/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Blender Foundation * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/mesh.c * \ingroup bke */ #include "MEM_guardedalloc.h" #include "DNA_scene_types.h" #include "DNA_material_types.h" #include "DNA_meta_types.h" #include "DNA_object_types.h" #include "DNA_key_types.h" #include "DNA_mesh_types.h" #include "DNA_curve_types.h" #include "BLI_utildefines.h" #include "BLI_math.h" #include "BLI_linklist.h" #include "BLI_listbase.h" #include "BLI_memarena.h" #include "BLI_edgehash.h" #include "BLI_string.h" #include "BKE_animsys.h" #include "BKE_main.h" #include "BKE_DerivedMesh.h" #include "BKE_global.h" #include "BKE_mesh.h" #include "BKE_displist.h" #include "BKE_library.h" #include "BKE_library_query.h" #include "BKE_library_remap.h" #include "BKE_material.h" #include "BKE_modifier.h" #include "BKE_multires.h" #include "BKE_key.h" #include "BKE_mball.h" #include "BKE_depsgraph.h" /* these 2 are only used by conversion functions */ #include "BKE_curve.h" /* -- */ #include "BKE_object.h" #include "BKE_editmesh.h" #include "DEG_depsgraph.h" /* Define for cases when you want extra validation of mesh * after certain modifications. */ // #undef VALIDATE_MESH enum { MESHCMP_DVERT_WEIGHTMISMATCH = 1, MESHCMP_DVERT_GROUPMISMATCH, MESHCMP_DVERT_TOTGROUPMISMATCH, MESHCMP_LOOPCOLMISMATCH, MESHCMP_LOOPUVMISMATCH, MESHCMP_LOOPMISMATCH, MESHCMP_POLYVERTMISMATCH, MESHCMP_POLYMISMATCH, MESHCMP_EDGEUNKNOWN, MESHCMP_VERTCOMISMATCH, MESHCMP_CDLAYERS_MISMATCH }; static const char *cmpcode_to_str(int code) { switch (code) { case MESHCMP_DVERT_WEIGHTMISMATCH: return "Vertex Weight Mismatch"; case MESHCMP_DVERT_GROUPMISMATCH: return "Vertex Group Mismatch"; case MESHCMP_DVERT_TOTGROUPMISMATCH: return "Vertex Doesn't Belong To Same Number Of Groups"; case MESHCMP_LOOPCOLMISMATCH: return "Vertex Color Mismatch"; case MESHCMP_LOOPUVMISMATCH: return "UV Mismatch"; case MESHCMP_LOOPMISMATCH: return "Loop Mismatch"; case MESHCMP_POLYVERTMISMATCH: return "Loop Vert Mismatch In Poly Test"; case MESHCMP_POLYMISMATCH: return "Loop Vert Mismatch"; case MESHCMP_EDGEUNKNOWN: return "Edge Mismatch"; case MESHCMP_VERTCOMISMATCH: return "Vertex Coordinate Mismatch"; case MESHCMP_CDLAYERS_MISMATCH: return "CustomData Layer Count Mismatch"; default: return "Mesh Comparison Code Unknown"; } } /* thresh is threshold for comparing vertices, uvs, vertex colors, * weights, etc.*/ static int customdata_compare(CustomData *c1, CustomData *c2, Mesh *m1, Mesh *m2, const float thresh) { const float thresh_sq = thresh * thresh; CustomDataLayer *l1, *l2; int i, i1 = 0, i2 = 0, tot, j; for (i = 0; i < c1->totlayer; i++) { if (ELEM(c1->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i1++; } } for (i = 0; i < c2->totlayer; i++) { if (ELEM(c2->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i2++; } } if (i1 != i2) return MESHCMP_CDLAYERS_MISMATCH; l1 = c1->layers; l2 = c2->layers; tot = i1; i1 = 0; i2 = 0; for (i = 0; i < tot; i++) { while (i1 < c1->totlayer && !ELEM(l1->type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i1++; l1++; } while (i2 < c2->totlayer && !ELEM(l2->type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) { i2++; l2++; } if (l1->type == CD_MVERT) { MVert *v1 = l1->data; MVert *v2 = l2->data; int vtot = m1->totvert; for (j = 0; j < vtot; j++, v1++, v2++) { if (len_squared_v3v3(v1->co, v2->co) > thresh_sq) return MESHCMP_VERTCOMISMATCH; /* I don't care about normals, let's just do coodinates */ } } /*we're order-agnostic for edges here*/ if (l1->type == CD_MEDGE) { MEdge *e1 = l1->data; MEdge *e2 = l2->data; int etot = m1->totedge; EdgeHash *eh = BLI_edgehash_new_ex(__func__, etot); for (j = 0; j < etot; j++, e1++) { BLI_edgehash_insert(eh, e1->v1, e1->v2, e1); } for (j = 0; j < etot; j++, e2++) { if (!BLI_edgehash_lookup(eh, e2->v1, e2->v2)) return MESHCMP_EDGEUNKNOWN; } BLI_edgehash_free(eh, NULL); } if (l1->type == CD_MPOLY) { MPoly *p1 = l1->data; MPoly *p2 = l2->data; int ptot = m1->totpoly; for (j = 0; j < ptot; j++, p1++, p2++) { MLoop *lp1, *lp2; int k; if (p1->totloop != p2->totloop) return MESHCMP_POLYMISMATCH; lp1 = m1->mloop + p1->loopstart; lp2 = m2->mloop + p2->loopstart; for (k = 0; k < p1->totloop; k++, lp1++, lp2++) { if (lp1->v != lp2->v) return MESHCMP_POLYVERTMISMATCH; } } } if (l1->type == CD_MLOOP) { MLoop *lp1 = l1->data; MLoop *lp2 = l2->data; int ltot = m1->totloop; for (j = 0; j < ltot; j++, lp1++, lp2++) { if (lp1->v != lp2->v) return MESHCMP_LOOPMISMATCH; } } if (l1->type == CD_MLOOPUV) { MLoopUV *lp1 = l1->data; MLoopUV *lp2 = l2->data; int ltot = m1->totloop; for (j = 0; j < ltot; j++, lp1++, lp2++) { if (len_squared_v2v2(lp1->uv, lp2->uv) > thresh_sq) return MESHCMP_LOOPUVMISMATCH; } } if (l1->type == CD_MLOOPCOL) { MLoopCol *lp1 = l1->data; MLoopCol *lp2 = l2->data; int ltot = m1->totloop; for (j = 0; j < ltot; j++, lp1++, lp2++) { if (ABS(lp1->r - lp2->r) > thresh || ABS(lp1->g - lp2->g) > thresh || ABS(lp1->b - lp2->b) > thresh || ABS(lp1->a - lp2->a) > thresh) { return MESHCMP_LOOPCOLMISMATCH; } } } if (l1->type == CD_MDEFORMVERT) { MDeformVert *dv1 = l1->data; MDeformVert *dv2 = l2->data; int dvtot = m1->totvert; for (j = 0; j < dvtot; j++, dv1++, dv2++) { int k; MDeformWeight *dw1 = dv1->dw, *dw2 = dv2->dw; if (dv1->totweight != dv2->totweight) return MESHCMP_DVERT_TOTGROUPMISMATCH; for (k = 0; k < dv1->totweight; k++, dw1++, dw2++) { if (dw1->def_nr != dw2->def_nr) return MESHCMP_DVERT_GROUPMISMATCH; if (fabsf(dw1->weight - dw2->weight) > thresh) return MESHCMP_DVERT_WEIGHTMISMATCH; } } } } return 0; } /** * Used for unit testing; compares two meshes, checking only * differences we care about. should be usable with leaf's * testing framework I get RNA work done, will use hackish * testing code for now. */ const char *BKE_mesh_cmp(Mesh *me1, Mesh *me2, float thresh) { int c; if (!me1 || !me2) return "Requires two input meshes"; if (me1->totvert != me2->totvert) return "Number of verts don't match"; if (me1->totedge != me2->totedge) return "Number of edges don't match"; if (me1->totpoly != me2->totpoly) return "Number of faces don't match"; if (me1->totloop != me2->totloop) return "Number of loops don't match"; if ((c = customdata_compare(&me1->vdata, &me2->vdata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->edata, &me2->edata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->ldata, &me2->ldata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->pdata, &me2->pdata, me1, me2, thresh))) return cmpcode_to_str(c); return NULL; } static void mesh_ensure_tessellation_customdata(Mesh *me) { if (UNLIKELY((me->totface != 0) && (me->totpoly == 0))) { /* Pass, otherwise this function clears 'mface' before * versioning 'mface -> mpoly' code kicks in [#30583] * * Callers could also check but safer to do here - campbell */ } else { const int tottex_original = CustomData_number_of_layers(&me->pdata, CD_MTEXPOLY); const int totcol_original = CustomData_number_of_layers(&me->ldata, CD_MLOOPCOL); const int tottex_tessface = CustomData_number_of_layers(&me->fdata, CD_MTFACE); const int totcol_tessface = CustomData_number_of_layers(&me->fdata, CD_MCOL); if (tottex_tessface != tottex_original || totcol_tessface != totcol_original) { BKE_mesh_tessface_clear(me); CustomData_from_bmeshpoly(&me->fdata, &me->pdata, &me->ldata, me->totface); /* TODO - add some --debug-mesh option */ if (G.debug & G_DEBUG) { /* note: this warning may be un-called for if we are initializing the mesh for the * first time from bmesh, rather then giving a warning about this we could be smarter * and check if there was any data to begin with, for now just print the warning with * some info to help troubleshoot whats going on - campbell */ printf("%s: warning! Tessellation uvs or vcol data got out of sync, " "had to reset!