/* mesh.c * * * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Blender Foundation * * ***** END GPL LICENSE BLOCK ***** */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include "MEM_guardedalloc.h" #include "DNA_ID.h" #include "DNA_curve_types.h" #include "DNA_material_types.h" #include "DNA_object_types.h" #include "DNA_image_types.h" #include "DNA_key_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_ipo_types.h" #include "BKE_customdata.h" #include "BKE_depsgraph.h" #include "BKE_main.h" #include "BKE_DerivedMesh.h" #include "BKE_global.h" #include "BKE_mesh.h" #include "BKE_subsurf.h" #include "BKE_displist.h" #include "BKE_library.h" #include "BKE_material.h" #include "BKE_key.h" /* these 2 are only used by conversion functions */ #include "BKE_curve.h" /* -- */ #include "BKE_object.h" #include "BKE_utildefines.h" #include "BLI_blenlib.h" #include "BLI_editVert.h" #include "BLI_arithb.h" EditMesh *BKE_mesh_get_editmesh(Mesh *me) { return me->edit_mesh; } void BKE_mesh_end_editmesh(Mesh *me, EditMesh *em) { } void mesh_update_customdata_pointers(Mesh *me) { me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT); me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT); me->msticky = CustomData_get_layer(&me->vdata, CD_MSTICKY); me->medge = CustomData_get_layer(&me->edata, CD_MEDGE); me->mface = CustomData_get_layer(&me->fdata, CD_MFACE); me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL); me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE); } /* Note: unlinking is called when me->id.us is 0, question remains how * much unlinking of Library data in Mesh should be done... probably * we need a more generic method, like the expand() functions in * readfile.c */ void unlink_mesh(Mesh *me) { int a; if(me==0) return; for(a=0; atotcol; a++) { if(me->mat[a]) me->mat[a]->id.us--; me->mat[a]= 0; } if(me->key) { me->key->id.us--; if (me->key->id.us == 0 && me->key->ipo ) me->key->ipo->id.us--; } me->key= 0; if(me->texcomesh) me->texcomesh= 0; } /* do not free mesh itself */ void free_mesh(Mesh *me) { unlink_mesh(me); if(me->pv) { if(me->pv->vert_map) MEM_freeN(me->pv->vert_map); if(me->pv->edge_map) MEM_freeN(me->pv->edge_map); if(me->pv->old_faces) MEM_freeN(me->pv->old_faces); if(me->pv->old_edges) MEM_freeN(me->pv->old_edges); me->totvert= me->pv->totvert; me->totedge= me->pv->totedge; me->totface= me->pv->totface; MEM_freeN(me->pv); } CustomData_free(&me->vdata, me->totvert); CustomData_free(&me->edata, me->totedge); CustomData_free(&me->fdata, me->totface); if(me->mat) MEM_freeN(me->mat); if(me->bb) MEM_freeN(me->bb); if(me->mselect) MEM_freeN(me->mselect); if(me->edit_mesh) MEM_freeN(me->edit_mesh); } void copy_dverts(MDeformVert *dst, MDeformVert *src, int copycount) { /* Assumes dst is already set up */ int i; if (!src || !dst) return; memcpy (dst, src, copycount * sizeof(MDeformVert)); for (i=0; imesh, ID_ME, name); me->size[0]= me->size[1]= me->size[2]= 1.0; me->smoothresh= 30; me->texflag= AUTOSPACE; me->flag= ME_TWOSIDED; me->bb= unit_boundbox(); me->drawflag= ME_DRAWEDGES|ME_DRAWFACES|ME_DRAWCREASES; return me; } Mesh *copy_mesh(Mesh *me) { Mesh *men; MTFace *tface; int a, i; men= copy_libblock(me); men->mat= MEM_dupallocN(me->mat); for(a=0; atotcol; a++) { id_us_plus((ID *)men->mat[a]); } id_us_plus((ID *)men->texcomesh); CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert); CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge); CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface); mesh_update_customdata_pointers(men); /* ensure indirect linked data becomes lib-extern */ for(i=0; ifdata.totlayer; i++) { if(me->fdata.layers[i].type == CD_MTFACE) { tface= (MTFace*)me->fdata.layers[i].data; for(a=0; atotface; a++, tface++) if(tface->tpage) id_lib_extern((ID*)tface->tpage); } } men->mselect= NULL; men->bb= MEM_dupallocN(men->bb); men->key= copy_key(me->key); if(men->key) men->key->from= (ID *)men; return men; } void make_local_tface(Mesh *me) { MTFace *tface; Image *ima; int a, i; for(i=0; ifdata.totlayer; i++) { if(me->fdata.layers[i].type == CD_MTFACE) { tface= (MTFace*)me->fdata.layers[i].data; for(a=0; atotface; a++, tface++) { /* special case: ima always local immediately */ if(tface->tpage) { ima= tface->tpage; if(ima->id.lib) { ima->id.lib= 0; ima->id.flag= LIB_LOCAL; new_id(0, (ID *)ima, 0); } } } } } } void make_local_mesh(Mesh *me) { Object *ob; Mesh *men; int local=0, lib=0; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if(me->id.lib==0) return; if(me->id.us==1) { me->id.lib= 0; me->id.flag= LIB_LOCAL; new_id(0, (ID *)me, 0); if(me->mtface) make_local_tface(me); return; } ob= G.main->object.first; while(ob) { if( me==get_mesh(ob) ) { if(ob->id.lib) lib= 1; else local= 1; } ob= ob->id.next; } if(local && lib==0) { me->id.lib= 0; me->id.flag= LIB_LOCAL; new_id(0, (ID *)me, 0); if(me->mtface) make_local_tface(me); } else if(local && lib) { men= copy_mesh(me); men->id.us= 0; ob= G.main->object.first; while(ob) { if( me==get_mesh(ob) ) { if(ob->id.lib==0) { set_mesh(ob, men); } } ob= ob->id.next; } } } void boundbox_mesh(Mesh *me, float *loc, float *size) { MVert *mvert; BoundBox *bb; float min[3], max[3]; float mloc[3], msize[3]; int a; if(me->bb==0) me->bb= MEM_callocN(sizeof(BoundBox), "boundbox"); bb= me->bb; INIT_MINMAX(min, max); if (!loc) loc= mloc; if (!size) size= msize; mvert= me->mvert; for(a=0; atotvert; a++, mvert++) { DO_MINMAX(mvert->co, min, max); } if(!me->totvert) { min[0] = min[1] = min[2] = -1.0f; max[0] = max[1] = max[2] = 1.0f; } loc[0]= (min[0]+max[0])/2.0f; loc[1]= (min[1]+max[1])/2.0f; loc[2]= (min[2]+max[2])/2.0f; size[0]= (max[0]-min[0])/2.0f; size[1]= (max[1]-min[1])/2.0f; size[2]= (max[2]-min[2])/2.0f; boundbox_set_from_min_max(bb, min, max); } void tex_space_mesh(Mesh *me) { KeyBlock *kb; float *fp, loc[3], size[3], min[3], max[3]; int a; boundbox_mesh(me, loc, size); if(me->texflag & AUTOSPACE) { if(me->key) { kb= me->key->refkey; if (kb) { INIT_MINMAX(min, max); fp= kb->data; for(a=0; atotelem; a++, fp+=3) { DO_MINMAX(fp, min, max); } if(kb->totelem) { loc[0]= (min[0]+max[0])/2.0f; loc[1]= (min[1]+max[1])/2.0f; loc[2]= (min[2]+max[2])/2.0f; size[0]= (max[0]-min[0])/2.0f; size[1]= (max[1]-min[1])/2.0f; size[2]= (max[2]-min[2])/2.0f; } else { loc[0]= loc[1]= loc[2]= 0.0; size[0]= size[1]= size[2]= 0.0; } } } for (a=0; a<3; a++) { if(size[a]==0.0) size[a]= 1.0; else if(size[a]>0.0 && size[a]<0.00001) size[a]= 0.00001; else if(size[a]<0.0 && size[a]> -0.00001) size[a]= -0.00001; } VECCOPY(me->loc, loc); VECCOPY(me->size, size); me->rot[0]= me->rot[1]= me->rot[2]= 0.0; } } BoundBox *mesh_get_bb(Object *ob) { Mesh *me= ob->data; if(ob->bb) return ob->bb; if (!me->bb) tex_space_mesh(me); return me->bb; } void mesh_get_texspace(Mesh *me, float *loc_r, float *rot_r, float *size_r) { if (!me->bb) { tex_space_mesh(me); } if (loc_r) VECCOPY(loc_r, me->loc); if (rot_r) VECCOPY(rot_r, me->rot); if (size_r) VECCOPY(size_r, me->size); } float *get_mesh_orco_verts(Object *ob) { Mesh *me = ob->data; int a, totvert; float (*vcos)[3] = NULL; /* Get appropriate vertex coordinates */ if(me->key && me->texcomesh==0 && me->key->refkey) { vcos= mesh_getRefKeyCos(me, &totvert); } else { MVert *mvert = NULL; Mesh *tme = me->texcomesh?me->texcomesh:me; vcos = MEM_callocN(sizeof(*vcos)*me->totvert, "orco mesh"); mvert = tme->mvert; totvert = MIN2(tme->totvert, me->totvert); for(a=0; aco[0]; vcos[a][1]= mvert->co[1]; vcos[a][2]= mvert->co[2]; } } return (float*)vcos; } void transform_mesh_orco_verts(Mesh *me, float (*orco)[3], int totvert, int invert) { float loc[3], size[3]; int a; mesh_get_texspace(me->texcomesh?me->texcomesh:me, loc, NULL, size); if(invert) { for(a=0; av4) check for quads work */ int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr) { /* first test if the face is legal */ if(mface->v3 && mface->v3==mface->v4) { mface->v4= 0; nr--; } if(mface->v2 && mface->v2==mface->v3) { mface->v3= mface->v4; mface->v4= 0; nr--; } if(mface->v1==mface->v2) { mface->v2= mface->v3; mface->v3= mface->v4; mface->v4= 0; nr--; } /* prevent a zero at wrong index location */ if(nr==3) { if(mface->v3==0) { static int corner_indices[4] = {1, 2, 0, 3}; SWAP(int, mface->v1, mface->v2); SWAP(int, mface->v2, mface->v3); if(fdata) CustomData_swap(fdata, mfindex, corner_indices); } } else if(nr==4) { if(mface->v3==0 || mface->v4==0) { static int corner_indices[4] = {2, 3, 0, 1}; SWAP(int, mface->v1, mface->v3); SWAP(int, mface->v2, mface->v4); if(fdata) CustomData_swap(fdata, mfindex, corner_indices); } } return nr; } Mesh *get_mesh(Object *ob) { if(ob==0) return 0; if(ob->type==OB_MESH) return ob->data; else return 0; } void set_mesh(Object *ob, Mesh *me) { Mesh *old=0; if(ob==0) return; if(ob->type==OB_MESH) { old= ob->data; old->id.us--; ob->data= me; id_us_plus((ID *)me); } test_object_materials((ID *)me); } /* ************** make edges in a Mesh, for outside of editmode */ struct edgesort { int v1, v2; short is_loose, is_draw; }; /* edges have to be added with lowest index first for sorting */ static void to_edgesort(struct edgesort *ed, int v1, int v2, short is_loose, short is_draw) { if(v1v1= v1; ed->v2= v2; } else { ed->v1= v2; ed->v2= v1; } ed->is_loose= is_loose; ed->is_draw= is_draw; } static int vergedgesort(const void *v1, const void *v2) { const struct edgesort *x1=v1, *x2=v2; if( x1->v1 > x2->v1) return 1; else if( x1->v1 < x2->v1) return -1; else if( x1->v2 > x2->v2) return 1; else if( x1->v2 < x2->v2) return -1; return 0; } void make_edges(Mesh *me, int old) { MFace *mface; MEdge *medge; struct edgesort *edsort, *ed; int a, totedge=0, final=0; /* we put all edges in array, sort them, and detect doubles that way */ for(a= me->totface, mface= me->mface; a>0; a--, mface++) { if(mface->v4) totedge+=4; else if(mface->v3) totedge+=3; else totedge+=1; } if(totedge==0) { /* flag that mesh has edges */ me->medge = MEM_callocN(0, "make mesh edges"); me->totedge = 0; return; } ed= edsort= MEM_mallocN(totedge*sizeof(struct