/* material.c * * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/material.c * \ingroup bke */ #include #include #include "MEM_guardedalloc.h" #include "DNA_curve_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meta_types.h" #include "DNA_node_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BLI_math.h" #include "BLI_listbase.h" #include "BLI_utildefines.h" #include "BKE_animsys.h" #include "BKE_displist.h" #include "BKE_global.h" #include "BKE_icons.h" #include "BKE_library.h" #include "BKE_main.h" #include "BKE_material.h" #include "BKE_mesh.h" #include "BKE_node.h" #include "GPU_material.h" /* used in UI and render */ Material defmaterial; /* called on startup, creator.c */ void init_def_material(void) { init_material(&defmaterial); } /* not material itself */ void free_material(Material *ma) { MTex *mtex; int a; for(a=0; amtex[a]; if(mtex && mtex->tex) mtex->tex->id.us--; if(mtex) MEM_freeN(mtex); } if(ma->ramp_col) MEM_freeN(ma->ramp_col); if(ma->ramp_spec) MEM_freeN(ma->ramp_spec); BKE_free_animdata((ID *)ma); if(ma->preview) BKE_previewimg_free(&ma->preview); BKE_icon_delete((struct ID*)ma); ma->id.icon_id = 0; /* is no lib link block, but material extension */ if(ma->nodetree) { ntreeFreeTree(ma->nodetree); MEM_freeN(ma->nodetree); } if(ma->gpumaterial.first) GPU_material_free(ma); } void init_material(Material *ma) { ma->r= ma->g= ma->b= ma->ref= 0.8; ma->specr= ma->specg= ma->specb= 1.0; ma->mirr= ma->mirg= ma->mirb= 1.0; ma->spectra= 1.0; ma->amb= 1.0; ma->alpha= 1.0; ma->spec= ma->hasize= 0.5; ma->har= 50; ma->starc= ma->ringc= 4; ma->linec= 12; ma->flarec= 1; ma->flaresize= ma->subsize= 1.0; ma->flareboost= 1; ma->seed2= 6; ma->friction= 0.5; ma->refrac= 4.0; ma->roughness= 0.5; ma->param[0]= 0.5; ma->param[1]= 0.1; ma->param[2]= 0.5; ma->param[3]= 0.1; ma->rms= 0.1; ma->darkness= 1.0; ma->strand_sta= ma->strand_end= 1.0f; ma->ang= 1.0; ma->ray_depth= 2; ma->ray_depth_tra= 2; ma->fresnel_mir= 0.0; ma->fresnel_tra= 0.0; ma->fresnel_tra_i= 1.25; ma->fresnel_mir_i= 1.25; ma->tx_limit= 0.0; ma->tx_falloff= 1.0; ma->shad_alpha= 1.0f; ma->gloss_mir = ma->gloss_tra= 1.0; ma->samp_gloss_mir = ma->samp_gloss_tra= 18; ma->adapt_thresh_mir = ma->adapt_thresh_tra = 0.005; ma->dist_mir = 0.0; ma->fadeto_mir = MA_RAYMIR_FADETOSKY; ma->rampfac_col= 1.0; ma->rampfac_spec= 1.0; ma->pr_lamp= 3; /* two lamps, is bits */ ma->pr_type= MA_SPHERE; ma->sss_radius[0]= 1.0f; ma->sss_radius[1]= 1.0f; ma->sss_radius[2]= 1.0f; ma->sss_col[0]= 1.0f; ma->sss_col[1]= 1.0f; ma->sss_col[2]= 1.0f; ma->sss_error= 0.05f; ma->sss_scale= 0.1f; ma->sss_ior= 1.3f; ma->sss_colfac= 1.0f; ma->sss_texfac= 0.0f; ma->sss_front= 1.0f; ma->sss_back= 1.0f; ma->vol.density = 1.0f; ma->vol.emission = 0.0f; ma->vol.scattering = 1.0f; ma->vol.reflection = 1.0f; ma->vol.transmission_col[0] = ma->vol.transmission_col[1] = ma->vol.transmission_col[2] = 1.0f; ma->vol.reflection_col[0] = ma->vol.reflection_col[1] = ma->vol.reflection_col[2] = 1.0f; ma->vol.emission_col[0] = ma->vol.emission_col[1] = ma->vol.emission_col[2] = 1.0f; ma->vol.density_scale = 1.0f; ma->vol.depth_cutoff = 0.01f; ma->vol.stepsize_type = MA_VOL_STEP_RANDOMIZED; ma->vol.stepsize = 0.2f; ma->vol.shade_type = MA_VOL_SHADE_SHADED; ma->vol.shadeflag |= MA_VOL_PRECACHESHADING; ma->vol.precache_resolution = 50; ma->vol.ms_spread = 0.2f; ma->vol.ms_diff = 1.f; ma->vol.ms_intensity = 1.f; ma->mode= MA_TRACEBLE|MA_SHADBUF|MA_SHADOW|MA_RAYBIAS|MA_TANGENT_STR|MA_ZTRANSP; ma->shade_flag= MA_APPROX_OCCLUSION; ma->preview = NULL; } Material *add_material(const char *name) { Material *ma; ma= alloc_libblock(&G.main->mat, ID_MA, name); init_material(ma); return ma; } /* XXX keep synced with next function */ Material *copy_material(Material *ma) { Material *man; int a; man= copy_libblock(ma); id_lib_extern((ID *)man->group); for(a=0; amtex[a]) { man->mtex[a]= MEM_mallocN(sizeof(MTex), "copymaterial"); memcpy(man->mtex[a], ma->mtex[a], sizeof(MTex)); id_us_plus((ID *)man->mtex[a]->tex); } } if(ma->ramp_col) man->ramp_col= MEM_dupallocN(ma->ramp_col); if(ma->ramp_spec) man->ramp_spec= MEM_dupallocN(ma->ramp_spec); if (ma->preview) man->preview = BKE_previewimg_copy(ma->preview); if(ma->nodetree) { man->nodetree= ntreeCopyTree(ma->nodetree); /* 0 == full new tree */ } man->gpumaterial.first= man->gpumaterial.last= NULL; return man; } /* XXX (see above) material copy without adding to main dbase */ Material *localize_material(Material *ma) { Material *man; int a; man= copy_libblock(ma); BLI_remlink(&G.main->mat, man); /* no increment for texture ID users, in previewrender.c it prevents decrement */ for(a=0; amtex[a]) { man->mtex[a]= MEM_mallocN(sizeof(MTex), "copymaterial"); memcpy(man->mtex[a], ma->mtex[a], sizeof(MTex)); } } if(ma->ramp_col) man->ramp_col= MEM_dupallocN(ma->ramp_col); if(ma->ramp_spec) man->ramp_spec= MEM_dupallocN(ma->ramp_spec); man->preview = NULL; if(ma->nodetree) { man->nodetree= ntreeLocalize(ma->nodetree); } man->gpumaterial.first= man->gpumaterial.last= NULL; return man; } void make_local_material(Material *ma) { Main *bmain= G.main; Object *ob; Mesh *me; Curve *cu; MetaBall *mb; Material *man; int a, local=0, lib=0; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if(ma->id.lib==NULL) return; if(ma->id.us==1) { ma->id.lib= NULL; ma->id.flag= LIB_LOCAL; new_id(NULL, (ID *)ma, NULL); for(a=0; amtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex); } return; } /* test objects */ ob= bmain->object.first; while(ob) { if(ob->mat) { for(a=0; atotcol; a++) { if(ob->mat[a]==ma) { if(ob->id.lib) lib= 1; else local= 1; } } } ob= ob->id.next; } /* test meshes */ me= bmain->mesh.first; while(me) { if(me->mat) { for(a=0; atotcol; a++) { if(me->mat[a]==ma) { if(me->id.lib) lib= 1; else local= 1; } } } me= me->id.next; } /* test curves */ cu= bmain->curve.first; while(cu) { if(cu->mat) { for(a=0; atotcol; a++) { if(cu->mat[a]==ma) { if(cu->id.lib) lib= 1; else local= 1; } } } cu= cu->id.next; } /* test mballs */ mb= bmain->mball.first; while(mb) { if(mb->mat) { for(a=0; atotcol; a++) { if(mb->mat[a]==ma) { if(mb->id.lib) lib= 1; else local= 1; } } } mb= mb->id.next; } if(local && lib==0) { ma->id.lib= NULL; ma->id.flag= LIB_LOCAL; for(a=0; amtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex); } new_id(NULL, (ID *)ma, NULL); } else if(local && lib) { man= copy_material(ma); man->id.us= 0; /* do objects */ ob= bmain->object.first; while(ob) { if(ob->mat) { for(a=0; atotcol; a++) { if(ob->mat[a]==ma) { if(ob->id.lib==NULL) { ob->mat[a]= man; man->id.us++; ma->id.us--; } } } } ob= ob->id.next; } /* do meshes */ me= bmain->mesh.first; while(me) { if(me->mat) { for(a=0; atotcol; a++) { if(me->mat[a]==ma) { if(me->id.lib==NULL) { me->mat[a]= man; man->id.us++; ma->id.us--; } } } } me= me->id.next; } /* do curves */ cu= bmain->curve.first; while(cu) { if(cu->mat) { for(a=0; atotcol; a++) { if(cu->mat[a]==ma) { if(cu->id.lib==NULL) { cu->mat[a]= man; man->id.us++; ma->id.us--; } } } } cu= cu->id.next; } /* do