/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Blender Foundation * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/mesh.c * \ingroup bke */ #include #include #include #include #include "MEM_guardedalloc.h" #include "DNA_scene_types.h" #include "DNA_material_types.h" #include "DNA_object_types.h" #include "DNA_key_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_ipo_types.h" #include "DNA_customdata_types.h" #include "BLI_utildefines.h" #include "BLI_blenlib.h" #include "BLI_bpath.h" #include "BLI_math.h" #include "BLI_edgehash.h" #include "BLI_scanfill.h" #include "BLI_array.h" #include "BKE_animsys.h" #include "BKE_main.h" #include "BKE_customdata.h" #include "BKE_DerivedMesh.h" #include "BKE_global.h" #include "BKE_mesh.h" #include "BKE_displist.h" #include "BKE_library.h" #include "BKE_material.h" #include "BKE_modifier.h" #include "BKE_multires.h" #include "BKE_key.h" /* these 2 are only used by conversion functions */ #include "BKE_curve.h" /* -- */ #include "BKE_object.h" #include "BKE_tessmesh.h" #include "BLI_edgehash.h" #include "bmesh.h" enum { MESHCMP_DVERT_WEIGHTMISMATCH = 1, MESHCMP_DVERT_GROUPMISMATCH, MESHCMP_DVERT_TOTGROUPMISMATCH, MESHCMP_LOOPCOLMISMATCH, MESHCMP_LOOPUVMISMATCH, MESHCMP_LOOPMISMATCH, MESHCMP_POLYVERTMISMATCH, MESHCMP_POLYMISMATCH, MESHCMP_EDGEUNKNOWN, MESHCMP_VERTCOMISMATCH, MESHCMP_CDLAYERS_MISMATCH }; static const char *cmpcode_to_str(int code) { switch (code) { case MESHCMP_DVERT_WEIGHTMISMATCH: return "Vertex Weight Mismatch"; case MESHCMP_DVERT_GROUPMISMATCH: return "Vertex Group Mismatch"; case MESHCMP_DVERT_TOTGROUPMISMATCH: return "Vertex Doesn't Belong To Same Number Of Groups"; case MESHCMP_LOOPCOLMISMATCH: return "Vertex Color Mismatch"; case MESHCMP_LOOPUVMISMATCH: return "UV Mismatch"; case MESHCMP_LOOPMISMATCH: return "Loop Mismatch"; case MESHCMP_POLYVERTMISMATCH: return "Loop Vert Mismatch In Poly Test"; case MESHCMP_POLYMISMATCH: return "Loop Vert Mismatch"; case MESHCMP_EDGEUNKNOWN: return "Edge Mismatch"; case MESHCMP_VERTCOMISMATCH: return "Vertex Coordinate Mismatch"; case MESHCMP_CDLAYERS_MISMATCH: return "CustomData Layer Count Mismatch"; default: return "Mesh Comparison Code Unknown"; } } /* thresh is threshold for comparing vertices, uvs, vertex colors, * weights, etc.*/ static int customdata_compare(CustomData *c1, CustomData *c2, Mesh *m1, Mesh *m2, float thresh) { CustomDataLayer *l1, *l2; int i, i1 = 0, i2 = 0, tot, j; for (i = 0; i < c1->totlayer; i++) { if (ELEM7(c1->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i1++; } } for (i = 0; i < c2->totlayer; i++) { if (ELEM7(c2->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i2++; } } if (i1 != i2) return MESHCMP_CDLAYERS_MISMATCH; l1 = c1->layers; l2 = c2->layers; tot = i1; i1 = 0; i2 = 0; for (i = 0; i < tot; i++) { while (i1 < c1->totlayer && !ELEM7(l1->type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i1++, l1++; } while (i2 < c2->totlayer && !ELEM7(l2->type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i2++, l2++; } if (l1->type == CD_MVERT) { MVert *v1 = l1->data; MVert *v2 = l2->data; int vtot = m1->totvert; for (j = 0; j < vtot; j++, v1++, v2++) { if (len_v3v3(v1->co, v2->co) > thresh) return MESHCMP_VERTCOMISMATCH; /*I don't care about normals, let's just do coodinates*/ } } /*we're order-agnostic for edges here*/ if (l1->type == CD_MEDGE) { MEdge *e1 = l1->data; MEdge *e2 = l2->data; EdgeHash *eh = BLI_edgehash_new(); int etot = m1->totedge; for (j = 0; j < etot; j++, e1++) { BLI_edgehash_insert(eh, e1->v1, e1->v2, e1); } for (j = 0; j < etot; j++, e2++) { if (!BLI_edgehash_lookup(eh, e2->v1, e2->v2)) return MESHCMP_EDGEUNKNOWN; } BLI_edgehash_free(eh, NULL); } if (l1->type == CD_MPOLY) { MPoly *p1 = l1->data; MPoly *p2 = l2->data; int ptot = m1->totpoly; for (j = 0; j < ptot; j++, p1++, p2++) { MLoop *lp1, *lp2; int k; if (p1->totloop != p2->totloop) return MESHCMP_POLYMISMATCH; lp1 = m1->mloop + p1->loopstart; lp2 = m2->mloop + p2->loopstart; for (k = 0; k < p1->totloop; k++, lp1++, lp2++) { if (lp1->v != lp2->v) return MESHCMP_POLYVERTMISMATCH; } } } if (l1->type == CD_MLOOP) { MLoop *lp1 = l1->data; MLoop *lp2 = l2->data; int ltot = m1->totloop; for (j = 0; j < ltot; j++, lp1++, lp2++) { if (lp1->v != lp2->v) return MESHCMP_LOOPMISMATCH; } } if (l1->type == CD_MLOOPUV) { MLoopUV *lp1 = l1->data; MLoopUV *lp2 = l2->data; int ltot = m1->totloop; for (j = 0; j < ltot; j++, lp1++, lp2++) { if (len_v2v2(lp1->uv, lp2->uv) > thresh) return MESHCMP_LOOPUVMISMATCH; } } if (l1->type == CD_MLOOPCOL) { MLoopCol *lp1 = l1->data; MLoopCol *lp2 = l2->data; int ltot = m1->totloop; for (j = 0; j < ltot; j++, lp1++, lp2++) { if (ABS(lp1->r - lp2->r) > thresh || ABS(lp1->g - lp2->g) > thresh || ABS(lp1->b - lp2->b) > thresh || ABS(lp1->a - lp2->a) > thresh) { return MESHCMP_LOOPCOLMISMATCH; } } } if (l1->type == CD_MDEFORMVERT) { MDeformVert *dv1 = l1->data; MDeformVert *dv2 = l2->data; int dvtot = m1->totvert; for (j = 0; j < dvtot; j++, dv1++, dv2++) { int k; MDeformWeight *dw1 = dv1->dw, *dw2 = dv2->dw; if (dv1->totweight != dv2->totweight) return MESHCMP_DVERT_TOTGROUPMISMATCH; for (k = 0; k < dv1->totweight; k++, dw1++, dw2++) { if (dw1->def_nr != dw2->def_nr) return MESHCMP_DVERT_GROUPMISMATCH; if (ABS(dw1->weight - dw2->weight) > thresh) return MESHCMP_DVERT_WEIGHTMISMATCH; } } } } return 0; } /*used for testing. returns an error string the two meshes don't match*/ const char *BKE_mesh_cmp(Mesh *me1, Mesh *me2, float thresh) { int c; if (!me1 || !me2) return "Requires two input meshes"; if (me1->totvert != me2->totvert) return "Number of verts don't match"; if (me1->totedge != me2->totedge) return "Number of edges don't match"; if (me1->totpoly != me2->totpoly) return "Number of faces don't match"; if (me1->totloop != me2->totloop) return "Number of loops don't match"; if ((c = customdata_compare(&me1->vdata, &me2->vdata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->edata, &me2->edata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->ldata, &me2->ldata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->pdata, &me2->pdata, me1, me2, thresh))) return cmpcode_to_str(c); return NULL; } static void mesh_ensure_tessellation_customdata(Mesh *me) { if (UNLIKELY((me->totface != 0) && (me->totpoly == 0))) { /* Pass, otherwise this function clears 'mface' before * versioning 'mface -> mpoly' code kicks in [#30583] * * Callers could also check but safer to do here - campbell */ } else { const int tottex_original = CustomData_number_of_layers(&me->pdata, CD_MTEXPOLY); const int totcol_original = CustomData_number_of_layers(&me->ldata, CD_MLOOPCOL); const int tottex_tessface = CustomData_number_of_layers(&me->fdata, CD_MTFACE); const int totcol_tessface = CustomData_number_of_layers(&me->fdata, CD_MCOL); if (tottex_tessface != tottex_original || totcol_tessface != totcol_original) { BKE_mesh_tessface_clear(me); CustomData_from_bmeshpoly(&me->fdata, &me->pdata, &me->ldata, me->totface); /* TODO - add some --debug-mesh option */ if (G.debug & G_DEBUG) { /* note: this warning may be un-called for if we are initializing the mesh for the * first time from bmesh, rather then giving a warning about this we could be smarter * and check if there was any data to begin with, for now just print the warning with * some info to help troubleshoot whats going on - campbell */ printf("%s: warning! Tessellation uvs or vcol data got out of sync, " "had to reset!\n CD_MTFACE: %d != CD_MTEXPOLY: %d || CD_MCOL: %d != CD_MLOOPCOL: %d\n", __func__, tottex_tessface, tottex_original, totcol_tessface, totcol_original); } } } } /* this ensures grouped customdata (e.g. mtexpoly and mloopuv and mtface, or * mloopcol and mcol) have the same relative active/render/clone/mask indices. * * note that for undo mesh data we want to skip 'ensure_tess_cd' call since * we don't want to store memory for tessface when its only used for older * versions of the mesh. - campbell*/ static void mesh_update_linked_customdata(Mesh *me, const short do_ensure_tess_cd) { if (me->edit_btmesh) BMEdit_UpdateLinkedCustomData(me->edit_btmesh); if (do_ensure_tess_cd) { mesh_ensure_tessellation_customdata(me); } CustomData_bmesh_update_active_layers(&me->fdata, &me->pdata, &me->ldata); } void mesh_update_customdata_pointers(Mesh *me, const short do_ensure_tess_cd) { mesh_update_linked_customdata(me, do_ensure_tess_cd); me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT); me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT); me->msticky = CustomData_get_layer(&me->vdata, CD_MSTICKY); me->medge = CustomData_get_layer(&me->edata, CD_MEDGE); me->mface = CustomData_get_layer(&me->fdata, CD_MFACE); me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL); me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE); me->mpoly = CustomData_get_layer(&me->pdata, CD_MPOLY); me->mloop = CustomData_get_layer(&me->ldata, CD_MLOOP); me->mtpoly = CustomData_get_layer(&me->pdata, CD_MTEXPOLY); me->mloopcol = CustomData_get_layer(&me->ldata, CD_MLOOPCOL); me->mloopuv = CustomData_get_layer(&me->ldata, CD_MLOOPUV); } /* Note: unlinking is called when me->id.us is 0, question remains how * much unlinking of Library data in Mesh should be done... probably * we need a more generic method, like the expand() functions in * readfile.c */ void BKE_mesh_unlink(Mesh *me) { int a; if (me == NULL) return; for (a = 0; a < me->totcol; a++) { if (me->mat[a]) me->mat[a]->id.us--; me->mat[a] = NULL; } if (me->key) { me->key->id.us--; } me->key = NULL; if (me->texcomesh) me->texcomesh = NULL; } /* do not free mesh itself */ void BKE_mesh_free(Mesh *me, int unlink) { if (unlink) BKE_mesh_unlink(me); CustomData_free(&me->vdata, me->totvert); CustomData_free(&me->edata, me->totedge); CustomData_free(&me->fdata, me->totface); CustomData_free(&me->ldata, me->totloop); CustomData_free(&me->pdata, me->totpoly); if (me->adt) { BKE_free_animdata(&me->id); me->adt = NULL; } if (me->mat) MEM_freeN(me->mat); if (me->bb) MEM_freeN(me->bb); if (me->mselect) MEM_freeN(me->mselect); if (me->edit_btmesh) MEM_freeN(me->edit_btmesh); } void copy_dverts(MDeformVert *dst, MDeformVert *src, int copycount) { /* Assumes dst is already set up */ int i; if (!src || !dst) return; memcpy(dst, src, copycount * sizeof(MDeformVert)); for (i = 0; i < copycount; i++) { if (src[i].dw) { dst[i].dw = MEM_callocN(sizeof(MDeformWeight) * src[i].totweight, "copy_deformWeight"); memcpy(dst[i].dw, src[i].dw, sizeof (MDeformWeight) * src[i].totweight); } } } void free_dverts(MDeformVert *dvert, int totvert) { /* Instead of freeing the verts directly, * call this function to delete any special * vert data */ int i; if (!dvert) return; /* Free any special data from the verts */ for (i = 0; i < totvert; i++) { if (dvert[i].dw) MEM_freeN(dvert[i].dw); } MEM_freeN(dvert); } static void mesh_tessface_clear_intern(Mesh *mesh, int free_customdata) { if (free_customdata) CustomData_free(&mesh->fdata, mesh->totface); mesh->mface = NULL; mesh->mtface = NULL; mesh->mcol = NULL; mesh->totface = 0; memset(&mesh->fdata, 0, sizeof(mesh->fdata)); } Mesh *BKE_mesh_add(const char *name) { Mesh *me; me = BKE_libblock_alloc(&G.main->mesh, ID_ME, name); me->size[0] = me->size[1] = me->size[2] = 1.0; me->smoothresh = 30; me->texflag = ME_AUTOSPACE; me->flag = ME_TWOSIDED; me->drawflag = ME_DRAWEDGES | ME_DRAWFACES | ME_DRAWCREASES; return me; } Mesh *BKE_mesh_copy(Mesh *me) { Mesh *men; MTFace *tface; MTexPoly *txface; int a, i; const int do_tessface = ((me->totface != 0) && (me->totpoly == 0)); /* only do tessface if we have no polys */ men = BKE_libblock_copy(&me->id); men->mat = MEM_dupallocN(me->mat); for (a = 0; a < men->totcol; a++) { id_us_plus((ID *)men->mat[a]); } id_us_plus((ID *)men->texcomesh); CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert); CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge); CustomData_copy(&me->ldata, &men->ldata, CD_MASK_MESH, CD_DUPLICATE, men->totloop); CustomData_copy(&me->pdata, &men->pdata, CD_MASK_MESH, CD_DUPLICATE, men->totpoly); if (do_tessface) { CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface); } else { mesh_tessface_clear_intern(men, FALSE); } mesh_update_customdata_pointers(men, do_tessface); /* ensure indirect linked data becomes lib-extern */ for (i = 0; i < me->fdata.totlayer; i++) { if (me->fdata.layers[i].type == CD_MTFACE) { tface = (MTFace *)me->fdata.layers[i].data; for (a = 0; a < me->totface; a++, tface++) if (tface->tpage) id_lib_extern((ID *)tface->tpage); } } for (i = 0; i < me->pdata.totlayer; i++) { if (me->pdata.layers[i].type == CD_MTEXPOLY) { txface = (MTexPoly *)me->pdata.layers[i].data; for (a = 0; a < me->totpoly; a++, txface++) if (txface->tpage) id_lib_extern((ID *)txface->tpage); } } men->mselect = NULL; men->edit_btmesh = NULL; men->bb = MEM_dupallocN(men->bb); men->key = BKE_key_copy(me->key); if (men->key) men->key->from = (ID *)men; return men; } BMesh *BKE_mesh_to_bmesh(Mesh *me, Object *ob) { BMesh *bm; bm = BM_mesh_create(&bm_mesh_allocsize_default); BM_mesh_bm_from_me(bm, me, TRUE, ob->shapenr); return bm; } static void expand_local_mesh(Mesh *me) { id_lib_extern((ID *)me->texcomesh); if (me->mtface || me->mtpoly) { int a, i; for (i = 0; i < me->pdata.totlayer; i++) { if (me->pdata.layers[i].type == CD_MTEXPOLY) { MTexPoly *txface = (MTexPoly *)me->fdata.layers[i].data; for (a = 0; a < me->totpoly; a++, txface++) { /* special case: ima always local immediately */ if (txface->tpage) { id_lib_extern((ID *)txface->tpage); } } } } for (i = 0; i < me->fdata.totlayer; i++) { if (me->fdata.layers[i].type == CD_MTFACE) { MTFace *tface = (MTFace *)me->fdata.layers[i].data; for (a = 0; a < me->totface; a++, tface++) { /* special case: ima always local immediately */ if (tface->tpage) { id_lib_extern((ID *)tface->tpage); } } } } } if (me->mat) { extern_local_matarar(me->mat, me->totcol); } } void BKE_mesh_make_local(Mesh *me) { Main *bmain = G.main; Object *ob; int is_local = FALSE, is_lib = FALSE; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if (me->id.lib == NULL) return; if (me->id.us == 1) { id_clear_lib_data(bmain, &me->id); expand_local_mesh(me); return; } for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) { if (me == ob->data) { if (ob->id.lib) is_lib = TRUE; else is_local = TRUE; } } if (is_local && is_lib == FALSE) { id_clear_lib_data(bmain, &me->id); expand_local_mesh(me); } else if (is_local && is_lib) { Mesh *me_new = BKE_mesh_copy(me); me_new->id.us = 0; /* Remap paths of new ID using old library as base. */ BKE_id_lib_local_paths(bmain, me->id.lib, &me_new->id); for (ob = bmain->object.first; ob; ob = ob->id.next) { if (me == ob->data) { if (ob->id.lib == NULL) { set_mesh(ob, me_new); } } } } } void BKE_mesh_boundbox_calc(Mesh *me, float r_loc[3], float r_size[3]) { BoundBox *bb; float min[3], max[3]; float mloc[3], msize[3]; if (me->bb == NULL) me->bb = MEM_callocN(sizeof(BoundBox), "boundbox"); bb = me->bb; if (!r_loc) r_loc = mloc; if (!r_size) r_size = msize; INIT_MINMAX(min, max); if (!BKE_mesh_minmax(me, min, max)) { min[0] = min[1] = min[2] = -1.0f; max[0] = max[1] = max[2] = 1.0f; } mid_v3_v3v3(r_loc, min, max); r_size[0] = (max[0] - min[0]) / 2.0f; r_size[1] = (max[1] - min[1]) / 2.0f; r_size[2] = (max[2] - min[2]) / 2.0f; BKE_boundbox_init_from_minmax(bb, min, max); } void BKE_mesh_texspace_calc(Mesh *me) { float loc[3], size[3]; int a; BKE_mesh_boundbox_calc(me, loc, size); if (me->texflag & ME_AUTOSPACE) { for (a = 0; a < 3; a++) { if (size[a] == 0.0f) size[a] = 1.0f; else if (size[a] > 0.0f && size[a] < 0.00001f) size[a] = 0.00001f; else if (size[a] < 0.0f && size[a] > -0.00001f) size[a] = -0.00001f; } copy_v3_v3(me->loc, loc); copy_v3_v3(me->size, size); zero_v3(me->rot); } } BoundBox *BKE_mesh_boundbox_get(Object *ob) { Mesh *me = ob->data; if (ob->bb) return ob->bb; if (!me->bb) BKE_mesh_texspace_calc(me); return me->bb; } void BKE_mesh_texspace_get(Mesh *me, float r_loc[3], float r_rot[3], float r_size[3]) { if (!me->bb) { BKE_mesh_texspace_calc(me); } if (r_loc) copy_v3_v3(r_loc, me->loc); if (r_rot) copy_v3_v3(r_rot, me->rot); if (r_size) copy_v3_v3(r_size, me->size); } float *BKE_mesh_orco_verts_get(Object *ob) { Mesh *me = ob->data; MVert *mvert = NULL; Mesh *tme = me->texcomesh ? me->texcomesh : me; int a, totvert; float (*vcos)[3] = NULL; /* Get appropriate vertex coordinates */ vcos = MEM_callocN(sizeof(*vcos) * me->totvert, "orco mesh"); mvert = tme->mvert; totvert = MIN2(tme->totvert, me->totvert); for (a = 0; a < totvert; a++, mvert++) { copy_v3_v3(vcos[a], mvert->co); } return (float *)vcos; } void BKE_mesh_orco_verts_transform(Mesh *me, float (*orco)[3], int totvert, int invert) { float loc[3], size[3]; int a; BKE_mesh_texspace_get(me->texcomesh ? me->texcomesh : me, loc, NULL, size); if (invert) { for (a = 0; a < totvert; a++) { float *co = orco[a]; madd_v3_v3v3v3(co, loc, co, size); } } else { for (a = 0; a < totvert; a++) { float *co = orco[a]; co[0] = (co[0] - loc[0]) / size[0]; co[1] = (co[1] - loc[1]) / size[1]; co[2] = (co[2] - loc[2]) / size[2]; } } } /* rotates the vertices of a face in case v[2] or v[3] (vertex index) is = 0. * this is necessary to make the if (mface->v4) check for quads work */ int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr) { /* first test if the face is legal */ if ((mface->v3 || nr == 4) && mface->v3 == mface->v4) { mface->v4 = 0; nr--; } if ((mface->v2 || mface->v4) && mface->v2 == mface->v3) { mface->v3 = mface->v4; mface->v4 = 0; nr--; } if (mface->v1 == mface->v2) { mface->v2 = mface->v3; mface->v3 = mface->v4; mface->v4 = 0; nr--; } /* check corrupt cases, bowtie geometry, cant handle these because edge data wont exist so just return 0 */ if (nr == 3) { if ( /* real edges */ mface->v1 == mface->v2 || mface->v2 == mface->v3 || mface->v3 == mface->v1) { return 0; } } else if (nr == 4) { if ( /* real edges */ mface->v1 == mface->v2 || mface->v2 == mface->v3 || mface->v3 == mface->v4 || mface->v4 == mface->v1 || /* across the face */ mface->v1 == mface->v3 || mface->v2 == mface->v4) { return 0; } } /* prevent a zero at wrong index location */ if (nr == 3) { if (mface->v3 == 0) { static int corner_indices[4] = {1, 2, 0, 3}; SWAP(unsigned int, mface->v1, mface->v2); SWAP(unsigned int, mface->v2, mface->v3); if (fdata) CustomData_swap(fdata, mfindex, corner_indices); } } else if (nr == 4) { if (mface->v3 == 0 || mface->v4 == 0) { static int corner_indices[4] = {2, 3, 0, 1}; SWAP(unsigned int, mface->v1, mface->v3); SWAP(unsigned int, mface->v2, mface->v4); if (fdata) CustomData_swap(fdata, mfindex, corner_indices); } } return nr; } Mesh *BKE_mesh_from_object(Object *ob) { if (ob == NULL) return NULL; if (ob->type == OB_MESH) return ob->data; else return NULL; } void set_mesh(Object *ob, Mesh *me) { Mesh *old = NULL; multires_force_update(ob); if (ob == NULL) return; if (ob->type == OB_MESH) { old = ob->data; if (old) old->id.us--; ob->data = me; id_us_plus((ID *)me); } test_object_materials((ID *)me); test_object_modifiers(ob); } /* ************** make edges in a Mesh, for outside of editmode */ struct edgesort { unsigned int v1, v2; short is_loose, is_draw; }; /* edges have to be added with lowest index first for sorting */ static void to_edgesort(struct edgesort *ed, unsigned int v1, unsigned int v2, short is_loose, short is_draw) { if (v1 < v2) { ed->v1 = v1; ed->v2 = v2; } else { ed->v1 = v2; ed->v2 = v1; } ed->is_loose = is_loose; ed->is_draw = is_draw; } static int vergedgesort(const void *v1, const void *v2) { const struct edgesort *x1 = v1, *x2 = v2; if (x1->v1 > x2->v1) return 1; else if (x1->v1 < x2->v1) return -1; else if (x1->v2 > x2->v2) return 1; else if (x1->v2 < x2->v2) return -1; return 0; } /* Create edges based on known verts and faces */ static void make_edges_mdata(MVert *UNUSED(allvert), MFace *allface, MLoop *allloop, MPoly *allpoly, int UNUSED(totvert), int totface, int UNUSED(totloop), int totpoly, int old, MEdge **alledge, int *_totedge) { MPoly *mpoly; MLoop *mloop; MFace *mface; MEdge *medge; EdgeHash *hash = BLI_edgehash_new(); struct edgesort *edsort, *ed; int a, b, totedge = 0, final = 0; /* we put all edges in array, sort them, and detect doubles that way */ for (a = totface, mface = allface; a > 0; a--, mface++) { if (mface->v4) totedge += 4; else if (mface->v3) totedge += 3; else totedge += 1; } if (totedge == 0) { /* flag that mesh has edges */ (*alledge) = MEM_callocN(0, "make mesh edges"); (*_totedge) = 0; return; } ed = edsort = MEM_mallocN(totedge * sizeof(struct edgesort), "edgesort"); for (a = totface, mface = allface; a > 0; a--, mface++) { to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2); if (mface->v4) { to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3); to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4); to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1); } else if (mface->v3) { to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3); to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1); } } qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort); /* count final amount */ for (a = totedge, ed = edsort; a > 1; a--, ed++) { /* edge is unique when it differs from next edge, or is last */ if (ed->v1 != (ed + 1)->v1 || ed->v2 != (ed + 1)->v2) final++; } final++; (*alledge) = medge = MEM_callocN(sizeof (MEdge) * final, "BKE_mesh_make_edges mdge"); (*_totedge) = final; for (a = totedge, ed = edsort; a > 1; a--, ed++) { /* edge is unique when it differs from next edge, or is last */ if (ed->v1 != (ed + 1)->v1 || ed->v2 != (ed + 1)->v2) { medge->v1 = ed->v1; medge->v2 = ed->v2; if (old == 0 || ed->is_draw) medge->flag = ME_EDGEDRAW | ME_EDGERENDER; if (ed->is_loose) medge->flag |= ME_LOOSEEDGE; /* order is swapped so extruding this edge as a surface wont flip face normals * with cyclic curves */ if (ed->v1 + 1 != ed->v2) { SWAP(unsigned int, medge->v1, medge->v2); } medge++; } else { /* equal edge, we merge the drawflag */ (ed + 1)->is_draw |= ed->is_draw; } } /* last edge */ medge->v1 = ed->v1; medge->v2 = ed->v2; medge->flag = ME_EDGEDRAW; if (ed->is_loose) medge->flag |= ME_LOOSEEDGE; medge->flag |= ME_EDGERENDER; MEM_freeN(edsort); /*set edge members of mloops*/ medge = *alledge; for (a = 0; a < *_totedge; a++, medge++) { BLI_edgehash_insert(hash, medge->v1, medge->v2, SET_INT_IN_POINTER(a)); } mpoly = allpoly; for (a = 0; a < totpoly; a++, mpoly++) { mloop = allloop + mpoly->loopstart; for (b = 0; b < mpoly->totloop; b++) { int v1, v2; v1 = mloop[b].v; v2 = ME_POLY_LOOP_NEXT(mloop, mpoly, b)->v; mloop[b].e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(hash, v1, v2)); } } BLI_edgehash_free(hash, NULL); } void BKE_mesh_make_edges(Mesh *me, int old) { MEdge *medge; int totedge = 0; make_edges_mdata(me->mvert, me->mface, me->mloop, me->mpoly, me->totvert, me->totface, me->totloop, me->totpoly, old, &medge, &totedge); if (totedge == 0) { /* flag that mesh has edges */ me->medge = medge; me->totedge = 0; return; } medge = CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, medge, totedge); me->medge = medge; me->totedge = totedge; BKE_mesh_strip_loose_faces(me); } /* We need to keep this for edge creation (for now?), and some old readfile code... */ void BKE_mesh_strip_loose_faces(Mesh *me) { MFace *f; int a, b; for (a = b = 0, f = me->mface; a < me->totface; a++, f++) { if (f->v3) { if (a != b) { memcpy(&me->mface[b], f, sizeof(me->mface[b])); CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1); } b++; } } if (a != b) { CustomData_free_elem(&me->fdata, b, a - b); me->totface = b; } } /* Works on both loops and polys! */ /* Note: It won't try to guess which loops of an invalid poly to remove! * this is the work of the caller, to mark those loops... * See e.g. BKE_mesh_validate_arrays(). */ void BKE_mesh_strip_loose_polysloops(Mesh *me) { MPoly *p; MLoop *l; int a, b; /* New loops idx! */ int *new_idx = MEM_mallocN(sizeof(int) * me->totloop, __func__); for (a = b = 0, p = me->mpoly; a < me->totpoly; a++, p++) { int invalid = FALSE; int i = p->loopstart; int stop = i + p->totloop; if (stop > me->totloop || stop < i) { invalid = TRUE; } else { l = &me->mloop[i]; i = stop - i; /* If one of the poly's loops is invalid, the whole poly is invalid! */ for (; i--; l++) { if (l->e == INVALID_LOOP_EDGE_MARKER) { invalid = TRUE; break; } } } if (p->totloop >= 3 && !invalid) { if (a != b) { memcpy(&me->mpoly[b], p, sizeof(me->mpoly[b])); CustomData_copy_data(&me->pdata, &me->pdata, a, b, 1); } b++; } } if (a != b) { CustomData_free_elem(&me->pdata, b, a - b); me->totpoly = b; } /* And now, get rid of invalid loops. */ for (a = b = 0, l = me->mloop; a < me->totloop; a++, l++) { if (l->e != INVALID_LOOP_EDGE_MARKER) { if (a != b) { memcpy(&me->mloop[b], l, sizeof(me->mloop[b])); CustomData_copy_data(&me->ldata, &me->ldata, a, b, 1); } new_idx[a] = b; b++; } else { /* XXX Theoretically, we should be able to not do this, as no remaining poly * should use any stripped loop. But for security's sake... */ new_idx[a] = -a; } } if (a != b) { CustomData_free_elem(&me->ldata, b, a - b); me->totloop = b; } /* And now, update polys' start loop index. */ /* Note: At this point, there should never be any poly using a striped loop! */ for (a = 0, p = me->mpoly; a < me->totpoly; a++, p++) { p->loopstart = new_idx[p->loopstart]; } MEM_freeN(new_idx); } void BKE_mesh_strip_loose_edges(Mesh *me) { MEdge *e; MLoop *l; int a, b; unsigned int *new_idx = MEM_mallocN(sizeof(int) * me->totedge, __func__); for (a = b = 0, e = me->medge; a < me->totedge; a++, e++) { if (e->v1 != e->v2) { if (a != b) { memcpy(&me->medge[b], e, sizeof(me->medge[b])); CustomData_copy_data(&me->edata, &me->edata, a, b, 1); } new_idx[a] = b; b++; } else { new_idx[a] = INVALID_LOOP_EDGE_MARKER; } } if (a != b) { CustomData_free_elem(&me->edata, b, a - b); me->totedge = b; } /* And now, update loops' edge indices. */ /* XXX We hope no loop was pointing to a striped edge! * Else, its e will be set to INVALID_LOOP_EDGE_MARKER :/ */ for (a = 0, l = me->mloop; a < me->totloop; a++, l++) { l->e = new_idx[l->e]; } MEM_freeN(new_idx); } void BKE_mesh_from_metaball(ListBase *lb, Mesh *me) { DispList *dl; MVert *mvert; MLoop *mloop, *allloop; MPoly *mpoly; float *nors, *verts; int a, *index; dl = lb->first; if (dl == NULL) return; if (dl->type == DL_INDEX4) { mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr); allloop = mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_CALLOC, NULL, dl->parts * 4); mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_CALLOC, NULL, dl->parts); me->mvert = mvert; me->mloop = mloop; me->mpoly = mpoly; me->totvert = dl->nr; me->totpoly = dl->parts; a = dl->nr; nors = dl->nors; verts = dl->verts; while (a--) { copy_v3_v3(mvert->co, verts); normal_float_to_short_v3(mvert->no, nors); mvert++; nors += 3; verts += 3; } a = dl->parts; index = dl->index; while (a--) { int count = index[2] != index[3] ? 4 : 3; mloop[0].v = index[0]; mloop[1].v = index[1]; mloop[2].v = index[2]; if (count == 4) mloop[3].v = index[3]; mpoly->totloop = count; mpoly->loopstart = (int)(mloop - allloop); mpoly->flag = ME_SMOOTH; mpoly++; mloop += count; me->totloop += count; index += 4; } mesh_update_customdata_pointers(me, TRUE); BKE_mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL); BKE_mesh_calc_edges(me, TRUE); } } /* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */ /* return non-zero on error */ int BKE_mesh_nurbs_to_mdata(Object *ob, MVert **allvert, int *totvert, MEdge **alledge, int *totedge, MLoop **allloop, MPoly **allpoly, int *totloop, int *totpoly) { return BKE_mesh_nurbs_to_mdata_customdb(ob, &ob->disp, allvert, totvert, alledge, totedge, allloop, allpoly, totloop, totpoly); } /* BMESH: this doesn't calculate all edges from polygons, * only free standing edges are calculated */ /* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */ /* use specified dispbase */ int BKE_mesh_nurbs_to_mdata_customdb(Object *ob, ListBase *dispbase, MVert **allvert, int *_totvert, MEdge **alledge, int *_totedge, MLoop **allloop, MPoly **allpoly, int *_totloop, int *_totpoly) { DispList *dl; Curve *cu; MVert *mvert; MPoly *mpoly; MLoop *mloop; MEdge *medge; float *data; int a, b, ofs, vertcount, startvert, totvert = 0, totedge = 0, totloop = 0, totvlak = 0; int p1, p2, p3, p4, *index; int conv_polys = 0; cu = ob->data; conv_polys |= cu->flag & CU_3D; /* 2d polys are filled with DL_INDEX3 displists */ conv_polys |= ob->type == OB_SURF; /* surf polys are never filled */ /* count */ dl = dispbase->first; while (dl) { if (dl->type == DL_SEGM) { totvert += dl->parts * dl->nr; totedge += dl->parts * (dl->nr - 1); } else if (dl->type == DL_POLY) { if (conv_polys) { totvert += dl->parts * dl->nr; totedge += dl->parts * dl->nr; } } else if (dl->type == DL_SURF) { int tot; totvert += dl->parts * dl->nr; tot = (dl->parts - 1 + ((dl->flag & DL_CYCL_V) == 2)) * (dl->nr - 1 + (dl->flag & DL_CYCL_U)); totvlak += tot; totloop += tot * 4; } else if (dl->type == DL_INDEX3) { int tot; totvert += dl->nr; tot = dl->parts; totvlak += tot; totloop += tot * 3; } dl = dl->next; } if (totvert == 0) { /* error("can't convert"); */ /* Make Sure you check ob->data is a curve */ return -1; } *allvert = mvert = MEM_callocN(sizeof(MVert) * totvert, "nurbs_init mvert"); *alledge = medge = MEM_callocN(sizeof(MEdge) * totedge, "nurbs_init medge"); *allloop = mloop = MEM_callocN(sizeof(MLoop) * totvlak * 4, "nurbs_init mloop"); // totloop *allpoly = mpoly = MEM_callocN(sizeof(MPoly) * totvlak, "nurbs_init mloop"); /* verts and faces */ vertcount = 0; dl = dispbase->first; while (dl) { int smooth = dl->rt & CU_SMOOTH ? 