edgesort), "edgesort"); for(a= me->totface, mface= me->mface; a>0; a--, mface++) { to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2); if(mface->v4) { to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3); to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4); to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1); } else if(mface->v3) { to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3); to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1); } } qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort); /* count final amount */ for(a=totedge, ed=edsort; a>1; a--, ed++) { /* edge is unique when it differs from next edge, or is last */ if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) final++; } final++; medge= CustomData_add_layer(&me->edata, CD_MEDGE, CD_CALLOC, NULL, final); me->medge= medge; me->totedge= final; for(a=totedge, ed=edsort; a>1; a--, ed++) { /* edge is unique when it differs from next edge, or is last */ if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) { medge->v1= ed->v1; medge->v2= ed->v2; if(old==0 || ed->is_draw) medge->flag= ME_EDGEDRAW|ME_EDGERENDER; if(ed->is_loose) medge->flag|= ME_LOOSEEDGE; medge++; } else { /* equal edge, we merge the drawflag */ (ed+1)->is_draw |= ed->is_draw; } } /* last edge */ medge->v1= ed->v1; medge->v2= ed->v2; medge->flag= ME_EDGEDRAW; if(ed->is_loose) medge->flag|= ME_LOOSEEDGE; medge->flag |= ME_EDGERENDER; MEM_freeN(edsort); mesh_strip_loose_faces(me); } void mesh_strip_loose_faces(Mesh *me) { int a,b; for (a=b=0; atotface; a++) { if (me->mface[a].v3) { if (a!=b) { memcpy(&me->mface[b],&me->mface[a],sizeof(me->mface[b])); CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1); CustomData_free_elem(&me->fdata, a, 1); } b++; } } me->totface = b; } void mball_to_mesh(ListBase *lb, Mesh *me) { DispList *dl; MVert *mvert; MFace *mface; float *nors, *verts; int a, *index; dl= lb->first; if(dl==0) return; if(dl->type==DL_INDEX4) { me->flag= ME_NOPUNOFLIP; me->totvert= dl->nr; me->totface= dl->parts; mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr); mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, dl->parts); me->mvert= mvert; me->mface= mface; a= dl->nr; nors= dl->nors; verts= dl->verts; while(a--) { VECCOPY(mvert->co, verts); mvert->no[0]= (short int)(nors[0]*32767.0); mvert->no[1]= (short int)(nors[1]*32767.0); mvert->no[2]= (short int)(nors[2]*32767.0); mvert++; nors+= 3; verts+= 3; } a= dl->parts; index= dl->index; while(a--) { mface->v1= index[0]; mface->v2= index[1]; mface->v3= index[2]; mface->v4= index[3]; mface->flag= ME_SMOOTH; test_index_face(mface, NULL, 0, (mface->v3==mface->v4)? 3: 4); mface++; index+= 4; } make_edges(me, 0); // all edges } } /* this may fail replacing ob->data, be sure to check ob->type */ void nurbs_to_mesh(Object *ob) { Object *ob1; DispList *dl; Mesh *me; Curve *cu; MVert *mvert; MFace *mface; float *data; int a, b, ofs, vertcount, startvert, totvert=0, totvlak=0; int p1, p2, p3, p4, *index; cu= ob->data; /* count */ dl= cu->disp.first; while(dl) { if(dl->type==DL_SEGM) { totvert+= dl->parts*dl->nr; totvlak+= dl->parts*(dl->nr-1); } else if(dl->type==DL_POLY) { /* cyclic polys are filled. except when 3D */ if(cu->flag & CU_3D) { totvert+= dl->parts*dl->nr; totvlak+= dl->parts*dl->nr; } } else