\n CD_MTFACE: %d != CD_MTEXPOLY: %d || CD_MCOL: %d != CD_MLOOPCOL: %d\n", __func__, tottex_tessface, tottex_original, totcol_tessface, totcol_original); } } } } void BKE_mesh_ensure_skin_customdata(Mesh *me) { BMesh *bm = me->edit_btmesh ? me->edit_btmesh->bm : NULL; MVertSkin *vs; if (bm) { if (!CustomData_has_layer(&bm->vdata, CD_MVERT_SKIN)) { BMVert *v; BMIter iter; BM_data_layer_add(bm, &bm->vdata, CD_MVERT_SKIN); /* Mark an arbitrary vertex as root */ BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { vs = CustomData_bmesh_get(&bm->vdata, v->head.data, CD_MVERT_SKIN); vs->flag |= MVERT_SKIN_ROOT; break; } } } else { if (!CustomData_has_layer(&me->vdata, CD_MVERT_SKIN)) { vs = CustomData_add_layer(&me->vdata, CD_MVERT_SKIN, CD_DEFAULT, NULL, me->totvert); /* Mark an arbitrary vertex as root */ if (vs) { vs->flag |= MVERT_SKIN_ROOT; } } } } /* this ensures grouped customdata (e.g. mtexpoly and mloopuv and mtface, or * mloopcol and mcol) have the same relative active/render/clone/mask indices. * * note that for undo mesh data we want to skip 'ensure_tess_cd' call since * we don't want to store memory for tessface when its only used for older * versions of the mesh. - campbell*/ static void mesh_update_linked_customdata(Mesh *me, const bool do_ensure_tess_cd) { if (me->edit_btmesh) BKE_editmesh_update_linked_customdata(me->edit_btmesh); if (do_ensure_tess_cd) { mesh_ensure_tessellation_customdata(me); } CustomData_bmesh_update_active_layers(&me->fdata, &me->pdata, &me->ldata); } void BKE_mesh_update_customdata_pointers(Mesh *me, const bool do_ensure_tess_cd) { mesh_update_linked_customdata(me, do_ensure_tess_cd); me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT); me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT); me->medge = CustomData_get_layer(&me->edata, CD_MEDGE); me->mface = CustomData_get_layer(&me->fdata, CD_MFACE); me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL); me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE); me->mpoly = CustomData_get_layer(&me->pdata, CD_MPOLY); me->mloop = CustomData_get_layer(&me->ldata, CD_MLOOP); me->mtpoly = CustomData_get_layer(&me->pdata, CD_MTEXPOLY); me->mloopcol = CustomData_get_layer(&me->ldata, CD_MLOOPCOL); me->mloopuv = CustomData_get_layer(&me->ldata, CD_MLOOPUV); } bool BKE_mesh_has_custom_loop_normals(Mesh *me) { if (me->edit_btmesh) { return CustomData_has_layer(&me->edit_btmesh->bm->ldata, CD_CUSTOMLOOPNORMAL); } else { return CustomData_has_layer(&me->ldata, CD_CUSTOMLOOPNORMAL); } } /** Free (or release) any data used by this mesh (does not free the mesh itself). */ void BKE_mesh_free(Mesh *me) { BKE_animdata_free(&me->id, false); CustomData_free(&me->vdata, me->totvert); CustomData_free(&me->edata, me->totedge); CustomData_free(&me->fdata, me->totface); CustomData_free(&me->ldata, me->totloop); CustomData_free(&me->pdata, me->totpoly); MEM_SAFE_FREE(me->mat); MEM_SAFE_FREE(me->bb); MEM_SAFE_FREE(me->mselect); MEM_SAFE_FREE(me->edit_btmesh); } static void mesh_tessface_clear_intern(Mesh *mesh, int free_customdata) { if (free_customdata) { CustomData_free(&mesh->fdata, mesh->totface); } else { CustomData_reset(&mesh->fdata); } mesh->mface = NULL; mesh->mtface = NULL; mesh->mcol = NULL; mesh->totface = 0; } void BKE_mesh_init(Mesh *me) { BLI_assert(MEMCMP_STRUCT_OFS_IS_ZERO(me, id)); me->size[0] = me->size[1] = me->size[2] = 1.0; me->smoothresh = DEG2RADF(30); me->texflag = ME_AUTOSPACE; /* disable because its slow on many GPU's, see [#37518] */ #if 0 me->flag = ME_TWOSIDED; #endif me->drawflag = ME_DRAWEDGES | ME_DRAWFACES | ME_DRAWCREASES; CustomData_reset(&me->vdata); CustomData_reset(&me->edata); CustomData_reset(&me->fdata); CustomData_reset(&me->pdata); CustomData_reset(&me->ldata); } Mesh *BKE_mesh_add(Main *bmain, const char *name) { Mesh *me; me = BKE_libblock_alloc(bmain, ID_ME, name); BKE_mesh_init(me); return me; } Mesh *BKE_mesh_copy(Main *bmain, const Mesh *me) { Mesh *men; int a; const int do_tessface = ((me->totface != 0) && (me->totpoly == 0)); /* only do tessface if we have no polys */ men = BKE_libblock_copy(bmain, &me->id); men->mat = MEM_dupallocN(me->mat); for (a = 0; a < men->totcol; a++) { id_us_plus((ID *)men->mat[a]); } id_us_plus((ID *)men->texcomesh); CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert); CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge); CustomData_copy(&me->ldata, &men->ldata, CD_MASK_MESH, CD_DUPLICATE, men->totloop); CustomData_copy(&me->pdata, &men->pdata, CD_MASK_MESH, CD_DUPLICATE, men->totpoly); if (do_tessface) { CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface); } else { mesh_tessface_clear_intern(men, false); } BKE_mesh_update_customdata_pointers(men, do_tessface); men->edit_btmesh = NULL; men->mselect = MEM_dupallocN(men->mselect); men->bb = MEM_dupallocN(men->bb); if (me->key) { men->key = BKE_key_copy(bmain, me->key); men->key->from = (ID *)men; } BKE_id_copy_ensure_local(bmain, &me->id, &men->id); return men; } BMesh *BKE_mesh_to_bmesh( Mesh *me, Object *ob, const bool add_key_index, const struct BMeshCreateParams *params) { BMesh *bm; const BMAllocTemplate allocsize = BMALLOC_TEMPLATE_FROM_ME(me); bm = BM_mesh_create(&allocsize, params); BM_mesh_bm_from_me( bm, me, (&(struct BMeshFromMeshParams){ .add_key_index = add_key_index, .use_shapekey = true, .active_shapekey = ob->shapenr, })); return bm; } void BKE_mesh_make_local(Main *bmain, Mesh *me, const bool lib_local) { BKE_id_make_local_generic(bmain, &me->id, true, lib_local); } bool BKE_mesh_uv_cdlayer_rename_index(Mesh *me, const int poly_index, const int loop_index, const int face_index, const char *new_name, const bool do_tessface) { CustomData *pdata, *ldata, *fdata; CustomDataLayer *cdlp, *cdlu, *cdlf; const int step = do_tessface ? 3 : 2; int i; if (me->edit_btmesh) { pdata = &me->edit_btmesh->bm->pdata; ldata = &me->edit_btmesh->bm->ldata; fdata = NULL; /* No tessellated data in BMesh! */ } else { pdata = &me->pdata; ldata = &me->ldata; fdata = &me->fdata; } cdlp = &pdata->layers[poly_index]; cdlu = &ldata->layers[loop_index]; cdlf = fdata && do_tessface ? &fdata->layers[face_index] : NULL; if (cdlp->name != new_name) { /* Mesh validate passes a name from the CD layer as the new name, * Avoid memcpy from self to self in this case. */ BLI_strncpy(cdlp->name, new_name, sizeof(cdlp->name)); CustomData_set_layer_unique_name(pdata, cdlp - pdata->layers); } /* Loop until we do have exactly the same name for all layers! */ for (i = 1; !STREQ(cdlp->name, cdlu->name) || (cdlf && !STREQ(cdlp->name, cdlf->name)); i++) { switch (i % step) { case 0: BLI_strncpy(cdlp->name, cdlu->name, sizeof(cdlp->name)); CustomData_set_layer_unique_name(pdata, cdlp - pdata->layers); break; case 1: BLI_strncpy(cdlu->name, cdlp->name, sizeof(cdlu->name)); CustomData_set_layer_unique_name(ldata, cdlu - ldata->layers); break; case 2: if (cdlf) { BLI_strncpy(cdlf->name, cdlp->name, sizeof(cdlf->name)); CustomData_set_layer_unique_name(fdata, cdlf - fdata->layers); } break; } } return true; } bool BKE_mesh_uv_cdlayer_rename(Mesh *me, const char *old_name, const char *new_name, bool do_tessface) { CustomData *pdata, *ldata, *fdata; if (me->edit_btmesh) { pdata = &me->edit_btmesh->bm->pdata; ldata = &me->edit_btmesh->bm->ldata; /* No tessellated data in BMesh! */ fdata = NULL; do_tessface = false; } else { pdata = &me->pdata; ldata = &me->ldata; fdata = &me->fdata; do_tessface = (do_tessface && fdata->totlayer); } { const int pidx_start = CustomData_get_layer_index(pdata, CD_MTEXPOLY); const int lidx_start = CustomData_get_layer_index(ldata, CD_MLOOPUV); const int fidx_start = do_tessface ? CustomData_get_layer_index(fdata, CD_MTFACE) : -1; int pidx = CustomData_get_named_layer(pdata, CD_MTEXPOLY, old_name); int lidx = CustomData_get_named_layer(ldata, CD_MLOOPUV, old_name); int fidx = do_tessface ? CustomData_get_named_layer(fdata, CD_MTFACE, old_name) : -1; /* None of those cases should happen, in theory! * Note this assume we have the same number of mtexpoly, mloopuv and mtface layers! */ if (pidx == -1) { if (lidx == -1) { if (fidx == -1) { /* No layer found with this name! */ return false; } else { lidx = fidx; } } pidx = lidx; } else { if (lidx == -1) { lidx = pidx; } if (fidx == -1 && do_tessface) { fidx = pidx; } } #if 0 /* For now, we do not consider mismatch in indices (i.e. same name leading to (relative) different indices). */ else if (pidx != lidx) { lidx = pidx; } #endif /* Go back to absolute indices! */ pidx += pidx_start; lidx += lidx_start; if (fidx != -1) fidx += fidx_start; return BKE_mesh_uv_cdlayer_rename_index(me, pidx, lidx, fidx, new_name, do_tessface); } } void BKE_mesh_boundbox_calc(Mesh *me, float r_loc[3], float r_size[3]) { BoundBox *bb; float min[3], max[3]; float mloc[3], msize[3]; if (me->bb == NULL) me->bb = MEM_callocN(sizeof(BoundBox), "boundbox"); bb = me->bb; if (!r_loc) r_loc = mloc; if (!r_size) r_size = msize; INIT_MINMAX(min, max); if (!BKE_mesh_minmax(me, min, max)) { min[0] = min[1] = min[2] = -1.0f; max[0] = max[1] = max[2] = 1.0f; } mid_v3_v3v3(r_loc, min, max); r_size[0] = (max[0] - min[0]) / 2.0f; r_size[1] = (max[1] - min[1]) / 2.0f; r_size[2] = (max[2] - min[2]) / 2.0f; BKE_boundbox_init_from_minmax(bb, min, max); bb->flag &= ~BOUNDBOX_DIRTY; } void BKE_mesh_texspace_calc(Mesh *me) { float loc[3], size[3]; int a; BKE_mesh_boundbox_calc(me, loc, size); if (me->texflag & ME_AUTOSPACE) { for (a = 0; a < 3; a++) { if (size[a] == 0.0f) size[a] = 1.0f; else if (size[a] > 0.0f && size[a] < 0.00001f) size[a] = 0.00001f; else if (size[a] < 0.0f && size[a] > -0.00001f) size[a] = -0.00001f; } copy_v3_v3(me->loc, loc); copy_v3_v3(me->size, size); zero_v3(me->rot); } } BoundBox *BKE_mesh_boundbox_get(Object *ob) { Mesh *me = ob->data; if (ob->bb) return ob->bb; if (me->bb == NULL || (me->bb->flag & BOUNDBOX_DIRTY)) { BKE_mesh_texspace_calc(me); } return me->bb; } void BKE_mesh_texspace_get(Mesh *me, float r_loc[3], float r_rot[3], float r_size[3]) { if (me->bb == NULL || (me->bb->flag & BOUNDBOX_DIRTY)) { BKE_mesh_texspace_calc(me); } if (r_loc) copy_v3_v3(r_loc, me->loc); if (r_rot) copy_v3_v3(r_rot, me->rot); if (r_size) copy_v3_v3(r_size, me->size); } void BKE_mesh_texspace_copy_from_object(Mesh *me, Object *ob) { float *texloc, *texrot, *texsize; short *texflag; if (BKE_object_obdata_texspace_get(ob, &texflag, &texloc, &texsize, &texrot)) { me->texflag = *texflag; copy_v3_v3(me->loc, texloc); copy_v3_v3(me->size, texsize); copy_v3_v3(me->rot, texrot); } } float (*BKE_mesh_orco_verts_get(Object *ob))[3] { Mesh *me = ob->data; MVert *mvert = NULL; Mesh *tme = me->texcomesh ? me->texcomesh : me; int a, totvert; float (*vcos)[3] = NULL; /* Get appropriate vertex coordinates */ vcos = MEM_callocN(sizeof(*vcos) * me->totvert, "orco mesh"); mvert = tme->mvert; totvert = min_ii(tme->totvert, me->totvert); for (a = 0; a < totvert; a++, mvert++) { copy_v3_v3(vcos[a], mvert->co); } return vcos; } void BKE_mesh_orco_verts_transform(Mesh *me, float (*orco)[3], int totvert, int invert) { float loc[3], size[3]; int a; BKE_mesh_texspace_get(me->texcomesh ? me->texcomesh : me, loc, NULL, size); if (invert) { for (a = 0; a < totvert; a++) { float *co = orco[a]; madd_v3_v3v3v3(co, loc, co, size); } } else { for (a = 0; a < totvert; a++) { float *co = orco[a]; co[0] = (co[0] - loc[0]) / size[0]; co[1] = (co[1] - loc[1]) / size[1]; co[2] = (co[2] - loc[2]) / size[2]; } } } /* rotates the vertices of a face in case v[2] or v[3] (vertex index) is = 0. * this is necessary to make the if (mface->v4) check for quads work */ int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr) { /* first test if the face is legal */ if ((mface->v3 || nr == 4) && mface->v3 == mface->v4) { mface->v4 = 0; nr--; } if ((mface->v2 || mface->v4) && mface->v2 == mface->v3) { mface->v3 = mface->v4; mface->v4 = 0; nr--; } if (mface->v1 == mface->v2) { mface->v2 = mface->v3; mface->v3 = mface->v4; mface->v4 = 0; nr--; } /* check corrupt cases, bow-tie geometry, cant handle these because edge data wont exist so just return 0 */ if (nr == 3) { if ( /* real edges */ mface->v1 == mface->v2 || mface->v2 == mface->v3 || mface->v3 == mface->v1) { return 0; } } else if (nr == 4) { if ( /* real edges */ mface->v1 == mface->v2 || mface->v2 == mface->v3 || mface->v3 == mface->v4 || mface->v4 == mface->v1 || /* across the face */ mface->v1 == mface->v3 || mface->v2 == mface->v4) { return 0; } } /* prevent a zero at wrong index location */ if (nr == 3) { if (mface->v3 == 0) { static int corner_indices[4] = {1, 2, 0, 3}; SWAP(unsigned int, mface->v1, mface->v2); SWAP(unsigned int, mface->v2, mface->v3); if (fdata) CustomData_swap_corners(fdata, mfindex, corner_indices); } } else if (nr == 4) { if (mface->v3 == 0 || mface->v4 == 0) { static int corner_indices[4] = {2, 3, 0, 1}; SWAP(unsigned int, mface->v1, mface->v3); SWAP(unsigned int, mface->v2, mface->v4); if (fdata) CustomData_swap_corners(fdata, mfindex, corner_indices); } } return nr; } Mesh *BKE_mesh_from_object(Object *ob) { if (ob == NULL) return NULL; if (ob->type == OB_MESH) return ob->data; else return NULL; } void BKE_mesh_assign_object(Object *ob, Mesh *me) { Mesh *old = NULL; multires_force_update(ob); if (ob == NULL) return; if (ob->type == OB_MESH) { old = ob->data; if (old) id_us_min(&old->id); ob->data = me; id_us_plus((ID *)me); } test_object_materials(ob, (ID *)me); test_object_modifiers(ob); } void BKE_mesh_from_metaball(ListBase *lb, Mesh *me) { DispList *dl; MVert *mvert; MLoop *mloop, *allloop; MPoly *mpoly; const float *nors, *verts; int a, *index; dl = lb->first; if (dl == NULL) return; if (dl->type == DL_INDEX4) { mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr); allloop = mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_CALLOC, NULL, dl->parts * 4); mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_CALLOC, NULL, dl->parts); me->mvert = mvert; me->mloop = mloop; me->mpoly = mpoly; me->totvert = dl->nr; me->totpoly = dl->parts; a = dl->nr; nors = dl->nors; verts = dl->verts; while (a--) { copy_v3_v3(mvert->co, verts); normal_float_to_short_v3(mvert->no, nors); mvert++; nors += 3; verts += 3; } a = dl->parts; index = dl->index; while (a--) { int count = index[2] != index[3] ? 4 : 3; mloop[0].v = index[0]; mloop[1].v = index[1]; mloop[2].v = index[2]; if (count == 4) mloop[3].v = index[3]; mpoly->totloop = count; mpoly->loopstart = (int)(mloop - allloop); mpoly->flag = ME_SMOOTH; mpoly++; mloop += count; me->totloop += count; index += 4; } BKE_mesh_update_customdata_pointers(me, true); BKE_mesh_calc_normals(me); BKE_mesh_calc_edges(me, true, false); } } /** * Specialized function to use when we _know_ existing edges don't overlap with poly edges. */ static void make_edges_mdata_extend(MEdge **r_alledge, int *r_totedge, const MPoly *mpoly, MLoop *mloop, const int totpoly) { int totedge = *r_totedge; int totedge_new; EdgeHash *eh; unsigned int eh_reserve; const MPoly *mp; int i; eh_reserve = max_ii(totedge, BLI_EDGEHASH_SIZE_GUESS_FROM_POLYS(totpoly)); eh = BLI_edgehash_new_ex(__func__, eh_reserve); for (i = 0, mp = mpoly; i < totpoly; i++, mp++) { BKE_mesh_poly_edgehash_insert(eh, mp, mloop + mp->loopstart); } totedge_new = BLI_edgehash_size(eh); #ifdef DEBUG /* ensure that theres no overlap! */ if (totedge_new) { MEdge *medge = *r_alledge; for (i = 0; i < totedge; i++, medge++) { BLI_assert(BLI_edgehash_haskey(eh, medge->v1, medge->v2) == false); } } #endif if (totedge_new) { EdgeHashIterator *ehi; MEdge *medge; unsigned int e_index = totedge; *r_alledge = medge = (*r_alledge ? MEM_reallocN(*r_alledge, sizeof(MEdge) * (totedge + totedge_new)) : MEM_callocN(sizeof(MEdge) * totedge_new, __func__)); medge += totedge; totedge += totedge_new; /* --- */ for (ehi = BLI_edgehashIterator_new(eh); BLI_edgehashIterator_isDone(ehi) == false; BLI_edgehashIterator_step(ehi), ++medge, e_index++) { BLI_edgehashIterator_getKey(ehi, &medge->v1, &medge->v2); BLI_edgehashIterator_setValue(ehi, SET_UINT_IN_POINTER(e_index)); medge->crease = medge->bweight = 0; medge->flag = ME_EDGEDRAW | ME_EDGERENDER; } BLI_edgehashIterator_free(ehi); *r_totedge = totedge; for (i = 0, mp = mpoly; i < totpoly; i++, mp++) { MLoop *l = &mloop[mp->loopstart]; MLoop *l_prev = (l + (mp->totloop - 1)); int j; for (j = 0; j < mp->totloop; j++, l++) { /* lookup hashed edge index */ l_prev->e = GET_UINT_FROM_POINTER(BLI_edgehash_lookup(eh, l_prev->v, l->v)); l_prev = l; } } } BLI_edgehash_free(eh, NULL); } /* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */ /* return non-zero on error */ int BKE_mesh_nurbs_to_mdata( Object *ob, MVert **r_allvert, int *r_totvert, MEdge **r_alledge, int *r_totedge, MLoop **r_allloop, MPoly **r_allpoly, int *r_totloop, int *r_totpoly) { ListBase disp = {NULL, NULL}; if (ob->curve_cache) { disp = ob->curve_cache->disp; } return BKE_mesh_nurbs_displist_to_mdata( ob, &disp, r_allvert, r_totvert, r_alledge, r_totedge, r_allloop, r_allpoly, NULL, r_totloop, r_totpoly); } /* BMESH: this doesn't calculate all edges from polygons, * only free standing edges are calculated */ /* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */ /* use specified dispbase */ int BKE_mesh_nurbs_displist_to_mdata( Object *ob, const ListBase *dispbase, MVert **r_allvert, int *r_totvert, MEdge **r_alledge, int *r_totedge, MLoop **r_allloop, MPoly **r_allpoly, MLoopUV **r_alluv, int *r_totloop, int *r_totpoly) { Curve *cu = ob->data; DispList *dl; MVert *mvert; MPoly *mpoly; MLoop *mloop; MLoopUV *mloopuv = NULL; MEdge *medge; const float *data; int a, b, ofs, vertcount, startvert, totvert = 0, totedge = 0, totloop = 0, totvlak = 0; int p1, p2, p3, p4, *index; const bool conv_polys = ((CU_DO_2DFILL(cu) == false) || /* 2d polys are filled with DL_INDEX3 displists */ (ob->type == OB_SURF)); /* surf polys are never filled */ /* count */ dl = dispbase->first; while (dl) { if (dl->type == DL_SEGM) { totvert += dl->parts * dl->nr; totedge += dl->parts * (dl->nr - 1); } else if (dl->type == DL_POLY) { if (conv_polys) { totvert += dl->parts * dl->nr; totedge += dl->parts * dl->nr; } } else if (dl->type == DL_SURF) { int tot; totvert += dl->parts * dl->nr; tot = (dl->parts - 1 + ((dl->flag & DL_CYCL_V) == 2)) * (dl->nr - 1 + (dl->flag & DL_CYCL_U)); totvlak += tot; totloop += tot * 4; } else if (dl->type == DL_INDEX3) { int tot; totvert += dl->nr; tot = dl->parts; totvlak += tot; totloop += tot * 3; } dl = dl->next; } if (totvert == 0) { /* error("can't convert"); */ /* Make Sure you check ob->data is a curve */ return -1; } *r_allvert = mvert = MEM_callocN(sizeof(MVert) * totvert, "nurbs_init mvert"); *r_alledge = medge = MEM_callocN(sizeof(MEdge) * totedge, "nurbs_init medge"); *r_allloop = mloop = MEM_callocN(sizeof(MLoop) * totvlak * 4, "nurbs_init mloop"); // totloop *r_allpoly = mpoly = MEM_callocN(sizeof(MPoly) * totvlak, "nurbs_init mloop"); if (r_alluv) *r_alluv = mloopuv = MEM_callocN(sizeof(MLoopUV) * totvlak * 4, "nurbs_init mloopuv"); /* verts and faces */ vertcount = 0; dl = dispbase->first; while (dl) { const bool is_smooth = (dl->rt & CU_SMOOTH) != 0; if (dl->type == DL_SEGM) { startvert = vertcount; a = dl->parts * dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } for (a = 0; a < dl->parts; a++) { ofs = a * dl->nr; for (b = 1; b < dl->nr; b++) { medge->v1 = startvert + ofs + b - 1; medge->v2 = startvert + ofs + b; medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW; medge++; } } } else if (dl->type == DL_POLY) { if (conv_polys) { startvert = vertcount; a = dl->parts * dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } for (a = 0; a < dl->parts; a++) { ofs = a * dl->nr; for (b = 0; b < dl->nr; b++) { medge->v1 = startvert + ofs + b; if (b == dl->nr - 1) medge->v2 = startvert + ofs; else medge->v2 = startvert + ofs + b + 1; medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW; medge++; } } } } else if (dl->type == DL_INDEX3) { startvert = vertcount; a = dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } a = dl->parts; index = dl->index; while (a--) { mloop[0].v = startvert + index[0]; mloop[1].v = startvert + index[2]; mloop[2].v = startvert + index[1]; mpoly->loopstart = (int)(mloop - (*r_allloop)); mpoly->totloop = 3; mpoly->mat_nr = dl->col; if (mloopuv) { int i; for (i = 0; i < 3; i++, mloopuv++) { mloopuv->uv[0] = (mloop[i].v - startvert) / (float)(dl->nr - 1); mloopuv->uv[1] = 0.0f; } } if (is_smooth) mpoly->flag |= ME_SMOOTH; mpoly++; mloop += 3; index += 3; } } else if (dl->type == DL_SURF) { startvert = vertcount; a = dl->parts * dl->nr; data = dl->verts; while (a--) { copy_v3_v3(mvert->co, data); data += 3; vertcount++; mvert++; } for (a = 0; a < dl->parts; a++) { if ( (dl->flag & DL_CYCL_V) == 0 && a == dl->parts - 1) break; if (dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */ p1 = startvert + dl->nr * a; /* p4 -> p3 -> */ p2 = p1 + dl->nr - 1; /* -----> next row */ p3 = p1 + dl->nr; p4 = p2 + dl->nr; b = 0; } else { p2 = startvert + dl->nr * a; p1 = p2 + 1; p4 = p2 + dl->nr; p3 = p1 + dl->nr; b = 1; } if ( (dl->flag & DL_CYCL_V) && a == dl->parts - 1) { p3 -= dl->parts * dl->nr; p4 -= dl->parts * dl->nr; } for (; b < dl->nr; b++) { mloop[0].v = p1; mloop[1].v = p3; mloop[2].v = p4; mloop[3].v = p2; mpoly->loopstart = (int)(mloop - (*r_allloop)); mpoly->totloop = 4; mpoly->mat_nr = dl->col; if (mloopuv) { int orco_sizeu = dl->nr - 1; int orco_sizev = dl->parts - 1; int i; /* exception as handled in convertblender.c too */ if (dl->flag & DL_CYCL_U) { orco_sizeu++; if (dl->flag & DL_CYCL_V) orco_sizev++; } else if (dl->flag & DL_CYCL_V) { orco_sizev++; } for (i = 0; i < 4; i++, mloopuv++) { /* find uv based on vertex index into grid array */ int v = mloop[i].v - startvert; mloopuv->uv[0] = (v / dl->nr) / (float)orco_sizev; mloopuv->uv[1] = (v % dl->nr) / (float)orco_sizeu; /* cyclic correction */ if ((i == 1 || i == 2) && mloopuv->uv[0] == 0.0f) mloopuv->uv[0] = 1.0f; if ((i == 0 || i == 1) && mloopuv->uv[1] == 0.0f) mloopuv->uv[1] = 1.0f; } } if (is_smooth) mpoly->flag |= ME_SMOOTH; mpoly++; mloop += 4; p4 = p3; p3++; p2 = p1; p1++; } } } dl = dl->next; } if (totvlak) { make_edges_mdata_extend(r_alledge, &totedge, *r_allpoly, *r_allloop, totvlak); } *r_totpoly = totvlak; *r_totloop = totloop; *r_totedge = totedge; *r_totvert = totvert; return 0; } /* this may fail replacing ob->data, be sure to check ob->type */ void BKE_mesh_from_nurbs_displist(Object *ob, ListBase *dispbase, const bool use_orco_uv, const char *obdata_name) { Main *bmain = G.main; Object *ob1; DerivedMesh *dm = ob->derivedFinal; Mesh *me; Curve *cu; MVert *allvert = NULL; MEdge *alledge = NULL; MLoop *allloop = NULL; MLoopUV *alluv = NULL; MPoly *allpoly = NULL; int totvert, totedge, totloop, totpoly; cu = ob->data; if (dm == NULL) { if (BKE_mesh_nurbs_displist_to_mdata(ob, dispbase, &allvert, &totvert, &alledge, &totedge, &allloop, &allpoly, (use_orco_uv) ? &alluv : NULL, &totloop, &totpoly) != 0) { /* Error initializing */ return; } /* make mesh */ me = BKE_mesh_add(bmain, obdata_name); me->totvert = totvert; me->totedge = totedge; me->totloop = totloop; me->totpoly = totpoly; me->mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, allvert, me->totvert); me->medge = CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, alledge, me->totedge); me->mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_ASSIGN, allloop, me->totloop); me->mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_ASSIGN, allpoly, me->totpoly); if (alluv) { const char *uvname = "Orco"; me->mtpoly = CustomData_add_layer_named(&me->pdata, CD_MTEXPOLY, CD_DEFAULT, NULL, me->totpoly, uvname); me->mloopuv = CustomData_add_layer_named(&me->ldata, CD_MLOOPUV, CD_ASSIGN, alluv, me->totloop, uvname); } BKE_mesh_calc_normals(me); } else { me = BKE_mesh_add(bmain, obdata_name); DM_to_mesh(dm, me, ob, CD_MASK_MESH, false); } me->totcol = cu->totcol; me->mat = cu->mat; BKE_mesh_texspace_calc(me); cu->mat = NULL; cu->totcol = 0; /* Do not decrement ob->data usercount here, it's done at end of func with