/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Blender Foundation * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/mesh.c * \ingroup bke */ #include #include #include #include #include "MEM_guardedalloc.h" #include "DNA_scene_types.h" #include "DNA_material_types.h" #include "DNA_object_types.h" #include "DNA_key_types.h" #include "DNA_meshdata_types.h" #include "DNA_ipo_types.h" #include "DNA_customdata_types.h" #include "BLI_utildefines.h" #include "BLI_blenlib.h" #include "BLI_editVert.h" #include "BLI_math.h" #include "BLI_edgehash.h" #include "BLI_scanfill.h" #include "BKE_animsys.h" #include "BKE_main.h" #include "BKE_customdata.h" #include "BKE_DerivedMesh.h" #include "BKE_global.h" #include "BKE_mesh.h" #include "BKE_displist.h" #include "BKE_library.h" #include "BKE_material.h" #include "BKE_modifier.h" #include "BKE_multires.h" #include "BKE_key.h" /* these 2 are only used by conversion functions */ #include "BKE_curve.h" /* -- */ #include "BKE_object.h" #include "BKE_tessmesh.h" #include "BLI_edgehash.h" #include "BLI_blenlib.h" #include "BLI_editVert.h" #include "BLI_math.h" #include "BLI_cellalloc.h" #include "BLI_array.h" #include "BLI_edgehash.h" #include "bmesh.h" enum { MESHCMP_DVERT_WEIGHTMISMATCH = 1, MESHCMP_DVERT_GROUPMISMATCH, MESHCMP_DVERT_TOTGROUPMISMATCH, MESHCMP_LOOPCOLMISMATCH, MESHCMP_LOOPUVMISMATCH, MESHCMP_LOOPMISMATCH, MESHCMP_POLYVERTMISMATCH, MESHCMP_POLYMISMATCH, MESHCMP_EDGEUNKNOWN, MESHCMP_VERTCOMISMATCH, MESHCMP_CDLAYERS_MISMATCH, }; static const char *cmpcode_to_str(int code) { switch (code) { case MESHCMP_DVERT_WEIGHTMISMATCH: return "Vertex Weight Mismatch"; case MESHCMP_DVERT_GROUPMISMATCH: return "Vertex Group Mismatch"; case MESHCMP_DVERT_TOTGROUPMISMATCH: return "Vertex Doesn't Belong To Same Number Of Groups"; case MESHCMP_LOOPCOLMISMATCH: return "Vertex Color Mismatch"; case MESHCMP_LOOPUVMISMATCH: return "UV Mismatch"; case MESHCMP_LOOPMISMATCH: return "Loop Mismatch"; case MESHCMP_POLYVERTMISMATCH: return "Loop Vert Mismatch In Poly Test"; case MESHCMP_POLYMISMATCH: return "Loop Vert Mismatch"; case MESHCMP_EDGEUNKNOWN: return "Edge Mismatch"; case MESHCMP_VERTCOMISMATCH: return "Vertex Coordinate Mismatch"; case MESHCMP_CDLAYERS_MISMATCH: "CustomData Layer Count Mismatch"; default: return "Mesh Comparison Code Unknown"; } } /*thresh is threshold for comparing vertices, uvs, vertex colors, weights, etc.*/ static int customdata_compare(CustomData *c1, CustomData *c2, Mesh *m1, Mesh *m2, float thresh) { CustomDataLayer *l1, *l2; int i, i1=0, i2=0, tot, j; for (i=0; itotlayer; i++) { if (ELEM7(c1->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) i1++; } for (i=0; itotlayer; i++) { if (ELEM7(c2->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) i2++; } if (i1 != i2) return MESHCMP_CDLAYERS_MISMATCH; l1 = c1->layers; l2 = c2->layers; tot = i1; i1 = 0; i2 = 0; for (i=0; i < tot; i++) { while (i1 < c1->totlayer && !ELEM7(l1->type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) i1++, l1++; while (i2 < c2->totlayer && !ELEM7(l2->type, CD_MVERT, CD_MEDGE, CD_MPOLY, CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT)) i2++, l2++; if (l1->type == CD_MVERT) { MVert *v1 = l1->data; MVert *v2 = l2->data; int vtot = m1->totvert; for (j=0; jco, v2->co) > thresh) return