } static void feather_bucket_check_intersect(float (*feather_points)[2], int tot_feather_point, FeatherEdgesBucket *bucket, int cur_a, int cur_b) { int i; float *v1 = (float *) feather_points[cur_a]; float *v2 = (float *) feather_points[cur_b]; for (i = 0; i < bucket->tot_segment; i++) { int check_a = bucket->segments[i][0]; int check_b = bucket->segments[i][1]; float *v3 = (float *) feather_points[check_a]; float *v4 = (float *) feather_points[check_b]; if (check_a >= cur_a - 1 || cur_b == check_a) continue; if (isect_seg_seg_v2(v1, v2, v3, v4)) { int k; float p[2]; float min_a[2], max_a[2]; float min_b[2], max_b[2]; isect_seg_seg_v2_point(v1, v2, v3, v4, p); INIT_MINMAX2(min_a, max_a); INIT_MINMAX2(min_b, max_b); /* collapse loop with smaller AABB */ for (k = 0; k < tot_feather_point; k++) { if (k >= check_b && k <= cur_a) { DO_MINMAX2(feather_points[k], min_a, max_a); } else { DO_MINMAX2(feather_points[k], min_b, max_b); } } if (max_a[0] - min_a[0] < max_b[0] - min_b[0] || max_a[1] - min_a[1] < max_b[1] - min_b[1]) { for (k = check_b; k <= cur_a; k++) { copy_v2_v2(feather_points[k], p); } } else { for (k = 0; k <= check_a; k++) { copy_v2_v2(feather_points[k], p); } if (cur_b != 0) { for (k = cur_b; k < tot_feather_point; k++) { copy_v2_v2(feather_points[k], p); } } } } } } static int feather_bucket_index_from_coord(float co[2], const float min[2], const float bucket_scale[2], const int buckets_per_side) { int x = (int) ((co[0] - min[0]) * bucket_scale[0]); int y = (int) ((co[1] - min[1]) * bucket_scale[1]); if (x == buckets_per_side) x--; if (y == buckets_per_side) y--; return y * buckets_per_side + x; } static void feather_bucket_get_diagonal(FeatherEdgesBucket *buckets, int start_bucket_index, int end_bucket_index, int buckets_per_side, FeatherEdgesBucket **diagonal_bucket_a_r, FeatherEdgesBucket **diagonal_bucket_b_r) { int start_bucket_x = start_bucket_index % buckets_per_side; int start_bucket_y = start_bucket_index / buckets_per_side; int end_bucket_x = end_bucket_index % buckets_per_side; int end_bucket_y = end_bucket_index / buckets_per_side; int diagonal_bucket_a_index = start_bucket_y * buckets_per_side + end_bucket_x; int diagonal_bucket_b_index = end_bucket_y * buckets_per_side + start_bucket_x; *diagonal_bucket_a_r = &buckets[diagonal_bucket_a_index]; *diagonal_bucket_b_r = &buckets[diagonal_bucket_b_index]; } void BKE_mask_spline_feather_collapse_inner_loops(MaskSpline *spline, float (*feather_points)[2], const int tot_feather_point) { #define BUCKET_INDEX(co) \ feather_bucket_index_from_coord(co, min, bucket_scale, buckets_per_side) int buckets_per_side, tot_bucket; float bucket_size, bucket_scale[2]; FeatherEdgesBucket *buckets; int i; float min[2], max[2]; float max_delta_x = -1.0f, max_delta_y = -1.0f, max_delta; if (tot_feather_point < 4) { /* self-intersection works only for quads at least, * in other cases polygon can't be self-intersecting anyway */ return; } /* find min/max corners of mask to build buckets in that space */ INIT_MINMAX2(min, max); for (i = 0; i < tot_feather_point; i++) { int next = i + 1; float delta; DO_MINMAX2(feather_points[i], min, max); if (next == tot_feather_point) { if (spline->flag & MASK_SPLINE_CYCLIC) next = 0; else break; } delta = fabsf(feather_points[i][0] - feather_points[next][0]); if (delta > max_delta_x) max_delta_x = delta; delta = fabsf(feather_points[i][1] - feather_points[next][1]); if (delta > max_delta_y) max_delta_y = delta; } /* prevent divisionsby zero by ensuring bounding box is not collapsed */ if (max[0] - min[0] < FLT_EPSILON) { max[0] += 0.01f; min[0] -= 0.01f; } if (max[1] - min[1] < FLT_EPSILON) { max[1] += 0.01f; min[1] -= 0.01f; } /* use dynamically calculated buckets per side, so we likely wouldn't * run into a situation when segment doesn't fit two buckets which is * pain collecting candidates for intersection */ max_delta_x /= max[0] - min[0]; max_delta_y /= max[1] - min[1]; max_delta = MAX2(max_delta_x, max_delta_y); buckets_per_side = min_ii(512, 0.9f / max_delta); if (buckets_per_side == 0) { /* happens when some segment fills the whole bounding box across some of dimension */ buckets_per_side = 1; } tot_bucket = buckets_per_side * buckets_per_side; bucket_size = 1.0f / buckets_per_side; /* pre-compute multipliers, to save mathematical operations in loops */ bucket_scale[0] = 1.0f / ((max[0] - min[0]) * bucket_size); bucket_scale[1] = 1.0f / ((max[1] - min[1]) * bucket_size); /* fill in buckets' edges */ buckets = MEM_callocN(sizeof(FeatherEdgesBucket) * tot_bucket, "feather buckets"); for (i = 0; i < tot_feather_point; i++) { int start = i, end = i + 1; int start_bucket_index, end_bucket_index; if (end == tot_feather_point) { if (spline->flag & MASK_SPLINE_CYCLIC) end = 0; else break; } start_bucket_index = BUCKET_INDEX(feather_points[start]); end_bucket_index = BUCKET_INDEX(feather_points[end]); feather_bucket_add_edge(&buckets[start_bucket_index], start, end); if (start_bucket_index != end_bucket_index) { FeatherEdgesBucket *end_bucket = &buckets[end_bucket_index]; FeatherEdgesBucket *diagonal_bucket_a, *diagonal_bucket_b; feather_bucket_get_diagonal(buckets, start_bucket_index, end_bucket_index, buckets_per_side, &diagonal_bucket_a, &diagonal_bucket_b); feather_bucket_add_edge(end_bucket, start, end); feather_bucket_add_edge(diagonal_bucket_a, start, end); feather_bucket_add_edge(diagonal_bucket_a, start, end); } } /* check all edges for intersection with edges from their buckets */ for (i = 0; i < tot_feather_point; i++) { int cur_a = i, cur_b = i + 1; int start_bucket_index, end_bucket_index; FeatherEdgesBucket *start_bucket; if (cur_b == tot_feather_point) cur_b = 0; start_bucket_index = BUCKET_INDEX(feather_points[cur_a]); end_bucket_index = BUCKET_INDEX(feather_points[cur_b]); start_bucket = &buckets[start_bucket_index]; feather_bucket_check_intersect(feather_points, tot_feather_point, start_bucket, cur_a, cur_b); if (start_bucket_index != end_bucket_index) { FeatherEdgesBucket *end_bucket = &buckets[end_bucket_index]; FeatherEdgesBucket *diagonal_bucket_a, *diagonal_bucket_b; feather_bucket_get_diagonal(buckets, start_bucket_index, end_bucket_index, buckets_per_side, &diagonal_bucket_a, &diagonal_bucket_b); feather_bucket_check_intersect(feather_points, tot_feather_point, end_bucket, cur_a, cur_b); feather_bucket_check_intersect(feather_points, tot_feather_point, diagonal_bucket_a, cur_a, cur_b); feather_bucket_check_intersect(feather_points, tot_feather_point, diagonal_bucket_b, cur_a, cur_b); } } /* free buckets */ for (i = 0; i < tot_bucket; i++) { if (buckets[i].segments) MEM_freeN(buckets[i].segments); } MEM_freeN(buckets); #undef