BKE_libblock_free_us() call. */ ob->data = me; ob->type = OB_MESH; /* other users */ ob1 = bmain->object.first; while (ob1) { if (ob1->data == cu) { ob1->type = OB_MESH; id_us_min((ID *)ob1->data); ob1->data = ob->data; id_us_plus((ID *)ob1->data); } ob1 = ob1->id.next; } BKE_libblock_free_us(bmain, cu); } void BKE_mesh_from_nurbs(Object *ob) { Curve *cu = (Curve *) ob->data; bool use_orco_uv = (cu->flag & CU_UV_ORCO) != 0; ListBase disp = {NULL, NULL}; if (ob->curve_cache) { disp = ob->curve_cache->disp; } BKE_mesh_from_nurbs_displist(ob, &disp, use_orco_uv, cu->id.name); } typedef struct EdgeLink { struct EdgeLink *next, *prev; void *edge; } EdgeLink; typedef struct VertLink { Link *next, *prev; unsigned int index; } VertLink; static void prependPolyLineVert(ListBase *lb, unsigned int index) { VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink"); vl->index = index; BLI_addhead(lb, vl); } static void appendPolyLineVert(ListBase *lb, unsigned int index) { VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink"); vl->index = index; BLI_addtail(lb, vl); } void BKE_mesh_to_curve_nurblist(DerivedMesh *dm, ListBase *nurblist, const int edge_users_test) { MVert *mvert = dm->getVertArray(dm); MEdge *med, *medge = dm->getEdgeArray(dm); MPoly *mp, *mpoly = dm->getPolyArray(dm); MLoop *mloop = dm->getLoopArray(dm); int dm_totedge = dm->getNumEdges(dm); int dm_totpoly = dm->getNumPolys(dm); int totedges = 0; int i; /* only to detect edge polylines */ int *edge_users; ListBase edges = {NULL, NULL}; /* get boundary edges */ edge_users = MEM_callocN(sizeof(int) * dm_totedge, __func__); for (i = 0, mp = mpoly; i < dm_totpoly; i++, mp++) { MLoop *ml = &mloop[mp->loopstart]; int j; for (j = 0; j < mp->totloop; j++, ml++) { edge_users[ml->e]++; } } /* create edges from all faces (so as to find edges not in any faces) */ med = medge; for (i = 0; i < dm_totedge; i++, med++) { if (edge_users[i] == edge_users_test) { EdgeLink *edl = MEM_callocN(sizeof(EdgeLink), "EdgeLink"); edl->edge = med; BLI_addtail(&edges, edl); totedges++; } } MEM_freeN(edge_users); if (edges.first) { while (edges.first) { /* each iteration find a polyline and add this as a nurbs poly spline */ ListBase polyline = {NULL, NULL}; /* store a list of VertLink's */ bool closed = false; int totpoly = 0; MEdge *med_current = ((EdgeLink *)edges.last)->edge; unsigned int startVert = med_current->v1; unsigned int endVert = med_current->v2; bool ok = true; appendPolyLineVert(&polyline, startVert); totpoly++; appendPolyLineVert(&polyline, endVert); totpoly++; BLI_freelinkN(&edges, edges.last); totedges--; while (ok) { /* while connected edges are found... */ EdgeLink *edl = edges.last; ok = false; while (edl) { EdgeLink *edl_prev = edl->prev; med = edl->edge; if (med->v1 == endVert) { endVert = med->v2; appendPolyLineVert(&polyline, med->v2); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = true; } else if (med->v2 == endVert) { endVert = med->v1; appendPolyLineVert(&polyline, endVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = true; } else if (med->v1 == startVert) { startVert = med->v2; prependPolyLineVert(&polyline, startVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = true; } else if (med->v2 == startVert) { startVert = med->v1; prependPolyLineVert(&polyline, startVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok = true; } edl = edl_prev; } } /* Now we have a polyline, make into a curve */ if (startVert == endVert) { BLI_freelinkN(&polyline, polyline.last); totpoly--; closed = true; } /* --- nurbs --- */ { Nurb *nu; BPoint *bp; VertLink *vl; /* create new 'nurb' within the curve */ nu = (Nurb *)MEM_callocN(sizeof(Nurb), "MeshNurb"); nu->pntsu = totpoly; nu->pntsv = 1; nu->orderu = 4; nu->flagu = CU_NURB_ENDPOINT | (closed ? CU_NURB_CYCLIC : 0); /* endpoint */ nu->resolu = 12; nu->bp = (BPoint *)MEM_callocN(sizeof(BPoint) * totpoly, "bpoints"); /* add points */ vl = polyline.first; for (i = 0, bp = nu->bp; i < totpoly; i++, bp++, vl = (VertLink *)vl->next) { copy_v3_v3(bp->vec, mvert[vl->index].co); bp->f1 = SELECT; bp->radius = bp->weight = 1.0; } BLI_freelistN(&polyline); /* add nurb to curve */ BLI_addtail(nurblist, nu); } /* --- done with nurbs --- */ } } } void BKE_mesh_to_curve(Scene *scene, Object *ob) { /* make new mesh data from the original copy */ DerivedMesh *dm = mesh_get_derived_final(scene, ob, CD_MASK_MESH); ListBase nurblist = {NULL, NULL}; bool needsFree = false; BKE_mesh_to_curve_nurblist(dm, &nurblist, 0); BKE_mesh_to_curve_nurblist(dm, &nurblist, 1); if (nurblist.first) { Curve *cu = BKE_curve_add(G.main, ob->id.name + 2, OB_CURVE); cu->flag |= CU_3D; cu->nurb = nurblist; id_us_min(&((Mesh *)ob->data)->id); ob->data = cu; ob->type = OB_CURVE; /* curve objects can't contain DM in usual cases, we could free memory */ needsFree = true; } dm->needsFree = needsFree; dm->release(dm); if (needsFree) { ob->derivedFinal = NULL; /* curve object could have got bounding box only in special cases */ if (ob->bb) { MEM_freeN(ob->bb); ob->bb = NULL; } } } void BKE_mesh_material_index_remove(Mesh *me, short index) { MPoly *mp; MFace *mf; int i; for (mp = me->mpoly, i = 0; i < me->totpoly; i++, mp++) { if (mp->mat_nr && mp->mat_nr >= index) { mp->mat_nr--; } } for (mf = me->mface, i = 0; i < me->totface; i++, mf++) { if (mf->mat_nr && mf->mat_nr >= index) { mf->mat_nr--; } } } void BKE_mesh_material_index_clear(Mesh *me) { MPoly *mp; MFace *mf; int i; for (mp = me->mpoly, i = 0; i < me->totpoly; i++, mp++) { mp->mat_nr = 0; } for (mf = me->mface, i = 0; i < me->totface; i++, mf++) { mf->mat_nr = 0; } } void BKE_mesh_material_remap(Mesh *me, const unsigned int *remap, unsigned int remap_len) { const short remap_len_short = (short)remap_len; #define MAT_NR_REMAP(n) \ if (n < remap_len_short) { \ BLI_assert(n >= 0 && remap[n] < remap_len_short); \ n = remap[n]; \ } ((void)0) if (me->edit_btmesh) { BMEditMesh *em = me->edit_btmesh; BMIter iter; BMFace *efa; BM_ITER_MESH(efa, &iter, em->bm, BM_FACES_OF_MESH) { MAT_NR_REMAP(efa->mat_nr); } } else { int i; for (i = 0; i < me->totpoly; i++) { MAT_NR_REMAP(me->mpoly[i].mat_nr); } } #undef MAT_NR_REMAP } void BKE_mesh_smooth_flag_set(Object *meshOb, int enableSmooth) { Mesh *me = meshOb->data; int i; for (i = 0; i < me->totpoly; i++) { MPoly *mp = &me->mpoly[i]; if (enableSmooth) { mp->flag |= ME_SMOOTH; } else { mp->flag &= ~ME_SMOOTH; } } for (i = 0; i < me->totface; i++) { MFace *mf = &me->mface[i]; if (enableSmooth) { mf->flag |= ME_SMOOTH; } else { mf->flag &= ~ME_SMOOTH; } } } /** * Return a newly MEM_malloc'd array of all the mesh vertex locations * \note \a r_numVerts may be NULL */ float (*BKE_mesh_vertexCos_get(const Mesh *me, int *r_numVerts))[3] { int i, numVerts = me->totvert; float (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "vertexcos1"); if (r_numVerts) *r_numVerts = numVerts; for (i = 0; i < numVerts; i++) copy_v3_v3(cos[i], me->mvert[i].co); return cos; } /** * Find the index of the loop in 'poly' which references vertex, * returns -1 if not found */ int poly_find_loop_from_vert( const MPoly *poly, const MLoop *loopstart, unsigned vert) { int j; for (j = 0; j < poly->totloop; j++, loopstart++) { if (loopstart->v == vert) return j; } return -1; } /** * Fill \a r_adj with the loop indices in \a poly adjacent to the * vertex. Returns the index of the loop matching vertex, or -1 if the * vertex is not in \a poly */ int poly_get_adj_loops_from_vert( const MPoly *poly, const MLoop *mloop, unsigned int vert, unsigned int r_adj[2]) { int corner = poly_find_loop_from_vert(poly, &mloop[poly->loopstart], vert); if (corner != -1) { #if 0 /* unused - this loop */ const MLoop *ml = &mloop[poly->loopstart + corner]; #endif /* vertex was found */ r_adj[0] = ME_POLY_LOOP_PREV(mloop, poly, corner)->v; r_adj[1] = ME_POLY_LOOP_NEXT(mloop, poly, corner)->v; } return corner; } /** * Return the index of the edge vert that is not equal to \a v. If * neither edge vertex is