MESHCMP_VERTCOMISMATCH; /*I don't care about normals, let's just do coodinates*/ } } /*we're order-agnostic for edges here*/ if (l1->type == CD_MEDGE) { MEdge *e1 = l1->data; MEdge *e2 = l2->data; EdgeHash *eh = BLI_edgehash_new(); int etot = m1->totedge; for (j=0; jv1, e1->v2, e1); } for (j=0; jv1, e2->v2)) return MESHCMP_EDGEUNKNOWN; } BLI_edgehash_free(eh, NULL); } if (l1->type == CD_MPOLY) { MPoly *p1 = l1->data; MPoly *p2 = l2->data; int ptot = m1->totpoly; for (j=0; jtotloop != p2->totloop) return MESHCMP_POLYMISMATCH; lp1 = m1->mloop + p1->loopstart; lp2 = m2->mloop + p2->loopstart; for (k=0; ktotloop; k++, lp1++, lp2++) { if (lp1->v != lp2->v) return MESHCMP_POLYVERTMISMATCH; } } } if (l1->type == CD_MLOOP) { MLoop *lp1 = l1->data; MLoop *lp2 = l2->data; int ltot = m1->totloop; for (j=0; jv != lp2->v) return MESHCMP_LOOPMISMATCH; } } if (l1->type == CD_MLOOPUV) { MLoopUV *lp1 = l1->data; MLoopUV *lp2 = l2->data; int ltot = m1->totloop; for (j=0; juv, lp2->uv) > thresh) return MESHCMP_LOOPUVMISMATCH; } } if (l1->type == CD_MLOOPCOL) { MLoopCol *lp1 = l1->data; MLoopCol *lp2 = l2->data; int ltot = m1->totloop; for (j=0; jr - lp2->r) > thresh || ABS(lp1->g - lp2->g) > thresh || ABS(lp1->b - lp2->b) > thresh || ABS(lp1->a - lp2->a) > thresh) { return MESHCMP_LOOPCOLMISMATCH; } } } if (l1->type == CD_MDEFORMVERT) { MDeformVert *dv1 = l1->data; MDeformVert *dv2 = l2->data; int dvtot = m1->totvert; for (j=0; jdw, *dw2=dv2->dw; if (dv1->totweight != dv2->totweight) return MESHCMP_DVERT_TOTGROUPMISMATCH; for (k=0; ktotweight; k++, dw1++, dw2++) { if (dw1->def_nr != dw2->def_nr) return MESHCMP_DVERT_GROUPMISMATCH; if (ABS(dw1->weight - dw2->weight) > thresh) return MESHCMP_DVERT_WEIGHTMISMATCH; } } } } return 0; } /*used for testing. returns an error string the two meshes don't match*/ const char *mesh_cmp(Mesh *me1, Mesh *me2, float thresh) { int c; if (!me1 || !me2) return "Requires two input meshes"; if (me1->totvert != me2->totvert) return "Number of verts don't match"; if (me1->totedge != me2->totedge) return "Number of edges don't match"; if (me1->totpoly != me2->totpoly) return "Number of faces don't match"; if (me1->totloop !=me2->totloop) return "Number of loops don't match"; if ((c = customdata_compare(&me1->vdata, &me2->vdata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->edata, &me2->edata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->ldata, &me2->ldata, me1, me2, thresh))) return cmpcode_to_str(c); if ((c = customdata_compare(&me1->pdata, &me2->pdata, me1, me2, thresh))) return cmpcode_to_str(c); return NULL; } static void mesh_ensure_tesselation_customdata(Mesh *me) { int tottex, totcol; tottex = CustomData_number_of_layers(&me->fdata, CD_MTFACE); totcol = CustomData_number_of_layers(&me->fdata, CD_MCOL); if (tottex != CustomData_number_of_layers(&me->pdata, CD_MTEXPOLY) || totcol != CustomData_number_of_layers(&me->ldata, CD_MLOOPCOL)) { CustomData_free(&me->fdata, me->totface); me->mface = NULL; me->mtface = NULL; me->mcol = NULL; me->totface = 0; memset(&me->fdata, 0, sizeof(&me->fdata)); CustomData_from_bmeshpoly(&me->fdata, &me->pdata, &me->ldata, me->totface); printf("Warning! Tesselation uvs or vcol data got out of sync, had to reset!