1 : 0; if (dl->type == DL_SEGM) { startvert = vertcount; a = dl->parts * dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } for (a = 0; a < dl->parts; a++) { ofs = a * dl->nr; for (b = 1; b < dl->nr; b++) { medge->v1 = startvert + ofs + b - 1; medge->v2 = startvert + ofs + b; medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW; medge++; } } } else if (dl->type == DL_POLY) { if (conv_polys) { startvert = vertcount; a = dl->parts * dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } for (a = 0; a < dl->parts; a++) { ofs = a * dl->nr; for (b = 0; b < dl->nr; b++) { medge->v1 = startvert + ofs + b; if (b == dl->nr - 1) medge->v2 = startvert + ofs; else medge->v2 = startvert + ofs + b + 1; medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW; medge++; } } } } else if (dl->type == DL_INDEX3) { startvert = vertcount; a = dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } a = dl->parts; index = dl->index; while (a--) { mloop[0].v = startvert + index[0]; mloop[1].v = startvert + index[2]; mloop[2].v = startvert + index[1]; mpoly->loopstart = (int)(mloop - (*allloop)); mpoly->totloop = 3; mpoly->mat_nr = dl->col; if (smooth) mpoly->flag |= ME_SMOOTH; mpoly++; mloop += 3; index += 3; } } else if (dl->type == DL_SURF) { startvert = vertcount; a = dl->parts * dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } for (a = 0; a < dl->parts; a++) { if ( (dl->flag & DL_CYCL_V) == 0 && a == dl->parts - 1) break; if (dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */ p1 = startvert + dl->nr * a; /* p4 -> p3 -> */ p2 = p1 + dl->nr - 1; /* -----> next row */ p3 = p1 + dl->nr; p4 = p2 + dl->nr; b = 0; } else { p2 = startvert + dl->nr * a; p1 = p2 + 1; p4 = p2 + dl->nr; p3 = p1 + dl->nr; b = 1; } if ( (dl->flag & DL_CYCL_V) && a == dl->parts - 1) { p3 -= dl->parts * dl->nr; p4 -= dl->parts * dl->nr; } for (; b < dl->nr; b++) { mloop[0].v = p1; mloop[1].v = p3; mloop[2].v = p4; mloop[3].v = p2; mpoly->loopstart = (int)(mloop - (*allloop)); mpoly->totloop = 4; mpoly->mat_nr = dl->col; if (smooth) mpoly->flag |= ME_SMOOTH; mpoly++; mloop += 4; p4 = p3; p3++; p2 = p1; p1++; } } } dl = dl->next; } *_totpoly = totvlak; *_totloop = totloop; *_totedge = totedge; *_totvert = totvert; /* not uded for bmesh */ #if 0 make_edges_mdata(*allvert, *allface, *allloop, *allpoly, totvert, totvlak, *_totloop, *_totpoly, 0, alledge, _totedge); mfaces_strip_loose(*allface, _totface); #endif return 0; } /* this may fail replacing ob->data, be sure to check ob->type */ void BKE_mesh_from_nurbs(Object *ob) { Main *bmain = G.main; Object *ob1; DerivedMesh *dm = ob->derivedFinal; Mesh *me; Curve *cu; MVert *allvert = NULL; MEdge *alledge = NULL; MLoop *allloop = NULL; MPoly *allpoly = NULL; int totvert, totedge, totloop, totpoly; cu = ob->data; if (dm == NULL) { if (BKE_mesh_nurbs_to_mdata(ob, &allvert, &totvert, &alledge, &totedge, &allloop, &allpoly, &totloop, &totpoly) != 0) { /* Error initializing */ return; } /* make mesh */ me = BKE_mesh_add("Mesh"); me->totvert = totvert; me->totedge = totedge; me->totloop = totloop; me->totpoly = totpoly; me->mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, allvert, me->totvert); me->medge = CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, alledge, me->totedge); me->mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_ASSIGN, allloop, me->totloop); me->mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_ASSIGN, allpoly, me->totpoly); BKE_mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL); BKE_mesh_calc_edges(me, TRUE); } else { me = BKE_mesh_add("Mesh"); DM_to_mesh(dm, me, ob); } me->totcol = cu->totcol; me->mat = cu->mat; BKE_mesh_texspace_calc(me); cu->mat = NULL; cu->totcol = 0; if (ob->data) { BKE_libblock_free(&bmain->curve, ob->data); } ob->data = me; ob->type = OB_MESH; /* other users */ ob1 = bmain->object.first; while (ob1) { if (ob1->data == cu) { ob1->type = OB_MESH; ob1->data = ob->data; id_us_plus((ID *)ob->data); } ob1 = ob1->id.next; } } typedef struct EdgeLink { Link *next, *prev; void *edge; } EdgeLink; typedef struct VertLink { Link *next, *prev; unsigned int index; } VertLink; static void prependPolyLineVert(ListBase *lb, unsigned int index) { VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink"); vl->index = index; BLI_addhead(lb, vl); } static void appendPolyLineVert(ListBase *lb, unsigned int index) { VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink"); vl->index = index; BLI_addtail(lb, vl); } void BKE_mesh_from_curve(Scene *scene, Object *ob) { /* make new mesh data from the original copy */ DerivedMesh *dm = mesh_get_derived_final(scene, ob, CD_MASK_MESH); MVert *mverts = dm->getVertArray(dm); MEdge *med, *medge = dm->getEdgeArray(dm); MFace *mf, *mface = dm->getTessFaceArray(dm); int totedge = dm->getNumEdges(dm); int totface = dm->getNumTessFaces(dm); int totedges = 0; int i, needsFree = 0; /* only to detect edge polylines */ EdgeHash *eh = BLI_edgehash_new(); EdgeHash *eh_edge = BLI_edgehash_new(); ListBase edges = {NULL, NULL}; /* create edges from all faces (so as to find edges not in any faces) */ mf = mface; for (i = 0; i < totface; i++, mf++) { if (!BLI_edgehash_haskey(eh, mf->v1, mf->v2)) BLI_edgehash_insert(eh, mf->v1, mf->v2, NULL); if (!BLI_edgehash_haskey(eh, mf->v2, mf->v3)) BLI_edgehash_insert(eh, mf->v2, mf->v3, NULL); if (mf->v4) { if (!BLI_edgehash_haskey(eh, mf->v3, mf->v4)) BLI_edgehash_insert(eh, mf->v3, mf->v4, NULL); if (!BLI_edgehash_haskey(eh, mf->v4, mf->v1)) BLI_edgehash_insert(eh, mf->v4, mf->v1, NULL); } else { if (!BLI_edgehash_haskey(eh, mf->v3, mf->v1)) BLI_edgehash_insert(eh, mf->v3, mf->v1, NULL); } } med = medge; for (i = 0; i < totedge; i++, med++) { if (!BLI_edgehash_haskey(eh, med->v1, med->v2)) { EdgeLink *edl = MEM_callocN(sizeof(EdgeLink), "EdgeLink"); BLI_edgehash_insert(eh_edge, med->v1, med->v2, NULL); edl->edge = med; BLI_addtail(&edges, edl); totedges++; } } BLI_edgehash_free(eh_edge, NULL); BLI_edgehash_free(eh, NULL); if (edges.first) { Curve *cu = BKE_curve_add(ob->id.name + 2, OB_CURVE); cu->flag |= CU_3D; while (edges.first) { /* each iteration find a polyline and add this as a nurbs poly spline */ ListBase polyline = {NULL, NULL}; /* store a list of VertLink's */ int closed = FALSE; int totpoly = 0; MEdge *med_current = ((EdgeLink *)edges.last)->edge; unsigned int startVert = med_current->v1; unsigned int endVert = med_current->v2; int ok = TRUE; appendPolyLineVert(&polyline, startVert); totpoly++; appendPolyLineVert(&polyline, endVert); totpoly++; BLI_freelinkN(&edges, edges.last); totedges--; while (ok) { /* while connected edges are found... */ ok = FALSE; i = totedges; while (i) { EdgeLink *edl; i -= 1; edl = BLI_findlink(&edges, i); med = edl->edge; if (med->v1 == endVert) { endVert = med->v2; appendPolyLineVert(&polyline, med->v2); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = TRUE; } else if (med->v2 == endVert) { endVert = med->v1; appendPolyLineVert(&polyline, endVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = TRUE; } else if (med->v1 == startVert) { startVert = med->v2; prependPolyLineVert(&polyline, startVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = TRUE; } else if (med->v2 == startVert) { startVert = med->v1; prependPolyLineVert(&polyline, startVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = TRUE; } } } /* Now we have a polyline, make into a curve */ if (startVert == endVert) { BLI_freelinkN(&polyline, polyline.last); totpoly--; closed = TRUE; } /* --- nurbs --- */ { Nurb *nu; BPoint *bp; VertLink *vl; /* create new 'nurb' within the curve */ nu = (Nurb *)MEM_callocN(sizeof(Nurb), "MeshNurb"); nu->pntsu = totpoly; nu->pntsv = 1; nu->orderu = 4; nu->flagu = CU_NURB_ENDPOINT | (closed ? CU_NURB_CYCLIC : 0); /* endpoint */ nu->resolu = 12; nu->bp = (BPoint *)MEM_callocN(sizeof(BPoint) * totpoly, "bpoints"); /* add points */ vl = polyline.first; for (i = 0, bp = nu->bp; i < totpoly; i++, bp++, vl = (VertLink *)vl->next) { copy_v3_v3(bp->vec, mverts[vl->index].co); bp->f1 = SELECT; bp->radius = bp->weight = 1.0; } BLI_freelistN(&polyline); /* add nurb to curve */ BLI_addtail(&cu->nurb, nu); } /* --- done with nurbs --- */ } ((Mesh *)ob->data)->id.us--; ob->data = cu; ob->type = OB_CURVE; /* curve objects can't contain DM in usual cases, we could free memory */ needsFree = 1; } dm->needsFree = needsFree; dm->release(dm); if (needsFree) { ob->derivedFinal = NULL; /* curve object could have got bounding box only in special cases */ if (ob->bb) { MEM_freeN(ob->bb); ob->bb = NULL; } } } void BKE_mesh_delete_material_index(Mesh *me, short index) { int i; for (i = 0; i < me->totpoly; i++) { MPoly *mp = &((MPoly *) me->mpoly)[i]; if (mp->mat_nr && mp->mat_nr >= index) mp->mat_nr--; } for (i = 0; i < me->totface; i++) { MFace *mf = &((MFace *) me->mface)[i]; if (mf->mat_nr && mf->mat_nr >= index) mf->mat_nr--; } } void BKE_mesh_smooth_flag_set(Object *meshOb, int enableSmooth) { Mesh *me = meshOb->data; int i; for (i = 0; i < me->totpoly; i++) { MPoly *mp = &((MPoly *) me->mpoly)[i]; if (enableSmooth) { mp->flag |= ME_SMOOTH; } else { mp->flag &= ~ME_SMOOTH; } } for (i = 0; i < me->totface; i++) { MFace *mf = &((MFace *) me->mface)[i]; if (enableSmooth) { mf->flag |= ME_SMOOTH; } else { mf->flag &= ~ME_SMOOTH; } } } void BKE_mesh_calc_normals_mapping(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys, int numLoops, int numPolys, float (*polyNors_r)[3], MFace *mfaces, int numFaces, int *origIndexFace, float (*faceNors_r)[3]) { BKE_mesh_calc_normals_mapping_ex(mverts, numVerts, mloop, mpolys, numLoops, numPolys, polyNors_r, mfaces, numFaces, origIndexFace, faceNors_r, FALSE); } void BKE_mesh_calc_normals_mapping_ex(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys, int numLoops, int numPolys, float (*polyNors_r)[3], MFace *mfaces, int numFaces, int *origIndexFace, float (*faceNors_r)[3], const short only_face_normals) { float (*pnors)[3] = polyNors_r, (*fnors)[3] = faceNors_r; int i; MFace *mf; MPoly *mp; if (numPolys == 0) { return; } /* if we are not calculating verts and no verts were passes thene we have nothign to do */ if ((only_face_normals == TRUE) && (polyNors_r == NULL) && (faceNors_r == NULL)) { printf("%s: called with nothing to do\n", __func__); return; } if (!pnors) pnors = MEM_callocN(sizeof(float) * 3 * numPolys, "poly_nors mesh.c"); /* if (!fnors) fnors = MEM_callocN(sizeof(float) * 3 * numFaces, "face nors mesh.c"); */ /* NO NEED TO ALLOC YET */ if (only_face_normals == FALSE) { /* vertex normals are optional, they require some extra calculations, * so make them optional */ BKE_mesh_calc_normals(mverts, numVerts, mloop, mpolys, numLoops, numPolys, pnors); } else { /* only calc poly normals */ mp = mpolys; for (i = 0; i < numPolys; i++, mp++) { mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]); } } if (origIndexFace && /* fnors == faceNors_r */ /* NO NEED TO ALLOC YET */ fnors != NULL && numFaces) { mf = mfaces; for (i = 0; i < numFaces; i++, mf++, origIndexFace++) { if (*origIndexFace < numPolys) { copy_v3_v3(fnors[i], pnors[*origIndexFace]); } else { /* eek, we're not corresponding to polys */ printf("error in BKE_mesh_calc_normals; tessellation face indices are incorrect. normals may look bad.\n"); } } } if (pnors != polyNors_r) MEM_freeN(pnors); /* if (fnors != faceNors_r) MEM_freeN(fnors); */ /* NO NEED TO ALLOC YET */ fnors = pnors = NULL; } void BKE_mesh_calc_normals(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys, int UNUSED(numLoops), int numPolys, float (*polyNors_r)[3]) { float (*pnors)[3] = polyNors_r; float (*tnorms)[3], (*edgevecbuf)[3] = NULL; float **vertcos = NULL, **vertnos = NULL; BLI_array_declare(vertcos); BLI_array_declare(vertnos); BLI_array_declare(edgevecbuf); int i, j; MPoly *mp; MLoop *ml; if (!pnors) pnors = MEM_callocN(sizeof(float) * 3 * numPolys, "poly_nors mesh.c"); /*first go through and calculate normals for all the polys*/ tnorms = MEM_callocN(sizeof(float) * 3 * numVerts, "tnorms mesh.c"); mp = mpolys; for (i = 0; i < numPolys; i++, mp++) { mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]); ml = mloop + mp->loopstart; BLI_array_empty(vertcos); BLI_array_empty(vertnos); BLI_array_grow_items(vertcos, mp->totloop); BLI_array_grow_items(vertnos, mp->totloop); for (j = 0; j < mp->totloop; j++) { int vindex = ml[j].v; vertcos[j] = mverts[vindex].co; vertnos[j] = tnorms[vindex]; } BLI_array_empty(edgevecbuf); BLI_array_grow_items(edgevecbuf, mp->totloop); accumulate_vertex_normals_poly(vertnos, pnors[i], vertcos, edgevecbuf, mp->totloop); } BLI_array_free(vertcos); BLI_array_free(vertnos); BLI_array_free(edgevecbuf); /* following Mesh convention; we use vertex coordinate itself for normal in this case */ for (i = 0; i < numVerts; i++) { MVert *mv = &mverts[i]; float *no = tnorms[i]; if (normalize_v3(no) == 0.0f) normalize_v3_v3(no, mv->co); normal_float_to_short_v3(mv->no, no); } MEM_freeN(tnorms); if (pnors != polyNors_r) MEM_freeN(pnors); } void BKE_mesh_calc_normals_tessface(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float (*faceNors_r)[3]) { float (*tnorms)[3] = MEM_callocN(numVerts * sizeof(*tnorms), "tnorms"); float (*fnors)[3] = (faceNors_r) ? faceNors_r : MEM_callocN(sizeof(*fnors) * numFaces, "meshnormals"); int i; for (i = 0; i < numFaces; i++) { MFace *mf = &mfaces[i]; float *f_no = fnors[i]; float *n4 = (mf->v4) ? tnorms[mf->v4] : NULL; float *c4 = (mf->v4) ? mverts[mf->v4].co : NULL; if (mf->v4) normal_quad_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co); else normal_tri_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co); accumulate_vertex_normals(tnorms[mf->v1], tnorms[mf->v2], tnorms[mf->v3], n4, f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, c4); } /* following Mesh convention; we use vertex coordinate itself for normal in this case */ for (i = 0; i < numVerts; i++) { MVert *mv = &mverts[i]; float *no = tnorms[i]; if (normalize_v3(no) == 0.0f) normalize_v3_v3(no, mv->co); normal_float_to_short_v3(mv->no, no); } MEM_freeN(tnorms); if (fnors != faceNors_r) MEM_freeN(fnors); } static void bm_corners_to_loops_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata, MFace *mface, int totloop, int findex, int loopstart, int numTex, int numCol) { MTFace *texface; MTexPoly *texpoly; MCol *mcol; MLoopCol *mloopcol; MLoopUV *mloopuv; MFace *mf; int i; mf = mface + findex; for (i = 0; i < numTex; i++) { texface = CustomData_get_n(fdata, CD_MTFACE, findex, i); texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, findex, i); ME_MTEXFACE_CPY(texpoly, texface); mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, loopstart, i); copy_v2_v2(mloopuv->uv, texface->uv[0]); mloopuv++; copy_v2_v2(mloopuv->uv, texface->uv[1]); mloopuv++; copy_v2_v2(mloopuv->uv, texface->uv[2]); mloopuv++; if (mf->v4) { copy_v2_v2(mloopuv->uv, texface->uv[3]); mloopuv++; } } for (i = 0; i < numCol; i++) { mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, loopstart, i); mcol = CustomData_get_n(fdata, CD_MCOL, findex, i); MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[0]); mloopcol++; MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[1]); mloopcol++; MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[2]); mloopcol++; if (mf->v4) { MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[3]); mloopcol++; } } if (CustomData_has_layer(fdata, CD_MDISPS)) { MDisps *ld = CustomData_get(ldata, loopstart, CD_MDISPS); MDisps *fd = CustomData_get(fdata, findex, CD_MDISPS); float (*disps)[3] = fd->disps; int i, tot = mf->v4 ? 4 : 3; int side, corners; if (CustomData_external_test(fdata, CD_MDISPS)) { if (id) { CustomData_external_add(ldata, id, CD_MDISPS, totloop, fdata->external->filename); } } corners = multires_mdisp_corners(fd); if (corners == 0) { /* Empty MDisp layers appear in at least one of the sintel.blend files. * Not sure why this happens, but it seems fine to just ignore them here. * If (corners == 0) for a non-empty layer though, something went wrong. */ BLI_assert(fd->totdisp == 0); } else { side = sqrt(fd->totdisp / corners); for (i = 0; i < tot; i++, disps += side * side, ld++) { ld->totdisp = side * side; ld->level = (int)(logf(side - 1.0f) / (float)M_LN2) + 1; if (ld->disps) MEM_freeN(ld->disps); ld->disps = MEM_callocN(sizeof(float) * 3 * side * side, "converted loop mdisps"); if (fd->disps) { memcpy(ld->disps, disps, sizeof(float) * 3 * side * side); } } } } } void BKE_mesh_convert_mfaces_to_mpolys(Mesh *mesh) { BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata, mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly, mesh->medge, mesh->mface, &mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly); mesh_update_customdata_pointers(mesh, TRUE); } /* the same as BKE_mesh_convert_mfaces_to_mpolys but oriented to be used in do_versions from readfile.c * the difference is how active/render/clone/stencil indices are handled here * * normally thay're being set from pdata which totally makes sense for meshes which are already * converted to bmesh structures, but when loading older files indices shall be updated in other * way around, so newly added pdata and ldata would have this indices set based on fdata layer * * this is normally only needed when reading older files, in all other cases BKE_mesh_convert_mfaces_to_mpolys * shall be always used */ void BKE_mesh_do_versions_convert_mfaces_to_mpolys(Mesh *mesh) { BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata, mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly, mesh->medge, mesh->mface, &mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly); CustomData_bmesh_do_versions_update_active_layers(&mesh->fdata, &mesh->pdata, &mesh->ldata); mesh_update_customdata_pointers(mesh, TRUE); } void BKE_mesh_convert_mfaces_to_mpolys_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata, int totedge_i, int totface_i, int totloop_i, int totpoly_i, MEdge *medge, MFace *mface, int *totloop_r, int *totpoly_r, MLoop **mloop_r, MPoly **mpoly_r) { MFace *mf; MLoop *ml, *mloop; MPoly *mp, *mpoly; MEdge *me; EdgeHash *eh; int numTex, numCol; int i, j, totloop, totpoly, *polyindex; /* just in case some of these layers are filled in (can happen with python created meshes) */ CustomData_free(ldata, totloop_i); CustomData_free(pdata, totpoly_i); memset(ldata, 0, sizeof(*ldata)); memset(pdata, 0, sizeof(*pdata)); totpoly = totface_i; mpoly = MEM_callocN(sizeof(MPoly) * totpoly, "mpoly converted"); CustomData_add_layer(pdata, CD_MPOLY, CD_ASSIGN, mpoly, totpoly); numTex = CustomData_number_of_layers(fdata, CD_MTFACE); numCol = CustomData_number_of_layers(fdata, CD_MCOL); totloop = 0; mf = mface; for (i = 0; i < totface_i; i++, mf++) { totloop += mf->v4 ? 