BUCKET_INDEX } /** only called from #BKE_mask_spline_feather_differentiated_points_with_resolution_ex() ! */ static float (*mask_spline_feather_differentiated_points_with_resolution_ex__even(MaskSpline *spline, int *tot_feather_point, const unsigned int resol, const int do_feather_isect ))[2] { MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline); MaskSplinePoint *point_curr, *point_prev; float (*feather)[2], (*fp)[2]; const int tot = BKE_mask_spline_differentiate_calc_total(spline, resol); int a; /* tot+1 because of 'forward_diff_bezier' function */ feather = fp = MEM_mallocN((tot + 1) * sizeof(*feather), "mask spline feather diff points"); a = spline->tot_point - 1; if (spline->flag & MASK_SPLINE_CYCLIC) a++; point_prev = points_array; point_curr = point_prev + 1; while (a--) { /* BezTriple *bezt_prev; */ /* UNUSED */ /* BezTriple *bezt_curr; */ /* UNUSED */ int j; if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC)) point_curr = points_array; /* bezt_prev = &point_prev->bezt; */ /* bezt_curr = &point_curr->bezt; */ for (j = 0; j < resol; j++, fp++) { float u = (float) j / resol, weight; float co[2], n[2]; /* TODO - these calls all calculate similar things * could be unified for some speed */ BKE_mask_point_segment_co(spline, point_prev, u, co); BKE_mask_point_normal(spline, point_prev, u, n); weight = BKE_mask_point_weight(spline, point_prev, u); madd_v2_v2v2fl(*fp, co, n, weight); } if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) { float u = 1.0f, weight; float co[2], n[2]; BKE_mask_point_segment_co(spline, point_prev, u, co); BKE_mask_point_normal(spline, point_prev, u, n); weight = BKE_mask_point_weight(spline, point_prev, u); madd_v2_v2v2fl(*fp, co, n, weight); } point_prev = point_curr; point_curr++; } *tot_feather_point = tot; if ((spline->flag & MASK_SPLINE_NOINTERSECT) && do_feather_isect) { BKE_mask_spline_feather_collapse_inner_loops(spline, feather, tot); } return feather; } /** only called from #BKE_mask_spline_feather_differentiated_points_with_resolution_ex() ! */ static float (*mask_spline_feather_differentiated_points_with_resolution_ex__double(MaskSpline *spline, int *tot_feather_point, const unsigned int resol, const int do_feather_isect ))[2] { MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline); MaskSplinePoint *point_curr, *point_prev; float (*feather)[2], (*fp)[2]; const int tot = BKE_mask_spline_differentiate_calc_total(spline, resol); int a; if (spline->tot_point <= 1) { /* nothing to differentiate */ *tot_feather_point = 0; return NULL; } /* len+1 because of 'forward_diff_bezier' function */ *tot_feather_point = tot; feather = fp = MEM_mallocN((tot + 1) * sizeof(*feather), "mask spline vets"); a = spline->tot_point - 1; if (spline->flag & MASK_SPLINE_CYCLIC) a++; point_prev = points_array; point_curr = point_prev + 1; while (a--) { BezTriple local_prevbezt; BezTriple local_bezt; float point_prev_n[2], point_curr_n[2], tvec[2]; float weight_prev, weight_curr; float len_base, len_feather, len_scalar; BezTriple *bezt_prev; BezTriple *bezt_curr; int j; if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC)) point_curr = points_array; bezt_prev = &point_prev->bezt; bezt_curr = &point_curr->bezt; /* modified copy for feather */ local_prevbezt = *bezt_prev; local_bezt = *bezt_curr; bezt_prev = &local_prevbezt; bezt_curr = &local_bezt; /* calc the normals */ sub_v2_v2v2(tvec, bezt_prev->vec[1], bezt_prev->vec[0]); normalize_v2(tvec); point_prev_n[0] = -tvec[1]; point_prev_n[1] = tvec[0]; sub_v2_v2v2(tvec, bezt_curr->vec[1], bezt_curr->vec[0]); normalize_v2(tvec); point_curr_n[0] = -tvec[1]; point_curr_n[1] = tvec[0]; weight_prev = bezt_prev->weight; weight_curr = bezt_curr->weight; mul_v2_fl(point_prev_n, weight_prev); mul_v2_fl(point_curr_n, weight_curr); /* before we transform verts */ len_base = len_v2v2(bezt_prev->vec[1], bezt_curr->vec[1]); // add_v2_v2(bezt_prev->vec[0], point_prev_n); // not needed add_v2_v2(bezt_prev->vec[1], point_prev_n); add_v2_v2(bezt_prev->vec[2], point_prev_n); add_v2_v2(bezt_curr->vec[0], point_curr_n); add_v2_v2(bezt_curr->vec[1], point_curr_n); // add_v2_v2(bezt_curr->vec[2], point_curr_n); // not needed len_feather = len_v2v2(bezt_prev->vec[1], bezt_curr->vec[1]); /* scale by chane in length */ len_scalar = len_feather / len_base; dist_ensure_v2_v2fl(bezt_prev->vec[2], bezt_prev->vec[1], len_scalar * len_v2v2(bezt_prev->vec[2], bezt_prev->vec[1])); dist_ensure_v2_v2fl(bezt_curr->vec[0], bezt_curr->vec[1], len_scalar * len_v2v2(bezt_curr->vec[0], bezt_curr->vec[1])); for (j = 0; j < 2; j++) { BKE_curve_forward_diff_bezier(bezt_prev->vec[1][j], bezt_prev->vec[2][j], bezt_curr->vec[0][j], bezt_curr->vec[1][j], &(*fp)[j], resol, 2 * sizeof(float)); } /* scale by the uw's */ if (point_prev->tot_uw) { for (j = 0; j < resol; j++, fp++) { float u = (float) j / resol; float weight_uw, weight_scalar; float co[2]; /* TODO - these calls all calculate similar things * could be unified for some speed */ BKE_mask_point_segment_co(spline, point_prev, u, co); weight_uw = BKE_mask_point_weight(spline, point_prev, u); weight_scalar = BKE_mask_point_weight_scalar(spline, point_prev, u); dist_ensure_v2_v2fl(*fp, co, len_v2v2(*fp, co) * (weight_uw / weight_scalar)); } } else { fp += resol; } if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) { copy_v2_v2(*fp, bezt_curr->vec[1]); } point_prev = point_curr; point_curr++; } if ((spline->flag & MASK_SPLINE_NOINTERSECT) && do_feather_isect) { BKE_mask_spline_feather_collapse_inner_loops(spline, feather, tot); } return feather; } /** * values align with #BKE_mask_spline_differentiate_with_resolution_ex * when \a resol arguments match. */ float (*BKE_mask_spline_feather_differentiated_points_with_resolution_ex(MaskSpline *spline, int *tot_feather_point, const unsigned int resol, const int do_feather_isect ))[2] { switch (spline->offset_mode) { case MASK_SPLINE_OFFSET_EVEN: return mask_spline_feather_differentiated_points_with_resolution_ex__even(spline, tot_feather_point, resol, do_feather_isect); break; case MASK_SPLINE_OFFSET_SMOOTH: default: return mask_spline_feather_differentiated_points_with_resolution_ex__double(spline, tot_feather_point, resol, do_feather_isect); break; } } float (*BKE_mask_spline_feather_differentiated_points_with_resolution(MaskSpline *spline, int width, int height, int *tot_feather_point, const int do_feather_isect))[2] { unsigned int resol = BKE_mask_spline_feather_resolution(spline, width, height); return BKE_mask_spline_feather_differentiated_points_with_resolution_ex(spline, tot_feather_point, resol, do_feather_isect); } float (*BKE_mask_spline_feather_differentiated_points(MaskSpline *spline, int *tot_feather_point))[2] { return BKE_mask_spline_feather_differentiated_points_with_resolution(spline, 0, 0, tot_feather_point, TRUE); } float (*BKE_mask_spline_feather_points(MaskSpline *spline, int *tot_feather_point))[2] { MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline); int i, tot = 0; float (*feather)[2], (*fp)[2]; /* count */ for (i = 0; i < spline->tot_point; i++) { MaskSplinePoint *point = &points_array[i]; tot += point->tot_uw + 1; } /* create data */ feather = fp = MEM_mallocN(tot * sizeof(*feather), "mask spline feather points"); for (i = 0; i < spline->tot_point; i++) { MaskSplinePoint *point = &points_array[i]; BezTriple *bezt = &point->bezt; float weight, n[2]; int j; BKE_mask_point_normal(spline, point, 0.0f, n); weight = BKE_mask_point_weight(spline, point, 0.0f); madd_v2_v2v2fl(*fp, bezt->vec[1], n, weight); fp++; for (j = 0; j < point->tot_uw; j++) { float u = point->uw[j].u; float co[2]; BKE_mask_point_segment_co(spline, point, u, co); BKE_mask_point_normal(spline, point, u, n); weight = BKE_mask_point_weight(spline, point, u); madd_v2_v2v2fl(*fp, co, n, weight); fp++; } } *tot_feather_point = tot; return feather; } /* *** mask point functions which involve evaluation *** */ float *BKE_mask_point_segment_feather_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point, int width, int height, unsigned int *tot_feather_point) { float *feather, *fp; unsigned int resol = BKE_mask_spline_feather_resolution(spline, width, height); unsigned int i; feather = fp = MEM_callocN(2 * resol * sizeof(float), "mask point spline feather diff points"); for (i = 0; i < resol; i++, fp += 2) { float u = (float)(i % resol) / resol, weight; float co[2], n[2]; BKE_mask_point_segment_co(spline, point, u, co); BKE_mask_point_normal(spline, point, u, n); weight = BKE_mask_point_weight(spline, point, u); fp[0] = co[0] + n[0] * weight; fp[1] = co[1] + n[1] * weight; } *tot_feather_point = resol; return feather; } float *BKE_mask_point_segment_feather_diff(MaskSpline *spline, MaskSplinePoint *point, unsigned int *tot_feather_point) { return BKE_mask_point_segment_feather_diff_with_resolution(spline, point, 0, 0, tot_feather_point); } float *BKE_mask_point_segment_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point, int width, int height, unsigned int *tot_diff_point) { MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point); BezTriple *bezt, *bezt_next; float *diff_points, *fp; int j, resol = BKE_mask_spline_resolution(spline, width, height); bezt = &point->bezt; bezt_next = BKE_mask_spline_point_next_bezt(spline, points_array, point); if (!bezt_next) return NULL; /* resol+1 because of 'forward_diff_bezier' function */ *tot_diff_point = resol + 1; diff_points = fp = MEM_callocN((resol + 1) * 2 * sizeof(float), "mask segment vets"); for (j = 0; j < 2; j++) { BKE_curve_forward_diff_bezier(bezt->vec[1][j], bezt->vec[2][j], bezt_next->vec[0][j], bezt_next->vec[1][j], fp + j, resol, 2 * sizeof(float)); } copy_v2_v2(fp + 2 * resol, bezt_next->vec[1]); return diff_points; } float *BKE_mask_point_segment_diff(MaskSpline *spline, MaskSplinePoint *point, unsigned int *tot_diff_point) { return BKE_mask_point_segment_diff_with_resolution(spline, point, 0, 0, tot_diff_point); }