if(dl->type==DL_SURF) { totvert+= dl->parts*dl->nr; totvlak+= (dl->parts-1+((dl->flag & DL_CYCL_V)==2))*(dl->nr-1+(dl->flag & DL_CYCL_U)); } else if(dl->type==DL_INDEX3) { totvert+= dl->nr; totvlak+= dl->parts; } dl= dl->next; } if(totvert==0) { /* error("can't convert"); */ /* Make Sure you check ob->data is a curve */ return; } /* make mesh */ me= add_mesh("Mesh"); me->totvert= totvert; me->totface= totvlak; me->totcol= cu->totcol; me->mat= cu->mat; cu->mat= 0; cu->totcol= 0; mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert); mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface); me->mvert= mvert; me->mface= mface; /* verts and faces */ vertcount= 0; dl= cu->disp.first; while(dl) { int smooth= dl->rt & CU_SMOOTH ? 1 : 0; if(dl->type==DL_SEGM) { startvert= vertcount; a= dl->parts*dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } for(a=0; aparts; a++) { ofs= a*dl->nr; for(b=1; bnr; b++) { mface->v1= startvert+ofs+b-1; mface->v2= startvert+ofs+b; if(smooth) mface->flag |= ME_SMOOTH; mface++; } } } else if(dl->type==DL_POLY) { /* 3d polys are not filled */ if(cu->flag & CU_3D) { startvert= vertcount; a= dl->parts*dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } for(a=0; aparts; a++) { ofs= a*dl->nr; for(b=0; bnr; b++) { mface->v1= startvert+ofs+b; if(b==dl->nr-1) mface->v2= startvert+ofs; else mface->v2= startvert+ofs+b+1; if(smooth) mface->flag |= ME_SMOOTH; mface++; } } } } else if(dl->type==DL_INDEX3) { startvert= vertcount; a= dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } a= dl->parts; index= dl->index; while(a--) { mface->v1= startvert+index[0]; mface->v2= startvert+index[2]; mface->v3= startvert+index[1]; mface->v4= 0; test_index_face(mface, NULL, 0, 3); if(smooth) mface->flag |= ME_SMOOTH; mface++; index+= 3; } } else if(dl->type==DL_SURF) { startvert= vertcount; a= dl->parts*dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } for(a=0; aparts; a++) { if( (dl->flag & DL_CYCL_V)==0 && a==dl->parts-1) break; if(dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */ p1= startvert+ dl->nr*a; /* p4 -> p3 -> */ p2= p1+ dl->nr-1; /* -----> next row */ p3= p1+ dl->nr; p4= p2+ dl->nr; b= 0; } else { p2= startvert+ dl->nr*a; p1= p2+1; p4= p2+ dl->nr; p3= p1+ dl->nr; b= 1; } if( (dl->flag & DL_CYCL_V) && a==dl->parts-1) { p3-= dl->parts*dl->nr; p4-= dl->parts*dl->nr; } for(; bnr; b++) { mface->v1= p1; mface->v2= p3; mface->v3= p4; mface->v4= p2; mface->mat_nr= (unsigned char)dl->col; test_index_face(mface, NULL, 0, 4); if(smooth) mface->flag |= ME_SMOOTH; mface++; p4= p3; p3++; p2= p1; p1++; } } } dl= dl->next; } make_edges(me, 0); // all edges mesh_calc_normals(me->mvert, me->totvert, me->mface, me->totface, NULL); if(ob->data) { free_libblock(&G.main->curve, ob->data); } ob->data= me; ob->type= OB_MESH; /* other users */ ob1= G.main->object.first; while(ob1) { if(ob1->data==cu) { ob1->type= OB_MESH; ob1->data= ob->data; id_us_plus((ID *)ob->data); } ob1= ob1->id.next; } } void mesh_delete_material_index(Mesh *me, int index) { int i; for (i=0; itotface; i++) { MFace *mf = &((MFace*) me->mface)[i]; if (mf->mat_nr && mf->mat_nr>=index) mf->mat_nr--; } } void mesh_set_smooth_flag(Object *meshOb, int enableSmooth) { Mesh *me = meshOb->data; int i; for (i=0; itotface; i++) { MFace *mf = &((MFace*) me->mface)[i]; if (enableSmooth) { mf->flag |= ME_SMOOTH; } else { mf->flag &= ~ME_SMOOTH; } } // XXX do this in caller DAG_id_flush_update(&me->id, OB_RECALC_DATA); } void mesh_calc_normals(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float **faceNors_r) { float (*tnorms)[3]= MEM_callocN(numVerts*sizeof(*tnorms), "tnorms"); float *fnors= MEM_mallocN(sizeof(*fnors)*3*numFaces, "meshnormals"); int i; for (i=0; iv4) CalcNormFloat4(mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co, f_no); else CalcNormFloat(mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, f_no); VecAddf(tnorms[mf->v1], tnorms[mf->v1], f_no); VecAddf(tnorms[mf->v2], tnorms[mf->v2], f_no); VecAddf(tnorms[mf->v3], tnorms[mf->v3], f_no); if (mf->v4) VecAddf(tnorms[mf->v4], tnorms[mf->v4], f_no); } for (i=0; ico); Normalize(no); } mv->no[0]= (short)(no[0]*32767.0); mv->no[1]= (short)(no[1]*32767.0); mv->no[2]= (short)(no[2]*32767.0); } MEM_freeN(tnorms); if (faceNors_r) { *faceNors_r = fnors; } else { MEM_freeN(fnors); } } float (*mesh_getVertexCos(Mesh *me, int *numVerts_r))[3] { int i, numVerts = me->totvert; float (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "vertexcos1"); if (numVerts_r) *numVerts_r = numVerts; for (i=0; imvert[i].co); return cos; } float (*mesh_getRefKeyCos(Mesh *me, int *numVerts_r))[3] { KeyBlock *kb; float (*cos)[3] = NULL; int totvert; if(me->key && me->key->refkey) { if(numVerts_r) *numVerts_r= me->totvert; kb= me->key->refkey; /* prevent accessing invalid memory */ if (me->totvert > kb->totelem) cos= MEM_callocN(sizeof(*cos)*me->totvert, "vertexcos1"); else cos= MEM_mallocN(sizeof(*cos)*me->totvert, "vertexcos1"); totvert= MIN2(kb->totelem, me->totvert); memcpy(cos, kb->data, sizeof(*cos)*totvert); } return cos; } UvVertMap *make_uv_vert_map(struct MFace *mface, struct MTFace *tface, unsigned int totface, unsigned int totvert, int selected, float *limit) { UvVertMap *vmap; UvMapVert *buf; MFace *mf; MTFace *tf; unsigned int a; int i, totuv, nverts; totuv = 0; /* generate UvMapVert array */ mf= mface; tf= tface; for(a=0; aflag & ME_HIDE) && (mf->flag & ME_FACE_SEL))) totuv += (mf->v4)? 4: 3; if(totuv==0) return NULL; vmap= (UvVertMap*)MEM_callocN(sizeof(*vmap), "UvVertMap"); if (!vmap) return NULL; vmap->vert= (UvMapVert**)MEM_callocN(sizeof(*vmap->vert)*totvert, "UvMapVert*"); buf= vmap->buf= (UvMapVert*)MEM_callocN(sizeof(*vmap->buf)*totuv, "UvMapVert"); if (!vmap->vert || !vmap->buf) { free_uv_vert_map(vmap); return NULL; } mf= mface; tf= tface; for(a=0; aflag & ME_HIDE) && (mf->flag & ME_FACE_SEL))) { nverts= (mf->v4)? 4: 3; for(i=0; itfindex= i; buf->f= a; buf->separate = 0; buf->next= vmap->vert[*(&mf->v1 + i)]; vmap->vert[*(&mf->v1 + i)]= buf; buf++; } } } /* sort individual uvs for each vert */ tf= tface; for(a=0; avert[a]; UvMapVert *iterv, *v, *lastv, *next; float *uv, *uv2, uvdiff[2]; while(vlist) { v= vlist; vlist= vlist->next; v->next= newvlist; newvlist= v; uv= (tf+v->f)->uv[v->tfindex]; lastv= NULL; iterv= vlist; while(iterv) { next= iterv->next; uv2= (tf+iterv->f)->uv[iterv->tfindex]; Vec2Subf(uvdiff, uv2, uv); if(fabs(uv[0]-uv2[0]) < limit[0] && fabs(uv[1]-uv2[1]) < limit[1]) { if(lastv) lastv->next= next; else vlist= next; iterv->next= newvlist; newvlist= iterv; } else lastv=iterv; iterv= next; } newvlist->separate = 1; } vmap->vert[a]= newvlist; } return