\n"); } } /*this ensures grouped customdata (e.g. mtexpoly and mloopuv and mtface, or mloopcol and mcol) have the same relative active/render/clone/mask indices.*/ static void mesh_update_linked_customdata(Mesh *me) { int act; if (me->edit_btmesh) BMEdit_UpdateLinkedCustomData(me->edit_btmesh); mesh_ensure_tesselation_customdata(me); if (CustomData_has_layer(&me->pdata, CD_MTEXPOLY)) { act = CustomData_get_active_layer(&me->pdata, CD_MTEXPOLY); CustomData_set_layer_active(&me->ldata, CD_MLOOPUV, act); CustomData_set_layer_active(&me->fdata, CD_MTFACE, act); act = CustomData_get_render_layer(&me->pdata, CD_MTEXPOLY); CustomData_set_layer_render(&me->ldata, CD_MLOOPUV, act); CustomData_set_layer_render(&me->fdata, CD_MTFACE, act); act = CustomData_get_clone_layer(&me->pdata, CD_MTEXPOLY); CustomData_set_layer_clone(&me->ldata, CD_MLOOPUV, act); CustomData_set_layer_clone(&me->fdata, CD_MTFACE, act); act = CustomData_get_stencil_layer(&me->pdata, CD_MTEXPOLY); CustomData_set_layer_stencil(&me->ldata, CD_MLOOPUV, act); CustomData_set_layer_stencil(&me->fdata, CD_MTFACE, act); } if (CustomData_has_layer(&me->ldata, CD_MLOOPCOL)) { act = CustomData_get_active_layer(&me->ldata, CD_MLOOPCOL); CustomData_set_layer_active(&me->fdata, CD_MCOL, act); act = CustomData_get_render_layer(&me->ldata, CD_MLOOPCOL); CustomData_set_layer_render(&me->fdata, CD_MCOL, act); act = CustomData_get_clone_layer(&me->ldata, CD_MLOOPCOL); CustomData_set_layer_clone(&me->fdata, CD_MCOL, act); act = CustomData_get_stencil_layer(&me->ldata, CD_MLOOPCOL); CustomData_set_layer_stencil(&me->fdata, CD_MCOL, act); } } void mesh_update_customdata_pointers(Mesh *me) { mesh_update_linked_customdata(me); me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT); me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT); me->msticky = CustomData_get_layer(&me->vdata, CD_MSTICKY); me->medge = CustomData_get_layer(&me->edata, CD_MEDGE); me->mface = CustomData_get_layer(&me->fdata, CD_MFACE); me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL); me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE); me->mpoly = CustomData_get_layer(&me->pdata, CD_MPOLY); me->mloop = CustomData_get_layer(&me->ldata, CD_MLOOP); me->mtpoly = CustomData_get_layer(&me->pdata, CD_MTEXPOLY); me->mloopcol = CustomData_get_layer(&me->ldata, CD_MLOOPCOL); me->mloopuv = CustomData_get_layer(&me->ldata, CD_MLOOPUV); } /* Note: unlinking is called when me->id.us is 0, question remains how * much unlinking of Library data in Mesh should be done... probably * we need a more generic method, like the expand() functions in * readfile.c */ void unlink_mesh(Mesh *me) { int a; if(me==NULL) return; for(a=0; atotcol; a++) { if(me->mat[a]) me->mat[a]->id.us--; me->mat[a]= NULL; } if(me->key) { me->key->id.us--; if (me->key->id.us == 0 && me->key->ipo ) me->key->ipo->id.us--; } me->key= NULL; if(me->texcomesh) me->texcomesh= NULL; } /* do not free mesh itself */ void free_mesh(Mesh *me, int unlink) { if (unlink) unlink_mesh(me); if(me->pv) { if(me->pv->vert_map) MEM_freeN(me->pv->vert_map); if(me->pv->edge_map) MEM_freeN(me->pv->edge_map); if(me->pv->old_faces) MEM_freeN(me->pv->old_faces); if(me->pv->old_edges) MEM_freeN(me->pv->old_edges); me->totvert= me->pv->totvert; me->totedge= me->pv->totedge; me->totface= me->pv->totface; MEM_freeN(me->pv); } CustomData_free(&me->vdata, me->totvert); CustomData_free(&me->edata, me->totedge); CustomData_free(&me->fdata, me->totface); CustomData_free(&me->ldata, me->totloop); CustomData_free(&me->pdata, me->totpoly); if(me->adt) { BKE_free_animdata(&me->id); me->adt= NULL; } if(me->mat) MEM_freeN(me->mat); if(me->bb) MEM_freeN(me->bb); if(me->mselect) MEM_freeN(me->mselect); if(me->edit_btmesh) MEM_freeN(me->edit_btmesh); } void