equal to \a v, returns -1. */ int BKE_mesh_edge_other_vert(const MEdge *e, int v) { if (e->v1 == v) return e->v2; else if (e->v2 == v) return e->v1; else return -1; } /* basic vertex data functions */ bool BKE_mesh_minmax(const Mesh *me, float r_min[3], float r_max[3]) { int i = me->totvert; MVert *mvert; for (mvert = me->mvert; i--; mvert++) { minmax_v3v3_v3(r_min, r_max, mvert->co); } return (me->totvert != 0); } void BKE_mesh_transform(Mesh *me, float mat[4][4], bool do_keys) { int i; MVert *mvert = me->mvert; float (*lnors)[3] = CustomData_get_layer(&me->ldata, CD_NORMAL); for (i = 0; i < me->totvert; i++, mvert++) mul_m4_v3(mat, mvert->co); if (do_keys && me->key) { KeyBlock *kb; for (kb = me->key->block.first; kb; kb = kb->next) { float *fp = kb->data; for (i = kb->totelem; i--; fp += 3) { mul_m4_v3(mat, fp); } } } /* don't update normals, caller can do this explicitly. * We do update loop normals though, those may not be auto-generated (see e.g. STL import script)! */ if (lnors) { float m3[3][3]; copy_m3_m4(m3, mat); normalize_m3(m3); for (i = 0; i < me->totloop; i++, lnors++) { mul_m3_v3(m3, *lnors); } } } void BKE_mesh_translate(Mesh *me, const float offset[3], const bool do_keys) { int i = me->totvert; MVert *mvert; for (mvert = me->mvert; i--; mvert++) { add_v3_v3(mvert->co, offset); } if (do_keys && me->key) { KeyBlock *kb; for (kb = me->key->block.first; kb; kb = kb->next) { float *fp = kb->data; for (i = kb->totelem; i--; fp += 3) { add_v3_v3(fp, offset); } } } } void BKE_mesh_ensure_navmesh(Mesh *me) { if (!CustomData_has_layer(&me->pdata, CD_RECAST)) { int i; int numFaces = me->totpoly; int *recastData; recastData = (int *)MEM_mallocN(numFaces * sizeof(int), __func__); for (i = 0; i < numFaces; i++) { recastData[i] = i + 1; } CustomData_add_layer_named(&me->pdata, CD_RECAST, CD_ASSIGN, recastData, numFaces, "recastData"); } } void BKE_mesh_tessface_calc(Mesh *mesh) { mesh->totface = BKE_mesh_recalc_tessellation(&mesh->fdata, &mesh->ldata, &mesh->pdata, mesh->mvert, mesh->totface, mesh->totloop, mesh->totpoly, /* calc normals right after, don't copy from polys here */ false); BKE_mesh_update_customdata_pointers(mesh, true); } void BKE_mesh_tessface_ensure(Mesh *mesh) { if (mesh->totpoly && mesh->totface == 0) { BKE_mesh_tessface_calc(mesh); } } void BKE_mesh_tessface_clear(Mesh *mesh) { mesh_tessface_clear_intern(mesh, true); } void BKE_mesh_do_versions_cd_flag_init(Mesh *mesh) { if (UNLIKELY(mesh->cd_flag)) { return; } else { MVert *mv; MEdge *med; int i; for (mv = mesh->mvert, i = 0; i < mesh->totvert; mv++, i++) { if (mv->bweight != 0) { mesh->cd_flag |= ME_CDFLAG_VERT_BWEIGHT; break; } } for (med = mesh->medge, i = 0; i < mesh->totedge; med++, i++) { if (med->bweight != 0) { mesh->cd_flag |= ME_CDFLAG_EDGE_BWEIGHT; if (mesh->cd_flag & ME_CDFLAG_EDGE_CREASE) { break; } } if (med->crease != 0) { mesh->cd_flag |= ME_CDFLAG_EDGE_CREASE; if (mesh->cd_flag & ME_CDFLAG_EDGE_BWEIGHT) { break; } } } } } /* -------------------------------------------------------------------- */ /* MSelect functions (currently used in weight paint mode) */ void BKE_mesh_mselect_clear(Mesh *me) { if (me->mselect) { MEM_freeN(me->mselect); me->mselect = NULL; } me->totselect = 0; } void BKE_mesh_mselect_validate(Mesh *me) { MSelect *mselect_src, *mselect_dst; int i_src, i_dst; if (me->totselect == 0) return; mselect_src = me->mselect; mselect_dst = MEM_mallocN(sizeof(MSelect) * (me->totselect), "Mesh selection history"); for (i_src = 0, i_dst = 0; i_src < me->totselect; i_src++) { int index = mselect_src[i_src].index; switch (mselect_src[i_src].type) { case ME_VSEL: { if (me->mvert[index].flag & SELECT) { mselect_dst[i_dst] = mselect_src[i_src]; i_dst++; } break; } case ME_ESEL: { if (me->medge[index].flag & SELECT) { mselect_dst[i_dst] = mselect_src[i_src]; i_dst++; } break; } case ME_FSEL: { if (me->mpoly[index].flag & SELECT) { mselect_dst[i_dst] = mselect_src[i_src]; i_dst++; } break; } default: { BLI_assert(0); break; } } } MEM_freeN(mselect_src); if (i_dst == 0) { MEM_freeN(mselect_dst); mselect_dst = NULL; } else if (i_dst != me->totselect) { mselect_dst = MEM_reallocN(mselect_dst, sizeof(MSelect) * i_dst); } me->totselect = i_dst; me->mselect = mselect_dst; } /** * Return the index within me->mselect, or -1 */ int BKE_mesh_mselect_find(Mesh *me, int index, int type) { int i; BLI_assert(ELEM(type, ME_VSEL, ME_ESEL, ME_FSEL)); for (i = 0; i < me->totselect; i++) { if ((me->mselect[i].index == index) && (me->mselect[i].type == type)) { return i; } } return -1; } /** * Return The index of the active element. */ int BKE_mesh_mselect_active_get(Mesh *me, int type) { BLI_assert(ELEM(type, ME_VSEL, ME_ESEL, ME_FSEL)); if (me->totselect) { if (me->mselect[me->totselect - 1].type == type) { return me->mselect[me->totselect - 1].index; } } return -1; } void BKE_mesh_mselect_active_set(Mesh *me, int index, int type) { const int msel_index = BKE_mesh_mselect_find(me, index, type); if (msel_index == -1) { /* add to the end */ me->mselect = MEM_reallocN(me->mselect, sizeof(MSelect) * (me->totselect + 1)); me->mselect[me->totselect].index = index; me->mselect[me->totselect].type = type; me->totselect++; } else if (msel_index != me->totselect - 1) { /* move to the end */ SWAP(MSelect, me->mselect[msel_index], me->mselect[me->totselect - 1]); } BLI_assert((me->mselect[me->totselect - 1].index == index) && (me->mselect[me->totselect - 1].type == type)); } void BKE_mesh_calc_normals_split_ex(Mesh *mesh, MLoopNorSpaceArray *r_lnors_spacearr) { float (*r_loopnors)[3]; float (*polynors)[3]; short (*clnors)[2] = NULL; bool free_polynors = false; if (CustomData_has_layer(&mesh->ldata, CD_NORMAL)) { r_loopnors = CustomData_get_layer(&mesh->ldata, CD_NORMAL); memset(r_loopnors, 0, sizeof(float[3]) * mesh->totloop); } else { r_loopnors = CustomData_add_layer(&mesh->ldata, CD_NORMAL, CD_CALLOC, NULL, mesh->totloop); CustomData_set_layer_flag(&mesh->ldata, CD_NORMAL, CD_FLAG_TEMPORARY); } /* may be NULL */ clnors = CustomData_get_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL); if (CustomData_has_layer(&mesh->pdata, CD_NORMAL)) { /* This assume that layer is always up to date, not sure this is the case (esp. in Edit mode?)... */ polynors = CustomData_get_layer(&mesh->pdata, CD_NORMAL); free_polynors = false; } else { polynors = MEM_mallocN(sizeof(float[3]) * mesh->totpoly, __func__); BKE_mesh_calc_normals_poly( mesh->mvert, NULL, mesh->totvert, mesh->mloop, mesh->mpoly, mesh->totloop, mesh->totpoly, polynors, false); free_polynors = true; } BKE_mesh_normals_loop_split( mesh->mvert, mesh->totvert, mesh->medge, mesh->totedge, mesh->mloop, r_loopnors, mesh->totloop, mesh->mpoly, (const float (*)[3])polynors, mesh->totpoly, (mesh->flag & ME_AUTOSMOOTH) != 0, mesh->smoothresh, r_lnors_spacearr, clnors, NULL); if (free_polynors) { MEM_freeN(polynors); } } void BKE_mesh_calc_normals_split(Mesh *mesh) { BKE_mesh_calc_normals_split_ex(mesh, NULL); } /* Split faces helper functions. */ typedef struct SplitFaceNewVert { struct SplitFaceNewVert *next; int new_index; int orig_index; float *vnor; } SplitFaceNewVert; typedef struct SplitFaceNewEdge { struct SplitFaceNewEdge *next; int new_index; int orig_index; int v1; int v2; } SplitFaceNewEdge; /* Detect needed new vertices, and update accordingly loops' vertex indices. * WARNING! Leaves mesh in invalid state. */ static int split_faces_prepare_new_verts( const Mesh *mesh, MLoopNorSpaceArray *lnors_spacearr, SplitFaceNewVert **new_verts, MemArena *memarena, bool *r_need_vnors_recalc) { /* Note: if lnors_spacearr is NULL, ther is no autosmooth handling, and we only split out flat polys. */ const int num_loops = mesh->totloop; int num_verts = mesh->totvert; MVert *mvert = mesh->mvert; MLoop *mloop = mesh->mloop; BLI_bitmap *verts_used = BLI_BITMAP_NEW(num_verts, __func__); if (lnors_spacearr) { BLI_bitmap *done_loops = BLI_BITMAP_NEW(num_loops, __func__); MLoop *ml = mloop; MLoopNorSpace **lnor_space = lnors_spacearr->lspacearr; for (int loop_idx = 0; loop_idx < num_loops; loop_idx++, ml++, lnor_space++) { if (!BLI_BITMAP_TEST(done_loops, loop_idx)) { const int vert_idx = ml->v; const bool vert_used = BLI_BITMAP_TEST_BOOL(verts_used, vert_idx); /* If vert is already used by another smooth fan, we need a new vert for this one. */ const int new_vert_idx = vert_used ? num_verts++ : vert_idx; BLI_assert(*lnor_space); if ((*lnor_space)->loops) { for (LinkNode *lnode = (*lnor_space)->loops; lnode; lnode = lnode->next) { const int ml_fan_idx = GET_INT_FROM_POINTER(lnode->link); BLI_BITMAP_ENABLE(done_loops, ml_fan_idx); if (vert_used) { mloop[ml_fan_idx].v = new_vert_idx; } } } else { /* Single loop in this fan... */ BLI_BITMAP_ENABLE(done_loops, loop_idx); if (vert_used) { ml->v = new_vert_idx; } } if (!vert_used) { BLI_BITMAP_ENABLE(verts_used, vert_idx); /* We need to update that vertex's normal here, we won't go over it again. */ /* This is important! *DO NOT* set vnor to final computed lnor, vnor should always be defined to * 'automatic normal' value computed from its polys, not some custom normal. * Fortunately, that's the loop normal space's 'lnor' reference vector. ;) */ normal_float_to_short_v3(mvert[vert_idx].no, (*lnor_space)->vec_lnor); } else { /* Add new vert to list. */ SplitFaceNewVert *new_vert = BLI_memarena_alloc(memarena, sizeof(*new_vert)); new_vert->orig_index = vert_idx; new_vert->new_index = new_vert_idx; new_vert->vnor = (*lnor_space)->vec_lnor; /* See note above. */ new_vert->next = *new_verts; *new_verts = new_vert; } } } MEM_freeN(done_loops); } else { /* No loop normal spaces available, we only split out flat polys. */ const int num_polys = mesh->totpoly; const MPoly *mpoly = mesh->mpoly; /* We do that in two loops, to keep original edges/verts to smooth polys preferencially. */ const MPoly *mp = mpoly; for (int i = 0; i < num_polys; i++, mp++) { if (mp->flag & ME_SMOOTH) { const MLoop *ml = &mloop[mp->loopstart]; for (int j = 0; j < mp->totloop; j++, ml++) { /* Just mark the vertex as used/reserved, that way neighbor flat polys, if any, * will have to create their own. */ BLI_BITMAP_ENABLE(verts_used, ml->v); } } } mp = mpoly; for (int i = 0; i < num_polys; i++, mp++) { if (!(mp->flag & ME_SMOOTH)) { MLoop *ml = &mloop[mp->loopstart]; for (int j = 0; j < mp->totloop; j++, ml++) { const int vert_idx = ml->v; if (BLI_BITMAP_TEST(verts_used, vert_idx)) { /* Add new vert to list. */ const int new_vert_idx = num_verts++; ml->v = new_vert_idx; SplitFaceNewVert *new_vert = BLI_memarena_alloc(memarena, sizeof(*new_vert)); new_vert->orig_index = vert_idx; new_vert->new_index = new_vert_idx; new_vert->vnor = NULL; /* See note below about normals. */ new_vert->next = *new_verts; *new_verts = new_vert; } else { BLI_BITMAP_ENABLE(verts_used, vert_idx); } } /* Note: there is no way to get new normals for smooth vertices here (and we don't have direct access * to poly normals either for flat ones), so we'll have to recompute all vnors at the end... */ *r_need_vnors_recalc = true; } } } MEM_freeN(verts_used); return num_verts - mesh->totvert; } /* Detect needed new edges, and update accordingly loops' edge indices. * WARNING! Leaves mesh in invalid state. */ static int split_faces_prepare_new_edges( const Mesh *mesh, SplitFaceNewEdge **new_edges, MemArena *memarena) { const int num_polys = mesh->totpoly; int num_edges = mesh->totedge; MEdge *medge = mesh->medge; MLoop *mloop = mesh->mloop; const MPoly *mpoly = mesh->mpoly; BLI_bitmap *edges_used = BLI_BITMAP_NEW(num_edges, __func__); EdgeHash *edges_hash = BLI_edgehash_new_ex(__func__, num_edges); const MPoly *mp = mpoly; for (int poly_idx = 0; poly_idx < num_polys; poly_idx++, mp++) { MLoop *ml_prev = &mloop[mp->loopstart + mp->totloop - 1]; MLoop *ml = &mloop[mp->loopstart]; for (int loop_idx = 0; loop_idx < mp->totloop; loop_idx++, ml++) { void **eval; if (!BLI_edgehash_ensure_p(edges_hash, ml_prev->v, ml->v, &eval)) { const int edge_idx = ml_prev->e; /* That edge has not been encountered yet, define it. */ if (BLI_BITMAP_TEST(edges_used, edge_idx)) { /* Original edge has already been used, we need to define a new one. */ const int new_edge_idx = num_edges++; *eval = SET_INT_IN_POINTER(new_edge_idx); ml_prev->e = new_edge_idx; SplitFaceNewEdge *new_edge = BLI_memarena_alloc(memarena, sizeof(*new_edge)); new_edge->orig_index = edge_idx; new_edge->new_index = new_edge_idx; new_edge->v1 = ml_prev->v; new_edge->v2 = ml->v; new_edge->next = *new_edges; *new_edges = new_edge; } else { /* We can re-use original edge. */ medge[edge_idx].v1 = ml_prev->v; medge[edge_idx].v2 = ml->v; *eval = SET_INT_IN_POINTER(edge_idx); BLI_BITMAP_ENABLE(edges_used, edge_idx); } } else { /* Edge already known, just update loop's edge index. */ ml_prev->e = GET_INT_FROM_POINTER(*eval); } ml_prev = ml; } } MEM_freeN(edges_used); BLI_edgehash_free(edges_hash, NULL); return num_edges - mesh->totedge; } /* Perform actual split of vertices. */ static void split_faces_split_new_verts( Mesh *mesh, SplitFaceNewVert *new_verts, const int num_new_verts) { const int num_verts = mesh->totvert - num_new_verts; MVert *mvert = mesh->mvert; /* Remember new_verts is a single linklist, so its items are in reversed order... */ MVert *new_mv = &mvert[mesh->totvert - 1]; for (int i = mesh->totvert - 1; i >= num_verts ; i--, new_mv--, new_verts = new_verts->next) { BLI_assert(new_verts->new_index == i); BLI_assert(new_verts->new_index != new_verts->orig_index); CustomData_copy_data(&mesh->vdata, &mesh->vdata, new_verts->orig_index, i, 1); if (new_verts->vnor) { normal_float_to_short_v3(new_mv->no, new_verts->vnor); } } } /* Perform actual split of edges. */ static void split_faces_split_new_edges( Mesh *mesh, SplitFaceNewEdge *new_edges, const int num_new_edges) { const int num_edges = mesh->totedge - num_new_edges; MEdge *medge = mesh->medge; /* Remember new_edges is a single linklist, so its items are in reversed order... */ MEdge *new_med = &medge[mesh->totedge - 1]; for (int i = mesh->totedge - 1; i >= num_edges ; i--, new_med--, new_edges = new_edges->next) { BLI_assert(new_edges->new_index == i); BLI_assert(new_edges->new_index != new_edges->orig_index); CustomData_copy_data(&mesh->edata, &mesh->edata, new_edges->orig_index, i, 1); new_med->v1 = new_edges->v1; new_med->v2 = new_edges->v2; } } /* Split faces based on the edge angle and loop normals. * Matches behavior of face splitting in render engines. * * NOTE: Will leave CD_NORMAL loop data layer which is * used by render engines to set shading up. */ void BKE_mesh_split_faces(Mesh *mesh, bool free_loop_normals) { const int num_polys = mesh->totpoly; if (num_polys == 0) { return; } BKE_mesh_tessface_clear(mesh); MLoopNorSpaceArray *lnors_spacearr = NULL; MemArena *memarena; bool need_vnors_recalc = false; if (mesh->flag & ME_AUTOSMOOTH) { lnors_spacearr = MEM_callocN(sizeof(*lnors_spacearr), __func__); /* Compute loop normals and loop normal spaces (a.k.a. smooth fans of faces around vertices). */ BKE_mesh_calc_normals_split_ex(mesh, lnors_spacearr); /* Stealing memarena from loop normals space array. */ memarena = lnors_spacearr->mem; } else { /* We still have to split out flat faces... */ memarena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__); } SplitFaceNewVert *new_verts = NULL; SplitFaceNewEdge *new_edges = NULL; /* Detect loop normal spaces (a.k.a. smooth fans) that will need a new vert. */ const int num_new_verts = split_faces_prepare_new_verts(mesh, lnors_spacearr, &new_verts, memarena, &need_vnors_recalc); if (num_new_verts > 0) { /* Reminder: beyond this point, there is no way out, mesh is in invalid state (due to early-reassignment of * loops' vertex and edge indices to new, to-be-created split ones). */ const int num_new_edges = split_faces_prepare_new_edges(mesh, &new_edges, memarena); /* We can have to split a vertex without having to add a single new edge... */ const bool do_edges = (num_new_edges > 0); /* Reallocate all vert and edge related data. */ mesh->totvert += num_new_verts; mesh->totedge += num_new_edges; CustomData_realloc(&mesh->vdata, mesh->totvert); if (do_edges) { CustomData_realloc(&mesh->edata, mesh->totedge); } /* Update pointers to a newly allocated memory. */ BKE_mesh_update_customdata_pointers(mesh, false); /* Perform actual split of vertices and edges. */ split_faces_split_new_verts(mesh, new_verts, num_new_verts); if (do_edges) { split_faces_split_new_edges(mesh, new_edges, num_new_edges); } } /* Note: after this point mesh is expected to be valid again. */ /* CD_NORMAL is expected to be temporary only. */ if (free_loop_normals) { CustomData_free_layers(&mesh->ldata, CD_NORMAL, mesh->totloop); } if (lnors_spacearr) { /* Also frees new_verts/edges temp data, since we used its memarena to allocate them. */ BKE_lnor_spacearr_free(lnors_spacearr); MEM_freeN(lnors_spacearr); } else { BLI_memarena_free(memarena); } if (need_vnors_recalc) { BKE_mesh_calc_normals(mesh); } #ifdef VALIDATE_MESH BKE_mesh_validate(mesh, true, true); #endif } /* settings: 1 - preview, 2 - render */ Mesh *BKE_mesh_new_from_object( Main *bmain, Scene *sce, Object *ob, int apply_modifiers, int settings, int calc_tessface, int calc_undeformed) { Mesh *tmpmesh; Curve *tmpcu = NULL, *copycu; int i; const bool render = (settings == eModifierMode_Render); const bool cage = !apply_modifiers; bool do_mat_id_data_us = true; /* perform the mesh extraction based on type */ switch (ob->type) { case OB_FONT: case OB_CURVE: case OB_SURF: { ListBase dispbase = {NULL, NULL}; DerivedMesh *derivedFinal = NULL; int uv_from_orco; /* copies object and modifiers (but not the data) */ Object *tmpobj = BKE_object_copy_ex(bmain, ob, true); tmpcu = (Curve *)tmpobj->data; id_us_min(&tmpcu->id); /* Copy cached display list, it might be needed by the stack evaluation. * Ideally stack should be able to use render-time display list, but doing * so is quite tricky and not safe so close to the release. * * TODO(sergey): Look into more proper solution. */ if (ob->curve_cache != NULL) { if (tmpobj->curve_cache == NULL) { tmpobj->curve_cache = MEM_callocN(sizeof(CurveCache), "CurveCache for curve types"); } BKE_displist_copy(&tmpobj->curve_cache->disp, &ob->curve_cache->disp); } /* if getting the original caged mesh, delete object modifiers */ if (cage) BKE_object_free_modifiers(tmpobj); /* copies the data */ copycu = tmpobj->data = BKE_curve_copy(bmain, (Curve *) ob->data); /* temporarily set edit so we get updates from edit mode, but * also because for text datablocks copying it while in edit * mode gives invalid data structures */ copycu->editfont = tmpcu->editfont; copycu->editnurb = tmpcu->editnurb; /* get updated display list, and convert to a mesh */ BKE_displist_make_curveTypes_forRender(sce, tmpobj, &dispbase, &derivedFinal, false, render); copycu->editfont = NULL; copycu->editnurb = NULL; tmpobj->derivedFinal = derivedFinal; /* convert object type to mesh */ uv_from_orco = (tmpcu->flag & CU_UV_ORCO) != 0; BKE_mesh_from_nurbs_displist(tmpobj, &dispbase, uv_from_orco, tmpcu->id.name + 2); tmpmesh = tmpobj->data; BKE_displist_free(&dispbase); /* BKE_mesh_from_nurbs changes the type to a mesh, check it worked. * if it didn't the curve did not have any segments or otherwise * would have generated an empty mesh */ if (tmpobj->type != OB_MESH) { BKE_libblock_free_us(bmain, tmpobj); return NULL; } BKE_mesh_texspace_copy_from_object(tmpmesh, ob); BKE_libblock_free_us(bmain, tmpobj); /* XXX The curve to mesh conversion is convoluted... But essentially, BKE_mesh_from_nurbs_displist() * already transfers the ownership of materials from the temp copy of the Curve ID to the new * Mesh ID, so we do not want to increase materials' usercount later. */ do_mat_id_data_us = false; break; } case OB_MBALL: { /* metaballs don't have modifiers, so just convert to mesh */ Object *basis_ob = BKE_mball_basis_find(sce, ob); /* todo, re-generatre for render-res */ /* metaball_polygonize(scene, ob) */ if (ob != basis_ob) return NULL; /* only do basis metaball */ tmpmesh = BKE_mesh_add(bmain, ((ID *)ob->data)->name + 2); /* BKE_mesh_add gives us a user count we don't need */ id_us_min(&tmpmesh->id); if (render) { ListBase disp = {NULL, NULL}; /* TODO(sergey): This is gonna to work for until EvaluationContext * only contains for_render flag. As soon as CoW is * implemented, this is to be rethinked. */ EvaluationContext eval_ctx; DEG_evaluation_context_init(&eval_ctx, DAG_EVAL_RENDER); BKE_displist_make_mball_forRender(&eval_ctx, sce, ob, &disp); BKE_mesh_from_metaball(&disp, tmpmesh); BKE_displist_free(&disp); } else { ListBase disp = {NULL, NULL}; if (ob->curve_cache) { disp = ob->curve_cache->disp; } BKE_mesh_from_metaball(&disp, tmpmesh); } BKE_mesh_texspace_copy_from_object(tmpmesh, ob); break; } case OB_MESH: /* copies object and modifiers (but not the data) */ if (cage) { /* copies the data */ tmpmesh = BKE_mesh_copy(bmain, ob->data); /* XXX BKE_mesh_copy() already handles materials usercount. */ do_mat_id_data_us = false; } /* if not getting the original caged mesh, get final derived mesh */ else { /* Make a dummy mesh, saves copying */ DerivedMesh *dm; /* CustomDataMask mask = CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL; */ CustomDataMask mask = CD_MASK_MESH; /* this seems more suitable, exporter, * for example, needs CD_MASK_MDEFORMVERT */ if (calc_undeformed) mask |= CD_MASK_ORCO; /* Write the display mesh into the dummy mesh */ if (render) dm = mesh_create_derived_render(sce, ob, mask); else dm = mesh_create_derived_view(sce, ob, mask); tmpmesh = BKE_mesh_add(bmain, ((ID *)ob->data)->name + 2); DM_to_mesh(dm, tmpmesh, ob, mask, true); /* Copy autosmooth settings from original mesh. */ Mesh *me = (Mesh *)ob->data; tmpmesh->flag |= (me->flag & ME_AUTOSMOOTH); tmpmesh->smoothresh = me->smoothresh; } /* BKE_mesh_add/copy gives us a user count we don't need */ id_us_min(&tmpmesh->id); break; default: /* "Object does not have geometry data") */ return NULL; } /* Copy materials to new mesh */ switch (ob->type) { case OB_SURF: case OB_FONT: case OB_CURVE: tmpmesh->totcol = tmpcu->totcol; /* free old material list (if it exists) and adjust user counts */ if (tmpcu->mat) { for (i = tmpcu->totcol; i-- > 0; ) { /* are we an object material or data based? */ tmpmesh->mat[i] = give_current_material(ob, i + 1); if (((ob->matbits && ob->matbits[i]) || do_mat_id_data_us) && tmpmesh->mat[i]) { id_us_plus(&tmpmesh->mat[i]->id); } } } break; case OB_MBALL: { MetaBall *tmpmb = (MetaBall *)ob->data; tmpmesh->mat = MEM_dupallocN(tmpmb->mat); tmpmesh->totcol = tmpmb->totcol; /* free old material list (if it exists) and adjust user counts */ if (tmpmb->mat) { for (i = tmpmb->totcol; i-- > 0; ) { /* are we an object material or data based? */ tmpmesh->mat[i] = give_current_material(ob, i + 1); if (((ob->matbits && ob->matbits[i]) || do_mat_id_data_us) && tmpmesh->mat[i]) { id_us_plus(&tmpmesh->mat[i]->id); } } } break; } case OB_MESH: if (!cage) { Mesh *origmesh = ob->data; tmpmesh->flag = origmesh->flag; tmpmesh->mat = MEM_dupallocN(origmesh->mat); tmpmesh->totcol = origmesh->totcol; tmpmesh->smoothresh = origmesh->smoothresh; if (origmesh->mat) { for (i = origmesh->totcol; i-- > 0; ) { /* are we an object material or data based? */ tmpmesh->mat[i] = give_current_material(ob, i + 1); if (((ob->matbits && ob->matbits[i]) || do_mat_id_data_us) && tmpmesh->mat[i]) { id_us_plus(&tmpmesh->mat[i]->id); } } } } break; } /* end copy materials */ if (calc_tessface) { /* cycles and exporters rely on this still */ BKE_mesh_tessface_ensure(tmpmesh); } return tmpmesh; } /* **** Depsgraph evaluation **** */ void BKE_mesh_eval_geometry(EvaluationContext *UNUSED(eval_ctx), Mesh *mesh) { if (G.debug & G_DEBUG_DEPSGRAPH) { printf("%s on %s\n", __func__, mesh->id.name); } if (mesh->bb == NULL || (mesh->bb->flag & BOUNDBOX_DIRTY)) { BKE_mesh_texspace_calc(mesh); } }