4 : 3; } mloop = MEM_callocN(sizeof(MLoop) * totloop, "mloop converted"); CustomData_add_layer(ldata, CD_MLOOP, CD_ASSIGN, mloop, totloop); CustomData_to_bmeshpoly(fdata, pdata, ldata, totloop, totpoly); if (id) { /* ensure external data is transferred */ CustomData_external_read(fdata, id, CD_MASK_MDISPS, totface_i); } eh = BLI_edgehash_new(); /* build edge hash */ me = medge; for (i = 0; i < totedge_i; i++, me++) { BLI_edgehash_insert(eh, me->v1, me->v2, SET_INT_IN_POINTER(i)); /* unrelated but avoid having the FGON flag enabled, so we can reuse it later for something else */ me->flag &= ~ME_FGON; } polyindex = CustomData_get_layer(fdata, CD_POLYINDEX); j = 0; /* current loop index */ ml = mloop; mf = mface; mp = mpoly; for (i = 0; i < totface_i; i++, mf++, mp++) { mp->loopstart = j; mp->totloop = mf->v4 ? 4 : 3; mp->mat_nr = mf->mat_nr; mp->flag = mf->flag; # define ML(v1, v2) { \ ml->v = mf->v1; ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(eh, mf->v1, mf->v2)); ml++; j++; \ } (void)0 ML(v1, v2); ML(v2, v3); if (mf->v4) { ML(v3, v4); ML(v4, v1); } else { ML(v3, v1); } # undef ML bm_corners_to_loops_ex(id, fdata, ldata, pdata, mface, totloop, i, mp->loopstart, numTex, numCol); if (polyindex) { *polyindex = i; polyindex++; } } /* note, we don't convert FGons at all, these are not even real ngons, * they have their own UV's, colors etc - its more an editing feature. */ BLI_edgehash_free(eh, NULL); *totpoly_r = totpoly; *totloop_r = totloop; *mpoly_r = mpoly; *mloop_r = mloop; } float (*mesh_getVertexCos(Mesh * me, int *numVerts_r))[3] { int i, numVerts = me->totvert; float (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "vertexcos1"); if (numVerts_r) *numVerts_r = numVerts; for (i = 0; i < numVerts; i++) copy_v3_v3(cos[i], me->mvert[i].co); return cos; } /* ngon version wip, based on EDBM_uv_vert_map_create */ /* this replaces the non bmesh function (in trunk) which takes MTFace's, if we ever need it back we could * but for now this replaces it because its unused. */ UvVertMap *BKE_mesh_uv_vert_map_make(struct MPoly *mpoly, struct MLoop *mloop, struct MLoopUV *mloopuv, unsigned int totpoly, unsigned int totvert, int selected, float *limit) { UvVertMap *vmap; UvMapVert *buf; MPoly *mp; unsigned int a; int i, totuv, nverts; totuv = 0; /* generate UvMapVert array */ mp = mpoly; for (a = 0; a < totpoly; a++, mp++) if (!selected || (!(mp->flag & ME_HIDE) && (mp->flag & ME_FACE_SEL))) totuv += mp->totloop; if (totuv == 0) return NULL; vmap = (UvVertMap *)MEM_callocN(sizeof(*vmap), "UvVertMap"); if (!vmap) return NULL; vmap->vert = (UvMapVert **)MEM_callocN(sizeof(*vmap->vert) * totvert, "UvMapVert*"); buf = vmap->buf = (UvMapVert *)MEM_callocN(sizeof(*vmap->buf) * totuv, "UvMapVert"); if (!vmap->vert || !vmap->buf) { BKE_mesh_uv_vert_map_free(vmap); return NULL; } mp = mpoly; for (a = 0; a < totpoly; a++, mp++) { if (!selected || (!(mp->flag & ME_HIDE) && (mp->flag & ME_FACE_SEL))) { nverts = mp->totloop; for (i = 0; i < nverts; i++) { buf->tfindex = i; buf->f = a; buf->separate = 0; buf->next = vmap->vert[mloop[mp->loopstart + i].v]; vmap->vert[mloop[mp->loopstart + i].v] = buf; buf++; } } } /* sort individual uvs for each vert */ for (a = 0; a < totvert; a++) { UvMapVert *newvlist = NULL, *vlist = vmap->vert[a]; UvMapVert *iterv, *v, *lastv, *next; float *uv, *uv2, uvdiff[2]; while (vlist) { v = vlist; vlist = vlist->next; v->next = newvlist; newvlist = v; uv = mloopuv[mpoly[v->f].loopstart + v->tfindex].uv; lastv = NULL; iterv = vlist; while (iterv) { next = iterv->next; uv2 = mloopuv[mpoly[iterv->f].loopstart + iterv->tfindex].uv; sub_v2_v2v2(uvdiff, uv2, uv); if (fabsf(uv[0] - uv2[0]) < limit[0] && fabsf(uv[1] - uv2[1]) < limit[1]) { if (lastv) lastv->next = next; else vlist = next; iterv->next = newvlist; newvlist = iterv; } else lastv = iterv; iterv = next; } newvlist->separate = 1; } vmap->vert[a] = newvlist; } return vmap; } UvMapVert *BKE_mesh_uv_vert_map_get_vert(UvVertMap *vmap, unsigned int v) { return vmap->vert[v]; } void BKE_mesh_uv_vert_map_free(UvVertMap *vmap) { if (vmap) { if (vmap->vert) MEM_freeN(vmap->vert); if (vmap->buf) MEM_freeN(vmap->buf); MEM_freeN(vmap); } } /* Generates a map where the key is the vertex and the value is a list * of polys that use that vertex as a corner. The lists are allocated * from one memory pool. */ void create_vert_poly_map(MeshElemMap **map, int **mem, const MPoly *mpoly, const MLoop *mloop, int totvert, int totpoly, int totloop) { int i, j; int *indices; (*map) = MEM_callocN(sizeof(MeshElemMap) * totvert, "vert poly map"); (*mem) = MEM_mallocN(sizeof(int) * totloop, "vert poly map mem"); /* Count number of polys for each vertex */ for (i = 0; i < totpoly; i++) { const MPoly *p = &mpoly[i]; for (j = 0; j < p->totloop; j++) (*map)[mloop[p->loopstart + j].v].count++; } /* Assign indices mem */ indices = (*mem); for (i = 0; i < totvert; i++) { (*map)[i].indices = indices; indices += (*map)[i].count; /* Reset 'count' for use as index in last loop */ (*map)[i].count = 0; } /* Find the users */ for (i = 0; i < totpoly; i++) { const MPoly *p = &mpoly[i]; for (j = 0; j < p->totloop; j++) { int v = mloop[p->loopstart + j].v; (*map)[v].indices[(*map)[v].count] = i; (*map)[v].count++; } } } /* Generates a map where the key is the vertex and the value is a list * of edges that use that vertex as an endpoint. The lists are allocated * from one memory pool. */ void create_vert_edge_map(MeshElemMap **map, int **mem, const MEdge *medge, int totvert, int totedge) { int i, *indices; (*map) = MEM_callocN(sizeof(MeshElemMap) * totvert, "vert-edge map"); (*mem) = MEM_mallocN(sizeof(int) * totedge * 2, "vert-edge map mem"); /* Count number of edges for each vertex */ for (i = 0; i < totedge; i++) { (*map)[medge[i].v1].count++; (*map)[medge[i].v2].count++; } /* Assign indices mem */ indices = (*mem); for (i = 0; i < totvert; i++) { (*map)[i].indices = indices; indices += (*map)[i].count; /* Reset 'count' for use as index in last loop */ (*map)[i].count = 0; } /* Find the users */ for (i = 0; i < totedge; i++) { const int v[2] = {medge[i].v1, medge[i].v2}; (*map)[v[0]].indices[(*map)[v[0]].count] = i; (*map)[v[1]].indices[(*map)[v[1]].count] = i; (*map)[v[0]].count++; (*map)[v[1]].count++; } } void BKE_mesh_loops_to_mface_corners(CustomData *fdata, CustomData *ldata, CustomData *pdata, int lindex[4], int findex, const int polyindex, const int mf_len, /* 3 or 4 */ /* cache values to avoid lookups every time */ const int numTex, /* CustomData_number_of_layers(pdata, CD_MTEXPOLY) */ const int numCol, /* CustomData_number_of_layers(ldata, CD_MLOOPCOL) */ const int hasPCol, /* CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL) */ const int hasOrigSpace /* CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP) */ ) { MTFace *texface; MTexPoly *texpoly; MCol *mcol; MLoopCol *mloopcol; MLoopUV *mloopuv; int i, j; for (i = 0; i < numTex; i++) { texface = CustomData_get_n(fdata, CD_MTFACE, findex, i); texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, polyindex, i); ME_MTEXFACE_CPY(texface, texpoly); for (j = 0; j < mf_len; j++) { mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, lindex[j], i); copy_v2_v2(texface->uv[j], mloopuv->uv); } } for (i = 0; i < numCol; i++) { mcol = CustomData_get_n(fdata, CD_MCOL, findex, i); for (j = 0; j < mf_len; j++) { mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, lindex[j], i); MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]); } } if (hasPCol) { mcol = CustomData_get(fdata, findex, CD_PREVIEW_MCOL); for (j = 0; j < mf_len; j++) { mloopcol = CustomData_get(ldata, lindex[j], CD_PREVIEW_MLOOPCOL); MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]); } } if (hasOrigSpace) { OrigSpaceFace *of = CustomData_get(fdata, findex, CD_ORIGSPACE); OrigSpaceLoop *lof; for (j = 0; j < mf_len; j++) { lof = CustomData_get(ldata, lindex[j], CD_ORIGSPACE_MLOOP); copy_v2_v2(of->uv[j], lof->uv); } } } /* * this function recreates a tessellation. * returns number of tessellation faces. */ int BKE_mesh_recalc_tessellation(CustomData *fdata, CustomData *ldata, CustomData *pdata, MVert *mvert, int totface, int UNUSED(totloop), int totpoly, /* when tessellating to recalculate normals after * we can skip copying here */ const int do_face_nor_cpy) { /* use