copy_dverts(MDeformVert *dst, MDeformVert *src, int copycount) { /* Assumes dst is already set up */ int i; if (!src || !dst) return; memcpy (dst, src, copycount * sizeof(MDeformVert)); for (i=0; imesh, ID_ME, name); me->size[0]= me->size[1]= me->size[2]= 1.0; me->smoothresh= 30; me->texflag= AUTOSPACE; me->flag= ME_TWOSIDED; me->bb= unit_boundbox(); me->drawflag= ME_DRAWEDGES|ME_DRAWFACES|ME_DRAWCREASES; return me; } Mesh *copy_mesh(Mesh *me) { Mesh *men; MTFace *tface; MTexPoly *txface; int a, i; men= copy_libblock(me); men->mat= MEM_dupallocN(me->mat); for(a=0; atotcol; a++) { id_us_plus((ID *)men->mat[a]); } id_us_plus((ID *)men->texcomesh); CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert); CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge); CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface); CustomData_copy(&me->ldata, &men->ldata, CD_MASK_MESH, CD_DUPLICATE, men->totloop); CustomData_copy(&me->pdata, &men->pdata, CD_MASK_MESH, CD_DUPLICATE, men->totpoly); mesh_update_customdata_pointers(men); /* ensure indirect linked data becomes lib-extern */ for(i=0; ifdata.totlayer; i++) { if(me->fdata.layers[i].type == CD_MTFACE) { tface= (MTFace*)me->fdata.layers[i].data; for(a=0; atotface; a++, tface++) if(tface->tpage) id_lib_extern((ID*)tface->tpage); } } for(i=0; ipdata.totlayer; i++) { if(me->pdata.layers[i].type == CD_MTEXPOLY) { txface= (MTexPoly*)me->pdata.layers[i].data; for(a=0; atotpoly; a++, txface++) if(txface->tpage) id_lib_extern((ID*)txface->tpage); } } men->mselect= NULL; men->edit_btmesh= NULL; men->pv= NULL; /* looks like this is no-longer supported but NULL just incase */ men->bb= MEM_dupallocN(men->bb); men->key= copy_key(me->key); if(men->key) men->key->from= (ID *)men; return men; } BMesh *BKE_mesh_to_bmesh(Mesh *me, Object *ob) { BMesh *bm; int allocsize[4] = {512,512,2048,512}; bm = BM_Make_Mesh(ob, allocsize); BMO_CallOpf(bm, "mesh_to_bmesh mesh=%p object=%p set_shapekey=%i", me, ob, 1); return bm; } static void make_local_tface(Main *bmain, Mesh *me) { MTFace *tface; MTexPoly *txface; Image *ima; int a, i; for(i=0; ipdata.totlayer; i++) { if(me->pdata.layers[i].type == CD_MTEXPOLY) { txface= (MTexPoly*)me->fdata.layers[i].data; for(a=0; atotpoly; a++, txface++) { /* special case: ima always local immediately */ if(txface->tpage) { ima= txface->tpage; if(ima->id.lib) { ima->id.lib= 0; ima->id.flag= LIB_LOCAL; new_id(0, (ID *)ima, 0); } } } } } for(i=0; ifdata.totlayer; i++) { if(me->fdata.layers[i].type == CD_MTFACE) { tface= (MTFace*)me->fdata.layers[i].data; for(a=0; atotface; a++, tface++) { /* special case: ima always local immediately */ if(tface->tpage) { ima= tface->tpage; if(ima->id.lib) { ima->id.lib= NULL; ima->id.flag= LIB_LOCAL; new_id(&bmain->image, (ID *)ima, NULL); } } } } } } static void expand_local_mesh(Main *bmain, Mesh *me) { id_lib_extern((ID *)me->texcomesh); if(me->mtface) { /* why is this an