mballs */ mb= bmain->mball.first; while(mb) { if(mb->mat) { for(a=0; atotcol; a++) { if(mb->mat[a]==ma) { if(mb->id.lib==NULL) { mb->mat[a]= man; man->id.us++; ma->id.us--; } } } } mb= mb->id.next; } } } Material ***give_matarar(Object *ob) { Mesh *me; Curve *cu; MetaBall *mb; if(ob->type==OB_MESH) { me= ob->data; return &(me->mat); } else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) { cu= ob->data; return &(cu->mat); } else if(ob->type==OB_MBALL) { mb= ob->data; return &(mb->mat); } return NULL; } short *give_totcolp(Object *ob) { Mesh *me; Curve *cu; MetaBall *mb; if(ob->type==OB_MESH) { me= ob->data; return &(me->totcol); } else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) { cu= ob->data; return &(cu->totcol); } else if(ob->type==OB_MBALL) { mb= ob->data; return &(mb->totcol); } return NULL; } /* same as above but for ID's */ Material ***give_matarar_id(ID *id) { switch(GS(id->name)) { case ID_ME: return &(((Mesh *)id)->mat); break; case ID_CU: return &(((Curve *)id)->mat); break; case ID_MB: return &(((MetaBall *)id)->mat); break; } return NULL; } short *give_totcolp_id(ID *id) { switch(GS(id->name)) { case ID_ME: return &(((Mesh *)id)->totcol); break; case ID_CU: return &(((Curve *)id)->totcol); break; case ID_MB: return &(((MetaBall *)id)->totcol); break; } return NULL; } void material_append_id(ID *id, Material *ma) { Material ***matar; if((matar= give_matarar_id(id))) { short *totcol= give_totcolp_id(id); Material **mat= MEM_callocN(sizeof(void *) * ((*totcol) + 1), "newmatar"); if(*totcol) memcpy(mat, *matar, sizeof(void *) * (*totcol)); if(*matar) MEM_freeN(*matar); *matar= mat; (*matar)[(*totcol)++]= ma; id_us_plus((ID *)ma); test_object_materials(id); } } Material *material_pop_id(ID *id, int index) { Material *ret= NULL; Material ***matar; if((matar= give_matarar_id(id))) { short *totcol= give_totcolp_id(id); if(index >= 0 && index < (*totcol)) { ret= (*matar)[index]; id_us_min((ID *)ret); if(*totcol <= 1) { *totcol= 0; MEM_freeN(*matar); *matar= NULL; } else { Material **mat; if(index + 1 != (*totcol)) memmove((*matar), (*matar) + 1, (*totcol) - (index + 1)); (*totcol)--; mat= MEM_callocN(sizeof(void *) * (*totcol), "newmatar"); memcpy(mat, *matar, sizeof(void *) * (*totcol)); MEM_freeN(*matar); *matar= mat; test_object_materials(id); } } } return ret; } Material *give_current_material(Object *ob, int act) { Material ***matarar, *ma; short *totcolp; if(ob==NULL) return NULL; /* if object cannot have material, totcolp==NULL */ totcolp= give_totcolp(ob); if(totcolp==NULL || ob->totcol==0) return NULL; if(act<0) { printf("no!\n"); } if(act>ob->totcol) act= ob->totcol; else if(act<=0) act= 1; if(ob->matbits && ob->matbits[act-1]) { /* in object */ ma= ob->mat[act-1]; } else { /* in data */ /* check for inconsistency */ if(*totcolp < ob->totcol) ob->totcol= *totcolp; if(act>ob->totcol) act= ob->totcol; matarar= give_matarar(ob); if(matarar && *matarar) ma= (*matarar)[act-1]; else ma= NULL; } return ma; } ID *material_from(Object *ob, int act) { if(ob==NULL) return NULL; if(ob->totcol==0) return ob->data; if(act==0) act= 1; if(ob->matbits[act-1]) return (ID *)ob; else return ob->data; } Material *give_node_material(Material *ma) { if(ma && ma->use_nodes && ma->nodetree) { bNode *node= nodeGetActiveID(ma->nodetree, ID_MA); if(node) return (Material *)node->id; } return NULL; } /* GS reads the memory pointed at in a specific