this to avoid locking pthread for _every_ polygon * and calling the fill function */ #define USE_TESSFACE_SPEEDUP #define USE_TESSFACE_QUADS // NEEDS FURTHER TESTING #define TESSFACE_SCANFILL (1 << 0) #define TESSFACE_IS_QUAD (1 << 1) MPoly *mp, *mpoly; MLoop *ml, *mloop; MFace *mface = NULL, *mf; BLI_array_declare(mface); ScanFillContext sf_ctx; ScanFillVert *sf_vert, *sf_vert_last, *sf_vert_first; ScanFillFace *sf_tri; int *mface_orig_index = NULL; BLI_array_declare(mface_orig_index); int *mface_to_poly_map = NULL; BLI_array_declare(mface_to_poly_map); int lindex[4]; /* only ever use 3 in this case */ int *poly_orig_index; int poly_index, j, mface_index; const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY); const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL); const int hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL); const int hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP); mpoly = CustomData_get_layer(pdata, CD_MPOLY); mloop = CustomData_get_layer(ldata, CD_MLOOP); /* allocate the length of totfaces, avoid many small reallocs, * if all faces are tri's it will be correct, quads == 2x allocs */ BLI_array_reserve(mface_to_poly_map, totpoly); BLI_array_reserve(mface, totpoly); mface_index = 0; mp = mpoly; poly_orig_index = CustomData_get_layer(pdata, CD_ORIGINDEX); for (poly_index = 0; poly_index < totpoly; poly_index++, mp++) { if (mp->totloop < 3) { /* do nothing */ } #ifdef USE_TESSFACE_SPEEDUP #define ML_TO_MF(i1, i2, i3) \ BLI_array_grow_one(mface_to_poly_map); \ BLI_array_grow_one(mface); \ mface_to_poly_map[mface_index] = poly_index; \ mf = &mface[mface_index]; \ /* set loop indices, transformed to vert indices later */ \ mf->v1 = mp->loopstart + i1; \ mf->v2 = mp->loopstart + i2; \ mf->v3 = mp->loopstart + i3; \ mf->v4 = 0; \ mf->mat_nr = mp->mat_nr; \ mf->flag = mp->flag; \ if (poly_orig_index) { \ BLI_array_append(mface_orig_index, \ poly_orig_index[poly_index]); \ } \ (void)0 /* ALMOST IDENTICAL TO DEFINE ABOVE (see EXCEPTION) */ #define ML_TO_MF_QUAD() \ BLI_array_grow_one(mface_to_poly_map); \ BLI_array_grow_one(mface); \ mface_to_poly_map[mface_index] = poly_index; \ mf = &mface[mface_index]; \ /* set loop indices, transformed to vert indices later */ \ mf->v1 = mp->loopstart + 0; /* EXCEPTION */ \ mf->v2 = mp->loopstart + 1; /* EXCEPTION */ \ mf->v3 = mp->loopstart + 2; /* EXCEPTION */ \ mf->v4 = mp->loopstart + 3; /* EXCEPTION */ \ mf->mat_nr = mp->mat_nr; \ mf->flag = mp->flag; \ if (poly_orig_index) { \ BLI_array_append(mface_orig_index, \ poly_orig_index[poly_index]); \ } \ mf->edcode |= TESSFACE_IS_QUAD; /* EXCEPTION */ \ (void)0 else if (mp->totloop == 3) { ML_TO_MF(0, 1, 2); mface_index++; } else if (mp->totloop == 4) { #ifdef USE_TESSFACE_QUADS ML_TO_MF_QUAD(); mface_index++; #else ML_TO_MF(0, 1, 2); mface_index++; ML_TO_MF(0, 2, 3); mface_index++; #endif } #endif /* USE_TESSFACE_SPEEDUP */ else { int totfilltri; ml = mloop + mp->loopstart; BLI_scanfill_begin(&sf_ctx); sf_vert_first = NULL; sf_vert_last = NULL; for (j = 0; j < mp->totloop; j++, ml++) { sf_vert = BLI_scanfill_vert_add(&sf_ctx, mvert[ml->v].co); sf_vert->keyindex = mp->loopstart + j; if (sf_vert_last) BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert); if (!sf_vert_first) sf_vert_first = sf_vert; sf_vert_last = sf_vert; } BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert_first); totfilltri = BLI_scanfill_calc(&sf_ctx, FALSE); if (totfilltri) { BLI_array_grow_items(mface_to_poly_map, totfilltri); BLI_array_grow_items(mface, totfilltri); if (poly_orig_index) { BLI_array_grow_items(mface_orig_index, totfilltri); } for (sf_tri = sf_ctx.fillfacebase.first; sf_tri; sf_tri = sf_tri->next, mf++) { mface_to_poly_map[mface_index] = poly_index; mf = &mface[mface_index]; /* set loop indices, transformed to vert indices later */ mf->v1 = sf_tri->v1->keyindex; mf->v2 = sf_tri->v2->keyindex; mf->v3 = sf_tri->v3->keyindex; mf->v4 = 0; mf->mat_nr = mp->mat_nr; mf->flag = mp->flag; #ifdef USE_TESSFACE_SPEEDUP mf->edcode |= TESSFACE_SCANFILL; /* tag for sorting loop indices */ #endif if (poly_orig_index) { mface_orig_index[mface_index] = poly_orig_index[poly_index]; } mface_index++; } } BLI_scanfill_end(&sf_ctx); } } CustomData_free(fdata, totface); memset(fdata, 0, sizeof(CustomData)); totface = mface_index; /* not essential but without this we store over-alloc'd memory in the CustomData layers */ if (LIKELY((MEM_allocN_len(mface) / sizeof(*mface)) != totface)) { mface = MEM_reallocN(mface, sizeof(*mface) * totface); mface_to_poly_map = MEM_reallocN(mface_to_poly_map, sizeof(*mface_to_poly_map) * totface); if (mface_orig_index) { mface_orig_index = MEM_reallocN(mface_orig_index, sizeof(*mface_orig_index) * totface); } } CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface); /* CD_POLYINDEX will contain an array of indices from tessfaces to the polygons * they are directly tessellated from */ CustomData_add_layer(fdata, CD_POLYINDEX, CD_ASSIGN, mface_to_poly_map, totface); if (mface_orig_index) { /* If polys had a CD_ORIGINDEX layer, then the tessellated faces will get this * layer as well, pointing to polys from the original mesh (not the polys * that just got tessellated) */ CustomData_add_layer(fdata, CD_ORIGINDEX, CD_ASSIGN, mface_orig_index, totface); } CustomData_from_bmeshpoly(fdata, pdata, ldata, totface); if (do_face_nor_cpy) { /* If polys have a normals layer, copying that to faces can help * avoid the need to recalculate normals later */ if (CustomData_has_layer(pdata, CD_NORMAL)) { float (*pnors)[3] = CustomData_get_layer(pdata, CD_NORMAL); float (*fnors)[3] = CustomData_add_layer(fdata, CD_NORMAL, CD_CALLOC, NULL, totface); for (mface_index = 0; mface_index < totface; mface_index++) { copy_v3_v3(fnors[mface_index], pnors[mface_to_poly_map[mface_index]]); } } } mf = mface; for (mface_index = 0; mface_index < totface; mface_index++, mf++) { #ifdef USE_TESSFACE_QUADS const int mf_len = mf->edcode & TESSFACE_IS_QUAD ? 4 : 3; #endif #ifdef USE_TESSFACE_SPEEDUP /* skip sorting when not using ngons */ if (UNLIKELY(mf->edcode & TESSFACE_SCANFILL)) #endif { /* sort loop indices to ensure winding is correct */ if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2); if (mf->v2 > mf->v3) SWAP(int, mf->v2, mf->v3); if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2); if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2); if (mf->v2 > mf->v3) SWAP(int, mf->v2, mf->v3); if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2); } /* end abusing the edcode */ #if defined(USE_TESSFACE_QUADS) || defined(USE_TESSFACE_SPEEDUP) mf->edcode = 0; #endif lindex[0] = mf->v1; lindex[1] = mf->v2; lindex[2] = mf->v3; #ifdef USE_TESSFACE_QUADS if (mf_len == 4) lindex[3] = mf->v4; #endif /*transform loop indices to vert indices*/ mf->v1 = mloop[mf->v1].v; mf->v2 = mloop[mf->v2].v; mf->v3 = mloop[mf->v3].v; #ifdef USE_TESSFACE_QUADS if (mf_len == 4) mf->v4 = mloop[mf->v4].v; #endif BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata, lindex, mface_index, mface_to_poly_map[mface_index], #ifdef USE_TESSFACE_QUADS mf_len, #else 3, #endif numTex, numCol, hasPCol, hasOrigSpace); #ifdef USE_TESSFACE_QUADS test_index_face(mf, fdata, mface_index, mf_len); #endif } return totface; #undef USE_TESSFACE_SPEEDUP } #ifdef USE_BMESH_SAVE_AS_COMPAT /* * this function recreates a tessellation. * returns number of tessellation faces. */ int BKE_mesh_mpoly_to_mface(struct CustomData *fdata, struct CustomData *ldata, struct CustomData *pdata, int totface, int UNUSED(totloop), int totpoly) { MLoop *mloop; int lindex[4]; int i; int k; MPoly *mp, *mpoly; MFace *mface = NULL, *mf; BLI_array_declare(mface); const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY); const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL); const int hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL); const int hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP); mpoly = CustomData_get_layer(pdata, CD_MPOLY); mloop = CustomData_get_layer(ldata, CD_MLOOP); mp = mpoly; k = 0; for (i = 0; i < totpoly; i++, mp++) { if (ELEM(mp->totloop, 3, 4)) { BLI_array_grow_one(mface); mf = &mface[k]; mf->mat_nr = mp->mat_nr; mf->flag = mp->flag; mf->v1 = mp->loopstart + 0; mf->v2 = mp->loopstart + 1; mf->v3 = mp->loopstart + 2; mf->v4 = (mp->totloop == 4) ? (mp->loopstart + 3) : 0; /* abuse edcode for temp storage and clear next loop */ mf->edcode = (char)mp->totloop; /* only ever 3 or 4 */ k++; } } CustomData_free(fdata, totface); memset(fdata, 0, sizeof(CustomData)); totface = k; CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface); CustomData_from_bmeshpoly(fdata, pdata, ldata, totface); mp = mpoly; k = 0; for (i = 0; i < totpoly; i++, mp++) { if (ELEM(mp->totloop, 3, 4)) { mf = &mface[k]; if (mf->edcode == 3) { /*sort loop indices to ensure winding is correct*/ /* NO SORT - looks like we can skip this */ lindex[0] = mf->v1; lindex[1] = mf->v2; lindex[2] = mf->v3; lindex[3] = 0; /* unused */ /*transform loop indices to vert indices*/ mf->v1 = mloop[mf->v1].v; mf->v2 = mloop[mf->v2].v; mf->v3 = mloop[mf->v3].v; BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata, lindex, k, i, 3, numTex, numCol, hasPCol, hasOrigSpace); test_index_face(mf, fdata, k, 3); } else { /*sort loop indices to ensure winding is correct*/ /* NO SORT - looks like we can skip this */ lindex[0] = mf->v1; lindex[1] = mf->v2; lindex[2] = mf->v3; lindex[3] = mf->v4; /*transform