exception? - should not really make local when extern'ing - campbell */ make_local_tface(bmain, me); } if(me->mat) { extern_local_matarar(me->mat, me->totcol); } } void make_local_mesh(Mesh *me) { Main *bmain= G.main; Object *ob; int local=0, lib=0; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if(me->id.lib==NULL) return; if(me->id.us==1) { me->id.lib= NULL; me->id.flag= LIB_LOCAL; new_id(&bmain->mesh, (ID *)me, NULL); expand_local_mesh(bmain, me); return; } for(ob= bmain->object.first; ob && ELEM(0, lib, local); ob= ob->id.next) { if(me == ob->data) { if(ob->id.lib) lib= 1; else local= 1; } } if(local && lib==0) { me->id.lib= NULL; me->id.flag= LIB_LOCAL; new_id(&bmain->mesh, (ID *)me, NULL); expand_local_mesh(bmain, me); } else if(local && lib) { Mesh *men= copy_mesh(me); men->id.us= 0; for(ob= bmain->object.first; ob; ob= ob->id.next) { if(me == ob->data) { if(ob->id.lib==NULL) { set_mesh(ob, men); } } } } } void boundbox_mesh(Mesh *me, float *loc, float *size) { BoundBox *bb; float min[3], max[3]; float mloc[3], msize[3]; if(me->bb==NULL) me->bb= MEM_callocN(sizeof(BoundBox), "boundbox"); bb= me->bb; if (!loc) loc= mloc; if (!size) size= msize; INIT_MINMAX(min, max); if(!minmax_mesh(me, min, max)) { min[0] = min[1] = min[2] = -1.0f; max[0] = max[1] = max[2] = 1.0f; } mid_v3_v3v3(loc, min, max); size[0]= (max[0]-min[0])/2.0f; size[1]= (max[1]-min[1])/2.0f; size[2]= (max[2]-min[2])/2.0f; boundbox_set_from_min_max(bb, min, max); } void tex_space_mesh(Mesh *me) { float loc[3], size[3]; int a; boundbox_mesh(me, loc, size); if(me->texflag & AUTOSPACE) { for (a=0; a<3; a++) { if(size[a]==0.0f) size[a]= 1.0f; else if(size[a]>0.0f && size[a]<0.00001f) size[a]= 0.00001f; else if(size[a]<0.0f && size[a]> -0.00001f) size[a]= -0.00001f; } copy_v3_v3(me->loc, loc); copy_v3_v3(me->size, size); zero_v3(me->rot); } } BoundBox *mesh_get_bb(Object *ob) { Mesh *me= ob->data; if(ob->bb) return ob->bb; if (!me->bb) tex_space_mesh(me); return me->bb; } void mesh_get_texspace(Mesh *me, float *loc_r, float *rot_r, float *size_r) { if (!me->bb) { tex_space_mesh(me); } if (loc_r) VECCOPY(loc_r, me->loc); if (rot_r) VECCOPY(rot_r, me->rot); if (size_r) VECCOPY(size_r, me->size); } float *get_mesh_orco_verts(Object *ob) { Mesh *me = ob->data; MVert *mvert = NULL; Mesh *tme = me->texcomesh?me->texcomesh:me; int a, totvert; float (*vcos)[3] = NULL; /* Get appropriate vertex coordinates */ vcos = MEM_callocN(sizeof(*vcos)*me->totvert, "orco mesh"); mvert = tme->mvert; totvert = MIN2(tme->totvert, me->totvert); for(a=0; aco); } return (float*)vcos; } void transform_mesh_orco_verts(Mesh *me, float (*orco)[3], int totvert, int invert) { float loc[3], size[3]; int a; mesh_get_texspace(me->texcomesh?me->texcomesh:me, loc, NULL, size); if(invert) { for(a=0; av4) check for quads work */ int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr) { /* first test if the face is legal */ if((mface->v3 || nr==4) && mface->v3==mface->v4) { mface->v4= 0; nr--; } if((mface->v2 || mface->v4) && mface->v2==mface->v3) { mface->v3= mface->v4; mface->v4= 0; nr--; } if(mface->v1==mface->v2) { mface->v2= mface->v3; mface->v3= mface->v4; mface->v4= 0; nr--; } /* check corrupt cases, bowtie geometry, cant handle these because edge data wont exist so just return 0 */ if(nr==3) { if( /* real