ordering. There are, * however two definitions for it. I have jotted them down here, both, * but I think the first one is actually used. The thing is that * big-endian systems might read this the wrong way round. OTOH, we * constructed the IDs that are read out with this macro explicitly as * well. I expect we'll sort it out soon... */ /* from blendef: */ #define GS(a) (*((short *)(a))) /* from misc_util: flip the bytes from x */ /* #define GS(x) (((unsigned char *)(x))[0] << 8 | ((unsigned char *)(x))[1]) */ void resize_object_material(Object *ob, const short totcol) { Material **newmatar; char *newmatbits; if(totcol==0) { if(ob->totcol) { MEM_freeN(ob->mat); MEM_freeN(ob->matbits); ob->mat= NULL; ob->matbits= NULL; } } else if(ob->totcoltotcol) { memcpy(newmatar, ob->mat, sizeof(void *)*ob->totcol); memcpy(newmatbits, ob->matbits, sizeof(char)*ob->totcol); MEM_freeN(ob->mat); MEM_freeN(ob->matbits); } ob->mat= newmatar; ob->matbits= newmatbits; } ob->totcol= totcol; if(ob->totcol && ob->actcol==0) ob->actcol= 1; if(ob->actcol>ob->totcol) ob->actcol= ob->totcol; } void test_object_materials(ID *id) { /* make the ob mat-array same size as 'ob->data' mat-array */ Object *ob; short *totcol; if(id==NULL || (totcol=give_totcolp_id(id))==NULL) { return; } for(ob= G.main->object.first; ob; ob= ob->id.next) { if(ob->data==id) { resize_object_material(ob, *totcol); } } } void assign_material(Object *ob, Material *ma, int act) { Material *mao, **matar, ***matarar; char *matbits; short *totcolp; if(act>MAXMAT) return; if(act<1) act= 1; /* prevent crashing when using accidentally */ BLI_assert(ob->id.lib == NULL); if(ob->id.lib) return; /* test arraylens */ totcolp= give_totcolp(ob); matarar= give_matarar(ob); if(totcolp==NULL || matarar==NULL) return; if(act > *totcolp) { matar= MEM_callocN(sizeof(void *)*act, "matarray1"); if(*totcolp) { memcpy(matar, *matarar, sizeof(void *)*(*totcolp)); MEM_freeN(*matarar); } *matarar= matar; *totcolp= act; } if(act > ob->totcol) { matar= MEM_callocN(sizeof(void *)*act, "matarray2"); matbits= MEM_callocN(sizeof(char)*act, "matbits1"); if( ob->totcol) { memcpy(matar, ob->mat, sizeof(void *)*( ob->totcol )); memcpy(matbits, ob->matbits, sizeof(char)*(*totcolp)); MEM_freeN(ob->mat); MEM_freeN(ob->matbits); } ob->mat= matar; ob->matbits= matbits; ob->totcol= act; /* copy object/mesh linking, or assign based on userpref */ if(ob->actcol) ob->matbits[act-1]= ob->matbits[ob->actcol-1]; else ob->matbits[act-1]= (U.flag & USER_MAT_ON_OB)? 1: 0; } /* do it */ if(ob->matbits[act-1]) { /* in object */ mao= ob->mat[act-1]; if(mao) mao->id.us--; ob->mat[act-1]= ma; } else { /* in data */ mao= (*matarar)[act-1]; if(mao) mao->id.us--; (*matarar)[act-1]= ma; } if(ma) id_us_plus((ID *)ma); test_object_materials(ob->data); } /* XXX - this calls many more update calls per object then are needed, could be optimized */ void assign_matarar(struct Object *ob, struct Material ***matar, int totcol) { int i, actcol_orig= ob->actcol; while(object_remove_material_slot(ob)) {}; /* now we have the right number of slots */ for(i=0; i ob->totcol) actcol_orig= ob->totcol; ob->actcol= actcol_orig; } int find_material_index(Object *ob, Material *ma) { Material ***matarar; short a, *totcolp; if(ma==NULL) return 0; totcolp= give_totcolp(ob); matarar= give_matarar(ob); if(totcolp==NULL || matarar==NULL) return 0; for(a=0; a<*totcolp; a++) if((*matarar)[a]==ma) break; if(a<*totcolp) return a+1; return 0; } int