vmap; } UvMapVert *get_uv_map_vert(UvVertMap *vmap, unsigned int v) { return vmap->vert[v]; } void free_uv_vert_map(UvVertMap *vmap) { if (vmap) { if (vmap->vert) MEM_freeN(vmap->vert); if (vmap->buf) MEM_freeN(vmap->buf); MEM_freeN(vmap); } } /* Generates a map where the key is the vertex and the value is a list of faces that use that vertex as a corner. The lists are allocated from one memory pool. */ void create_vert_face_map(ListBase **map, IndexNode **mem, const MFace *mface, const int totvert, const int totface) { int i,j; IndexNode *node = NULL; (*map) = MEM_callocN(sizeof(ListBase) * totvert, "vert face map"); (*mem) = MEM_callocN(sizeof(IndexNode) * totface*4, "vert face map mem"); node = *mem; /* Find the users */ for(i = 0; i < totface; ++i){ for(j = 0; j < (mface[i].v4?4:3); ++j, ++node) { node->index = i; BLI_addtail(&(*map)[((unsigned int*)(&mface[i]))[j]], node); } } } /* Generates a map where the key is the vertex and the value is a list of edges that use that vertex as an endpoint. The lists are allocated from one memory pool. */ void create_vert_edge_map(ListBase **map, IndexNode **mem, const MEdge *medge, const int totvert, const int totedge) { int i, j; IndexNode *node = NULL; (*map) = MEM_callocN(sizeof(ListBase) * totvert, "vert edge map"); (*mem) = MEM_callocN(sizeof(IndexNode) * totedge * 2, "vert edge map mem"); node = *mem; /* Find the users */ for(i = 0; i < totedge; ++i){ for(j = 0; j < 2; ++j, ++node) { node->index = i; BLI_addtail(&(*map)[((unsigned int*)(&medge[i].v1))[j]], node); } } } /* Partial Mesh Visibility */ PartialVisibility *mesh_pmv_copy(PartialVisibility *pmv) { PartialVisibility *n= MEM_dupallocN(pmv); n->vert_map= MEM_dupallocN(pmv->vert_map); n->edge_map= MEM_dupallocN(pmv->edge_map); n->old_edges= MEM_dupallocN(pmv->old_edges); n->old_faces= MEM_dupallocN(pmv->old_faces); return n; } void mesh_pmv_free(PartialVisibility *pv) { MEM_freeN(pv->vert_map); MEM_freeN(pv->edge_map); MEM_freeN(pv->old_faces); MEM_freeN(pv->old_edges); MEM_freeN(pv); } void mesh_pmv_revert(Object *ob, Mesh *me) { if(me->pv) { unsigned i; MVert *nve, *old_verts; /* Reorder vertices */ nve= me->mvert; old_verts = MEM_mallocN(sizeof(MVert)*me->pv->totvert,"PMV revert verts"); for(i=0; ipv->totvert; ++i) old_verts[i]= nve[me->pv->vert_map[i]]; /* Restore verts, edges and faces */ CustomData_free_layer_active(&me->vdata, CD_MVERT, me->totvert); CustomData_free_layer_active(&me->edata, CD_MEDGE, me->totedge); CustomData_free_layer_active(&me->fdata, CD_MFACE, me->totface); CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, old_verts, me->pv->totvert); CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, me->pv->old_edges, me->pv->totedge); CustomData_add_layer(&me->fdata, CD_MFACE, CD_ASSIGN, me->pv->old_faces, me->pv->totface); mesh_update_customdata_pointers(me); me->totvert= me->pv->totvert; me->totedge= me->pv->totedge; me->totface= me->pv->totface; me->pv->old_edges= NULL; me->pv->old_faces= NULL; /* Free maps */ MEM_freeN(me->pv->edge_map); me->pv->edge_map= NULL; MEM_freeN(me->pv->vert_map); me->pv->vert_map= NULL; // XXX do this in caller DAG_id_flush_update(&me->id, OB_RECALC_DATA); } } void mesh_pmv_off(Object *ob, Mesh *me) { if(ob && me->pv) { mesh_pmv_revert(ob, me); MEM_freeN(me->pv); me->pv= NULL; } }