edges */ mface->v1==mface->v2 || mface->v2==mface->v3 || mface->v3==mface->v1 ) { return 0; } } else if(nr==4) { if( /* real edges */ mface->v1==mface->v2 || mface->v2==mface->v3 || mface->v3==mface->v4 || mface->v4==mface->v1 || /* across the face */ mface->v1==mface->v3 || mface->v2==mface->v4 ) { return 0; } } /* prevent a zero at wrong index location */ if(nr==3) { if(mface->v3==0) { static int corner_indices[4] = {1, 2, 0, 3}; SWAP(int, mface->v1, mface->v2); SWAP(int, mface->v2, mface->v3); if(fdata) CustomData_swap(fdata, mfindex, corner_indices); } } else if(nr==4) { if(mface->v3==0 || mface->v4==0) { static int corner_indices[4] = {2, 3, 0, 1}; SWAP(int, mface->v1, mface->v3); SWAP(int, mface->v2, mface->v4); if(fdata) CustomData_swap(fdata, mfindex, corner_indices); } } return nr; } Mesh *get_mesh(Object *ob) { if(ob==NULL) return NULL; if(ob->type==OB_MESH) return ob->data; else return NULL; } void set_mesh(Object *ob, Mesh *me) { Mesh *old=NULL; multires_force_update(ob); if(ob==NULL) return; if(ob->type==OB_MESH) { old= ob->data; if (old) old->id.us--; ob->data= me; id_us_plus((ID *)me); } test_object_materials((ID *)me); test_object_modifiers(ob); } /* ************** make edges in a Mesh, for outside of editmode */ struct edgesort { int v1, v2; short is_loose, is_draw; }; /* edges have to be added with lowest index first for sorting */ static void to_edgesort(struct edgesort *ed, int v1, int v2, short is_loose, short is_draw) { if(v1v1= v1; ed->v2= v2; } else { ed->v1= v2; ed->v2= v1; } ed->is_loose= is_loose; ed->is_draw= is_draw; } static int vergedgesort(const void *v1, const void *v2) { const struct edgesort *x1=v1, *x2=v2; if( x1->v1 > x2->v1) return 1; else if( x1->v1 < x2->v1) return -1; else if( x1->v2 > x2->v2) return 1; else if( x1->v2 < x2->v2) return -1; return 0; } static void mfaces_strip_loose(MFace *mface, int *totface) { int a,b; for (a=b=0; a<*totface; a++) { if (mface[a].v3) { if (a!=b) { memcpy(&mface[b],&mface[a],sizeof(mface[b])); } b++; } } *totface= b; } /* Create edges based on known verts and faces */ static void make_edges_mdata(MVert *UNUSED(allvert), MFace *allface, MLoop *allloop, MPoly *allpoly, int UNUSED(totvert), int totface, int UNUSED(totloop), int totpoly, int old, MEdge **alledge, int *_totedge) { MPoly *mpoly; MLoop *mloop; MFace *mface; MEdge *medge; EdgeHash *hash = BLI_edgehash_new(); struct edgesort *edsort, *ed; int a, b, totedge=0, final=0; /* we put all edges in array, sort them, and detect doubles that way */ for(a= totface, mface= allface; a>0; a--, mface++) { if(mface->v4) totedge+=4; else if(mface->v3) totedge+=3; else totedge+=1; } if(totedge==0) { /* flag that mesh has edges */ (*alledge)= MEM_callocN(0, "make mesh edges"); (*_totedge) = 0; return; } ed= edsort= MEM_mallocN(totedge*sizeof(struct edgesort), "edgesort"); for(a= totface, mface= allface; a>0; a--, mface++) { to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2); if(mface->v4) { to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3); to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4); to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1); } else if(mface->v3) { to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3); to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1); } } qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort); /* count