object_add_material_slot(Object *ob) { if(ob==NULL) return FALSE; if(ob->totcol>=MAXMAT) return FALSE; assign_material(ob, NULL, ob->totcol+1); ob->actcol= ob->totcol; return TRUE; } static void do_init_render_material(Material *ma, int r_mode, float *amb) { MTex *mtex; int a, needuv=0, needtang=0; if(ma->flarec==0) ma->flarec= 1; /* add all texcoflags from mtex, texco and mapto were cleared in advance */ for(a=0; aseptex & (1<mtex[a]; if(mtex && mtex->tex && (mtex->tex->type | (mtex->tex->use_nodes && mtex->tex->nodetree) )) { ma->texco |= mtex->texco; ma->mapto |= mtex->mapto; /* always get derivatives for these textures */ if ELEM3(mtex->tex->type, TEX_IMAGE, TEX_PLUGIN, TEX_ENVMAP) ma->texco |= TEXCO_OSA; else if(mtex->texflag & (MTEX_COMPAT_BUMP|MTEX_3TAP_BUMP|MTEX_5TAP_BUMP)) ma->texco |= TEXCO_OSA; if(ma->texco & (TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM|TEXCO_STRAND|TEXCO_STRESS)) needuv= 1; else if(ma->texco & (TEXCO_GLOB|TEXCO_UV|TEXCO_OBJECT|TEXCO_SPEED)) needuv= 1; else if(ma->texco & (TEXCO_LAVECTOR|TEXCO_VIEW|TEXCO_STICKY)) needuv= 1; if((ma->mapto & MAP_NORM) && (mtex->normapspace == MTEX_NSPACE_TANGENT)) needtang= 1; } } if(needtang) ma->mode |= MA_NORMAP_TANG; else ma->mode &= ~MA_NORMAP_TANG; if(ma->mode & (MA_VERTEXCOL|MA_VERTEXCOLP|MA_FACETEXTURE)) { needuv= 1; if(r_mode & R_OSA) ma->texco |= TEXCO_OSA; /* for texfaces */ } if(needuv) ma->texco |= NEED_UV; /* since the raytracer doesnt recalc O structs for each ray, we have to preset them all */ if(r_mode & R_RAYTRACE) { if((ma->mode & (MA_RAYMIRROR|MA_SHADOW_TRA)) || ((ma->mode & MA_TRANSP) && (ma->mode & MA_RAYTRANSP))) { ma->texco |= NEED_UV|TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM; if(r_mode & R_OSA) ma->texco |= TEXCO_OSA; } } if(amb) { ma->ambr= ma->amb*amb[0]; ma->ambg= ma->amb*amb[1]; ma->ambb= ma->amb*amb[2]; } /* will become or-ed result of all node modes */ ma->mode_l= ma->mode; ma->mode_l &= ~MA_SHLESS; if(ma->strand_surfnor > 0.0f) ma->mode_l |= MA_STR_SURFDIFF; } static void init_render_nodetree(bNodeTree *ntree, Material *basemat, int r_mode, float *amb) { bNode *node; for(node=ntree->nodes.first; node; node= node->next) { if(node->id) { if(GS(node->id->name)==ID_MA) { Material *ma= (Material *)node->id; if(ma!=basemat) { do_init_render_material(ma, r_mode, amb); basemat->texco |= ma->texco; basemat->mode_l |= ma->mode_l & ~(MA_TRANSP|MA_ZTRANSP|MA_RAYTRANSP); } } else if(node->type==NODE_GROUP) init_render_nodetree((bNodeTree *)node->id, basemat, r_mode, amb); } } /* parses the geom+tex nodes */ ntreeShaderGetTexcoMode(ntree, r_mode, &basemat->texco, &basemat->mode_l); } void init_render_material(Material *mat, int r_mode, float *amb) { do_init_render_material(mat, r_mode, amb); if(mat->nodetree && mat->use_nodes) { init_render_nodetree(mat->nodetree, mat, r_mode, amb); ntreeBeginExecTree(mat->nodetree); /* has internal flag to detect it only does it once */ } } void init_render_materials(Main *bmain, int r_mode, float *amb) { Material *ma; /* clear these flags before going over materials, to make sure they * are cleared only once, otherwise node materials contained in other * node materials can go wrong */ for(ma= bmain->mat.first; ma; ma= ma->id.next) { if(ma->id.us) { ma->texco= 0; ma->mapto= 0; } } /* two steps, first initialize, then or the flags for layers */ for(ma= bmain->mat.first; ma; ma= ma->id.next) { /* is_used flag comes back in convertblender.c */ ma->flag &= ~MA_IS_USED; if(ma->id.us) init_render_material(ma, r_mode, amb); } do_init_render_material(&defmaterial, r_mode, amb); } /* only needed for nodes now */ void end_render_material(Material *mat) { if(mat && mat->nodetree && mat->use_nodes) ntreeEndExecTree(mat->nodetree); /* has internal flag to detect it only does it once */ } void end_render_materials(Main *bmain) { Material *ma; for(ma= bmain->mat.first; ma; ma= ma->id.next) if(ma->id.us) end_render_material(ma); } static int material_in_nodetree(bNodeTree *ntree, Material *mat) { bNode *node; for(node=ntree->nodes.first; node; node= node->next) { if(node->id && GS(node->id->name)==ID_MA) { if(node->id==(ID*)mat) return 1; } else if(node->type==NODE_GROUP) if(material_in_nodetree((bNodeTree*)node->id, mat)) return 1; } return 0; } int material_in_material(Material *parmat, Material *mat) { if(parmat==mat) return 1; else if(parmat->nodetree && parmat->use_nodes) return material_in_nodetree(parmat->nodetree, mat); else return 0; } /* ****************** */ static char colname_array[125][20]= { "Black","DarkRed","HalfRed","Red","Red", "DarkGreen","DarkOlive","Brown","Chocolate","OrangeRed", "HalfGreen","GreenOlive","DryOlive","Goldenrod","DarkOrange", "LightGreen","Chartreuse","YellowGreen","Yellow","Gold", "Green","LawnGreen","GreenYellow","LightOlive","Yellow", "DarkBlue","DarkPurple","HotPink","VioletPink","RedPink", "SlateGray","DarkGrey","PalePurple","IndianRed","Tomato", "SeaGreen","PaleGreen","GreenKhaki","LightBrown","LightSalmon", "SpringGreen","PaleGreen","MediumOlive","YellowBrown","LightGold", "LightGreen","LightGreen","LightGreen","GreenYellow","PaleYellow", "HalfBlue","DarkSky","HalfMagenta","VioletRed","DeepPink", "SteelBlue","SkyBlue","Orchid","LightHotPink","HotPink", "SeaGreen","SlateGray","MediumGrey","Burlywood","LightPink", "SpringGreen","Aquamarine","PaleGreen","Khaki","PaleOrange", "SpringGreen","SeaGreen","PaleGreen","PaleWhite","YellowWhite", "LightBlue","Purple","MediumOrchid","Magenta","Magenta", "RoyalBlue","SlateBlue","MediumOrchid","Orchid","Magenta", "DeepSkyBlue","LightSteelBlue","LightSkyBlue","Violet","LightPink", "Cyan","DarkTurquoise","SkyBlue","Grey","Snow", "Mint","Mint","Aquamarine","MintCream","Ivory", "Blue","Blue","DarkMagenta","DarkOrchid","Magenta", "SkyBlue","RoyalBlue","LightSlateBlue","MediumOrchid","Magenta", "DodgerBlue","SteelBlue","MediumPurple","PalePurple","Plum", "DeepSkyBlue","PaleBlue","LightSkyBlue","PalePurple","Thistle", "Cyan","ColdBlue","PaleTurquoise","GhostWhite","White" }; void automatname(Material *ma) { int nr, r, g, b; float ref; if(ma==NULL) return; if(ma->mode & MA_SHLESS) ref= 1.0; else ref= ma->ref; r= (int)(4.99f*(ref*ma->r)); g= (int)(4.99f*(ref*ma->g)); b= (int)(4.99f*(ref*ma->b)); nr= r + 5*g + 25*b; if(nr>124) nr= 124; new_id(&G.main->mat, (ID *)ma, colname_array[nr]); } int object_remove_material_slot(Object *ob) { Material *mao, ***matarar; Object *obt; Curve *cu; Nurb *nu; short *totcolp; int a, actcol; if(ob==NULL || ob->totcol==0) return FALSE; /* take a mesh/curve/mball as starting point, remove 1 index, * AND with all objects that share the ob->data * * after that check indices in mesh/curve/mball!!! */ totcolp= give_totcolp(ob); matarar= give_matarar(ob); if(*matarar==NULL) return FALSE; /* we delete the actcol */ if(ob->totcol) { mao= (*matarar)[ob->actcol-1]; if(mao) mao->id.us--; } for(a=ob->actcol; atotcol; a++) (*matarar)[a-1]= (*matarar)[a]; (*totcolp)--; if(*totcolp==0) { MEM_freeN(*matarar); *matarar= NULL; } actcol= ob->actcol; obt= G.main->object.first; while(obt) { if(obt->data==ob->data) { /* WATCH