loop indices to vert indices*/ mf->v1 = mloop[mf->v1].v; mf->v2 = mloop[mf->v2].v; mf->v3 = mloop[mf->v3].v; mf->v4 = mloop[mf->v4].v; BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata, lindex, k, i, 4, numTex, numCol, hasPCol, hasOrigSpace); test_index_face(mf, fdata, k, 4); } mf->edcode = 0; k++; } } return k; } #endif /* USE_BMESH_SAVE_AS_COMPAT */ /* * COMPUTE POLY NORMAL * * Computes the normal of a planar * polygon See Graphics Gems for * computing newell normal. * */ static void mesh_calc_ngon_normal(MPoly *mpoly, MLoop *loopstart, MVert *mvert, float normal[3]) { const int nverts = mpoly->totloop; float const *v_prev = mvert[loopstart[nverts - 1].v].co; float const *v_curr; int i; zero_v3(normal); /* Newell's Method */ for (i = 0; i < nverts; i++) { v_curr = mvert[loopstart[i].v].co; add_newell_cross_v3_v3v3(normal, v_prev, v_curr); v_prev = v_curr; } if (UNLIKELY(normalize_v3(normal) == 0.0f)) { normal[2] = 1.0f; /* other axis set to 0.0 */ } } void mesh_calc_poly_normal(MPoly *mpoly, MLoop *loopstart, MVert *mvarray, float no[3]) { if (mpoly->totloop > 4) { mesh_calc_ngon_normal(mpoly, loopstart, mvarray, no); } else if (mpoly->totloop == 3) { normal_tri_v3(no, mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co ); } else if (mpoly->totloop == 4) { normal_quad_v3(no, mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co, mvarray[loopstart[3].v].co ); } else { /* horrible, two sided face! */ no[0] = 0.0; no[1] = 0.0; no[2] = 1.0; } } /* duplicate of function above _but_ takes coords rather then mverts */ static void mesh_calc_ngon_normal_coords(MPoly *mpoly, MLoop *loopstart, const float (*vertex_coords)[3], float normal[3]) { const int nverts = mpoly->totloop; float const *v_prev = vertex_coords[loopstart[nverts - 1].v]; float const *v_curr; int i; zero_v3(normal); /* Newell's Method */ for (i = 0; i < nverts; i++) { v_curr = vertex_coords[loopstart[i].v]; add_newell_cross_v3_v3v3(normal, v_prev, v_curr); v_prev = v_curr; } if (UNLIKELY(normalize_v3(normal) == 0.0f)) { normal[2] = 1.0f; /* other axis set to 0.0 */ } } void BKE_mesh_calc_poly_normal_coords(MPoly *mpoly, MLoop *loopstart, const float (*vertex_coords)[3], float no[3]) { if (mpoly->totloop > 4) { mesh_calc_ngon_normal_coords(mpoly, loopstart, vertex_coords, no); } else if (mpoly->totloop == 3) { normal_tri_v3(no, vertex_coords[loopstart[0].v], vertex_coords[loopstart[1].v], vertex_coords[loopstart[2].v] ); } else if (mpoly->totloop == 4) { normal_quad_v3(no, vertex_coords[loopstart[0].v], vertex_coords[loopstart[1].v], vertex_coords[loopstart[2].v], vertex_coords[loopstart[3].v] ); } else { /* horrible, two sided face! */ no[0] = 0.0; no[1] = 0.0; no[2] = 1.0; } } static void mesh_calc_ngon_center(MPoly *mpoly, MLoop *loopstart, MVert *mvert, float cent[3]) { const float w = 1.0f / (float)mpoly->totloop; int i; zero_v3(cent); for (i = 0; i < mpoly->totloop; i++) { madd_v3_v3fl(cent, mvert[(loopstart++)->v].co, w); } } void BKE_mesh_calc_poly_center(MPoly *mpoly, MLoop *loopstart, MVert *mvarray, float cent[3]) { if (mpoly->totloop == 3) { cent_tri_v3(cent, mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co ); } else if (mpoly->totloop == 4) { cent_quad_v3(cent, mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co, mvarray[loopstart[3].v].co ); } else { mesh_calc_ngon_center(mpoly, loopstart, mvarray, cent); } } /* note, passing polynormal is only a speedup so we can skip calculating it */ float BKE_mesh_calc_poly_area(MPoly *mpoly, MLoop *loopstart, MVert *mvarray, float polynormal[3]) { if (mpoly->totloop == 3) { return area_tri_v3(mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co ); } else if (mpoly->totloop == 4) { return area_quad_v3(mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co, mvarray[loopstart[3].v].co ); } else { int i; MLoop *l_iter = loopstart; float area, polynorm_local[3], (*vertexcos)[3]; float *no = polynormal ? polynormal : polynorm_local; BLI_array_fixedstack_declare(vertexcos, BM_NGON_STACK_SIZE, mpoly->totloop, __func__); /* pack vertex cos into an array for area_poly_v3 */ for (i = 0; i < mpoly->totloop; i++, l_iter++) { copy_v3_v3(vertexcos[i], mvarray[l_iter->v].co); } /* need normal for area_poly_v3 as well */ if (polynormal == NULL) { mesh_calc_poly_normal(mpoly, loopstart, mvarray, no); } /* finally calculate the area */ area = area_poly_v3(mpoly->totloop, vertexcos, no); BLI_array_fixedstack_free(vertexcos); return area; } } /* Find the index of the loop in 'poly' which references vertex, * returns -1 if not found */ int poly_find_loop_from_vert(const MPoly *poly, const MLoop *loopstart, unsigned vert) { int j; for (j = 0; j < poly->totloop; j++, loopstart++) { if (loopstart->v == vert) return j; } return -1; } /* Fill 'adj_r' with the loop indices in 'poly' adjacent to the * vertex. Returns the index of the loop matching vertex, or -1 if the * vertex is not in 'poly' */ int poly_get_adj_loops_from_vert(unsigned adj_r[3], const MPoly *poly, const MLoop *mloop, unsigned vert) { int corner = poly_find_loop_from_vert(poly, &mloop[poly->loopstart], vert); if (corner != -1) { const MLoop *ml = &mloop[poly->loopstart + corner]; /* vertex was found */ adj_r[0] = ME_POLY_LOOP_PREV(mloop, poly, corner)->v; adj_r[1] = ml->v; adj_r[2] = ME_POLY_LOOP_NEXT(mloop, poly, corner)->v; } return corner; } /* Return the index of the edge vert that is not equal to 'v'. If * neither edge vertex is equal to 'v', returns -1. */ int BKE_mesh_edge_other_vert(const MEdge *e, int v) { if (e->v1 == v) return e->v2; else if (e->v2 == v) return e->v1; else return -1; } /* update the hide flag for edges and faces from the corresponding * flag in verts */ void BKE_mesh_flush_hidden_from_verts(const MVert *mvert, const MLoop *mloop, MEdge *medge, int totedge, MPoly *mpoly, int totpoly) { int i, j; for (i = 0; i < totedge; i++) { MEdge *e = &medge[i]; if (mvert[e->v1].flag & ME_HIDE || mvert[e->v2].flag & ME_HIDE) { e->flag |= ME_HIDE; } else { e->flag &= ~ME_HIDE; } } for (i = 0; i < totpoly; i++) { MPoly *p = &mpoly[i]; p->flag &= ~ME_HIDE; for (j = 0; j < p->totloop; j++) { if (mvert[mloop[p->loopstart + j].v].flag & ME_HIDE) p->flag |= ME_HIDE; } } } /* basic vertex data functions */ int BKE_mesh_minmax(Mesh *me, float r_min[3], float r_max[3]) { int i = me->totvert; MVert *mvert; for (mvert = me->mvert; i--; mvert++) { minmax_v3v3_v3(r_min, r_max, mvert->co); } return (me->totvert != 0); } int BKE_mesh_center_median(Mesh *me, float cent[3]) { int i = me->totvert; MVert *mvert; zero_v3(cent); for (mvert = me->mvert; i--; mvert++) { add_v3_v3(cent, mvert->co); } /* otherwise we get NAN for 0 verts */ if (me->totvert) { mul_v3_fl(cent, 1.0f / (float)me->totvert); } return (me->totvert != 0); } int BKE_mesh_center_bounds(Mesh *me, float cent[3]) { float min[3], max[3]; INIT_MINMAX(min, max); if (BKE_mesh_minmax(me, min, max)) { mid_v3_v3v3(cent, min, max); return 1; } return 0; } void BKE_mesh_translate(Mesh *me, float offset[3], int do_keys) { int i = me->totvert; MVert *mvert; for (mvert = me->mvert; i--; mvert++) { add_v3_v3(mvert->co, offset); } if (do_keys && me->key) { KeyBlock *kb; for (kb = me->key->block.first; kb; kb = kb->next) { float *fp = kb->data; for (i = kb->totelem; i--; fp += 3) { add_v3_v3(fp, offset); } } } } void BKE_mesh_ensure_navmesh(Mesh *me) { if (!CustomData_has_layer(&me->pdata, CD_RECAST)) { int i; int numFaces = me->totpoly; int *recastData; CustomData_add_layer_named(&me->pdata, CD_RECAST, CD_CALLOC, NULL, numFaces, "recastData"); recastData = (int *)CustomData_get_layer(&me->pdata, CD_RECAST); for (i = 0; i < numFaces; i++) { recastData[i] = i + 1; } CustomData_add_layer_named(&me->pdata, CD_RECAST, CD_REFERENCE, recastData, numFaces, "recastData"); } } void BKE_mesh_tessface_calc(Mesh *mesh) { mesh->totface = BKE_mesh_recalc_tessellation(&mesh->fdata, &mesh->ldata, &mesh->pdata, mesh->mvert, mesh->totface, mesh->totloop, mesh->totpoly, /* calc normals right after, don't copy from polys here */ FALSE); mesh_update_customdata_pointers(mesh, TRUE); } void BKE_mesh_tessface_ensure(Mesh *mesh) { if (mesh->totpoly && mesh->totface == 0) { BKE_mesh_tessface_calc(mesh); } } void BKE_mesh_tessface_clear(Mesh *mesh) { mesh_tessface_clear_intern(mesh, TRUE); } #if 0 /* slow version of the function below */ void BKE_mesh_poly_calc_angles(MVert *mvert, MLoop *mloop, MPoly *mp, float angles[]) { MLoop *ml; int j; for (j = 0, ml = mloop + mp->loopstart; j < mp->totloop; j++, ml++) { MLoop *ml_prev = ME_POLY_LOOP_PREV(mloop, mp, j); MLoop *ml_next = ME_POLY_LOOP_NEXT(mloop, mp, j); float e1[3], e2[3]; sub_v3_v3v3(e1, mvert[ml_next->v].co, mvert[ml->v].co); sub_v3_v3v3(e2, mvert[ml_prev->v].co, mvert[ml->v].co); angles[j] = (float)M_PI - angle_v3v3(e1, e2); } } #else /* equivalent the function above but avoid multiple subtractions + normalize */ void BKE_mesh_poly_calc_angles(MVert *mvert, MLoop *mloop, MPoly *mp, float angles[]) { MLoop *ml = mloop + mp->loopstart; float nor_prev[3]; float nor_next[3]; int i_this = mp->totloop - 1; int i_next = 0; sub_v3_v3v3(nor_prev, mvert[ml[i_this - 1].v].co, mvert[ml[i_this].v].co); normalize_v3(nor_prev); while (i_next < mp->totloop) { sub_v3_v3v3(nor_next, mvert[ml[i_this].v].co, mvert[ml[i_next].v].co); normalize_v3(nor_next); angles[i_this] = angle_normalized_v3v3(nor_prev, nor_next); /* step */ copy_v3_v3(nor_prev, nor_next); i_this = i_next; i_next++; } } #endif