IT: do not use actcol from ob or from obt (can become zero) */ mao= obt->mat[actcol-1]; if(mao) mao->id.us--; for(a=actcol; atotcol; a++) { obt->mat[a-1]= obt->mat[a]; obt->matbits[a-1]= obt->matbits[a]; } obt->totcol--; if(obt->actcol > obt->totcol) obt->actcol= obt->totcol; if(obt->totcol==0) { MEM_freeN(obt->mat); MEM_freeN(obt->matbits); obt->mat= NULL; obt->matbits= NULL; } } obt= obt->id.next; } /* check indices from mesh */ if(ob->type==OB_MESH) { Mesh *me= get_mesh(ob); mesh_delete_material_index(me, actcol-1); freedisplist(&ob->disp); } else if ELEM(ob->type, OB_CURVE, OB_SURF) { cu= ob->data; nu= cu->nurb.first; while(nu) { if(nu->mat_nr && nu->mat_nr>=actcol-1) { nu->mat_nr--; if (ob->type == OB_CURVE) nu->charidx--; } nu= nu->next; } freedisplist(&ob->disp); } return TRUE; } /* r g b = current value, col = new value, fac==0 is no change */ /* if g==NULL, it only does r channel */ void ramp_blend(int type, float *r, float *g, float *b, float fac, float *col) { float tmp, facm= 1.0f-fac; switch (type) { case MA_RAMP_BLEND: *r = facm*(*r) + fac*col[0]; if(g) { *g = facm*(*g) + fac*col[1]; *b = facm*(*b) + fac*col[2]; } break; case MA_RAMP_ADD: *r += fac*col[0]; if(g) { *g += fac*col[1]; *b += fac*col[2]; } break; case MA_RAMP_MULT: *r *= (facm + fac*col[0]); if(g) { *g *= (facm + fac*col[1]); *b *= (facm + fac*col[2]); } break; case MA_RAMP_SCREEN: *r = 1.0f - (facm + fac*(1.0f - col[0])) * (1.0f - *r); if(g) { *g = 1.0f - (facm + fac*(1.0f - col[1])) * (1.0f - *g); *b = 1.0f - (facm + fac*(1.0f - col[2])) * (1.0f - *b); } break; case MA_RAMP_OVERLAY: if(*r < 0.5f) *r *= (facm + 2.0f*fac*col[0]); else *r = 1.0f - (facm + 2.0f*fac*(1.0f - col[0])) * (1.0f - *r); if(g) { if(*g < 0.5f) *g *= (facm + 2.0f*fac*col[1]); else *g = 1.0f - (facm + 2.0f*fac*(1.0f - col[1])) * (1.0f - *g); if(*b < 0.5f) *b *= (facm + 2.0f*fac*col[2]); else *b = 1.0f - (facm + 2.0f*fac*(1.0f - col[2])) * (1.0f - *b); } break; case MA_RAMP_SUB: *r -= fac*col[0]; if(g) { *g -= fac*col[1]; *b -= fac*col[2]; } break; case MA_RAMP_DIV: if(col[0]!=0.0f) *r = facm*(*r) + fac*(*r)/col[0]; if(g) { if(col[1]!=0.0f) *g = facm*(*g) + fac*(*g)/col[1]; if(col[2]!=0.0f) *b = facm*(*b) + fac*(*b)/col[2]; } break; case MA_RAMP_DIFF: *r = facm*(*r) + fac*fabsf(*r-col[0]); if(g) { *g = facm*(*g) + fac*fabsf(*g-col[1]); *b = facm*(*b) + fac*fabsf(*b-col[2]); } break; case MA_RAMP_DARK: tmp=col[0]+((1-col[0])*facm); if(tmp < *r) *r= tmp; if(g) { tmp=col[1]+((1-col[1])*facm); if(tmp < *g) *g= tmp; tmp=col[2]+((1-col[2])*facm); if(tmp < *b) *b= tmp; } break; case MA_RAMP_LIGHT: tmp= fac*col[0]; if(tmp > *r) *r= tmp; if(g) { tmp= fac*col[1]; if(tmp > *g) *g= tmp; tmp= fac*col[2]; if(tmp > *b) *b= tmp; } break; case MA_RAMP_DODGE: if(*r !=0.0f){ tmp = 1.0f - fac*col[0]; if(tmp <= 0.0f) *r = 1.0f; else if ((tmp = (*r) / tmp)> 1.0f) *r = 1.0f; else *r = tmp; } if(g) { if(*g !=0.0f){ tmp = 1.0f - fac*col[1]; if(tmp <= 0.0f ) *g = 1.0f; else if ((tmp = (*g) / tmp) > 1.0f ) *g = 1.0f; else *g = tmp; } if(*b !=0.0f){ tmp = 1.0f - fac*col[2]; if(tmp <= 0.0f) *b = 1.0f; else if ((tmp = (*b) / tmp) > 1.0f ) *b = 1.0f; else *b = tmp; } } break; case MA_RAMP_BURN: tmp = facm + fac*col[0]; if(tmp <= 0.0f) *r = 0.0f; else if (( tmp = (1.0f - (1.0f - (*r)) / tmp )) < 0.0f) *r = 0.0f; else if (tmp > 1.0f) *r=1.0f; else *r = tmp; if(g) { tmp = facm + fac*col[1]; if(tmp <= 0.0f) *g = 0.0f; else if (( tmp = (1.0f - (1.0f - (*g)) / tmp )) < 0.0f ) *g = 0.0f; else if(tmp >1.0f) *g=1.0f; else *g = tmp; tmp = facm + fac*col[2]; if(tmp <= 0.0f) *b = 0.0f; else if (( tmp = (1.0f - (1.0f - (*b)) / tmp )) < 0.0f ) *b = 0.0f; else if(tmp >1.0f) *b= 1.0f; else *b = tmp; } break; case MA_RAMP_HUE: if(g){ float rH,rS,rV; float colH,colS,colV; float tmpr,tmpg,tmpb; rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV); if(colS!=0 ){ rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV); hsv_to_rgb( colH , rS, rV, &tmpr, &tmpg, &tmpb); *r = facm*(*r) + fac*tmpr; *g = facm*(*g) + fac*tmpg; *b = facm*(*b) + fac*tmpb; } } break; case MA_RAMP_SAT: if(g){ float rH,rS,rV; float colH,colS,colV; rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV); if(rS!=0){ rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV); hsv_to_rgb( rH, (facm*rS +fac*colS), rV, r, g, b); } } break; case MA_RAMP_VAL: if(g){ float rH,rS,rV; float colH,colS,colV; rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV); rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV); hsv_to_rgb( rH, rS, (facm*rV +fac*colV), r, g, b); } break; case MA_RAMP_COLOR: if(g){ float rH,rS,rV; float colH,colS,colV; float tmpr,tmpg,tmpb; rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV); if(colS!=0){ rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV); hsv_to_rgb( colH, colS, rV, &tmpr, &tmpg, &tmpb); *r = facm*(*r) + fac*tmpr; *g = facm*(*g) + fac*tmpg; *b = facm*(*b) + fac*tmpb; } } break; case MA_RAMP_SOFT: if (g){ float scr, scg, scb; /* first calculate non-fac based Screen mix */ scr = 1.0f - (1.0f - col[0]) * (1.0f - *r); scg = 1.0f - (1.0f - col[1]) * (1.0f - *g); scb = 1.0f - (1.0f - col[2]) * (1.0f - *b); *r = facm*(*r) + fac*(((1.0f - *r) * col[0] * (*r)) + (*r * scr)); *g = facm*(*g) + fac*(((1.0f - *g) * col[1] * (*g)) + (*g * scg)); *b = facm*(*b) + fac*(((1.0f - *b) * col[2] * (*b)) + (*b * scb)); } break; case MA_RAMP_LINEAR: if (col[0] > 0.5f) *r = *r + fac*(2.0f*(col[0]-0.5f)); else *r = *r + fac*(2.0f*(col[0]) - 1.0f); if (g){ if (col[1] > 0.5f) *g = *g + fac*(2.0f*(col[1]-0.5f)); else *g = *g + fac*(2.0f*(col[1]) -1.0f); if (col[2] > 0.5f) *b = *b + fac*(2.0f*(col[2]-0.5f)); else *b = *b + fac*(2.0f*(col[2]) - 1.0f); } break; } } /* copy/paste buffer, if we had a propper py api that would be better */ Material matcopybuf; static short matcopied= 0; void clear_matcopybuf(void) { memset(&matcopybuf, 0, sizeof(Material)); matcopied= 0; } void free_matcopybuf(void) { int a; for(a=0; anodetree); matcopybuf.preview= NULL; matcopybuf.gpumaterial.first= matcopybuf.gpumaterial.last= NULL; matcopied= 1; } void paste_matcopybuf(Material *ma) { int a; MTex *mtex; ID id; if(matcopied==0) return; /* free current mat */ if(ma->ramp_col) MEM_freeN(ma->ramp_col); if(ma->ramp_spec) MEM_freeN(ma->ramp_spec); for(a=0; amtex[a]; if(mtex && mtex->tex) mtex->tex->id.us--; if(mtex) MEM_freeN(mtex); } if(ma->nodetree) { ntreeFreeTree(ma->nodetree); MEM_freeN(ma->nodetree); } GPU_material_free(ma); id= (ma->id); memcpy(ma, &matcopybuf, sizeof(Material)); (ma->id)= id; if(matcopybuf.ramp_col) ma->ramp_col= MEM_dupallocN(matcopybuf.ramp_col); if(matcopybuf.ramp_spec) ma->ramp_spec= MEM_dupallocN(matcopybuf.ramp_spec); for(a=0; amtex[a]; if(mtex) { ma->mtex[a]= MEM_dupallocN(mtex); if(mtex->tex) id_us_plus((ID *)mtex->tex); } } ma->nodetree= ntreeCopyTree(matcopybuf.nodetree); }