final amount */ for(a=totedge, ed=edsort; a>1; a--, ed++) { /* edge is unique when it differs from next edge, or is last */ if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) final++; } final++; (*alledge)= medge= MEM_callocN(sizeof (MEdge) * final, "make_edges mdge"); (*_totedge)= final; for(a=totedge, ed=edsort; a>1; a--, ed++) { /* edge is unique when it differs from next edge, or is last */ if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) { medge->v1= ed->v1; medge->v2= ed->v2; if(old==0 || ed->is_draw) medge->flag= ME_EDGEDRAW|ME_EDGERENDER; if(ed->is_loose) medge->flag|= ME_LOOSEEDGE; /* order is swapped so extruding this edge as a surface wont flip face normals * with cyclic curves */ if(ed->v1+1 != ed->v2) { SWAP(int, medge->v1, medge->v2); } medge++; } else { /* equal edge, we merge the drawflag */ (ed+1)->is_draw |= ed->is_draw; } } /* last edge */ medge->v1= ed->v1; medge->v2= ed->v2; medge->flag= ME_EDGEDRAW; if(ed->is_loose) medge->flag|= ME_LOOSEEDGE; medge->flag |= ME_EDGERENDER; MEM_freeN(edsort); /*set edge members of mloops*/ medge= *alledge; for (a=0; a<*_totedge; a++, medge++) { BLI_edgehash_insert(hash, medge->v1, medge->v2, SET_INT_IN_POINTER(a)); } mpoly = allpoly; for (a=0; aloopstart; for (b=0; btotloop; b++) { int v1, v2; v1 = mloop[b].v; v2 = mloop[(b+1)%mpoly->totloop].v; mloop[b].e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(hash, v1, v2)); } } BLI_edgehash_free(hash, NULL); } void make_edges(Mesh *me, int old) { MEdge *medge; int totedge=0; make_edges_mdata(me->mvert, me->mface, me->mloop, me->mpoly, me->totvert, me->totface, me->totloop, me->totpoly, old, &medge, &totedge); if(totedge==0) { /* flag that mesh has edges */ me->medge = medge; me->totedge = 0; return; } medge= CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, medge, totedge); me->medge= medge; me->totedge= totedge; mesh_strip_loose_faces(me); } void mesh_strip_loose_faces(Mesh *me) { int a,b; for (a=b=0; atotface; a++) { if (me->mface[a].v3) { if (a!=b) { memcpy(&me->mface[b],&me->mface[a],sizeof(me->mface[b])); CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1); CustomData_free_elem(&me->fdata, a, 1); } b++; } } me->totface = b; } void mesh_strip_loose_edges(Mesh *me) { int a,b; for (a=b=0; atotedge; a++) { if (me->medge[a].v1!=me->medge[a].v2) { if (a!=b) { memcpy(&me->medge[b],&me->medge[a],sizeof(me->medge[b])); CustomData_copy_data(&me->edata, &me->edata, a, b, 1); CustomData_free_elem(&me->edata, a, 1); } b++; } } me->totedge = b; } void mball_to_mesh(ListBase *lb, Mesh *me) { DispList *dl; MVert *mvert; MFace *mface; float *nors, *verts; int a, *index; dl= lb->first; if(dl==NULL) return; if(dl->type==DL_INDEX4) { me->totvert= dl->nr; me->totface= dl->parts; mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr); mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, dl->parts); me->mvert= mvert; me->mface= mface; a= dl->nr; nors= dl->nors; verts= dl->verts; while(a--) { VECCOPY(mvert->co, verts); normal_float_to_short_v3(mvert->no, nors); mvert++; nors+= 3; verts+= 3; } a= dl->parts; index= dl->index; while(a--) { mface->v1= index[0]; mface->v2= index[1]; mface->v3= index[2]; mface->v4= index[3]; mface->flag= ME_SMOOTH; test_index_face(mface, NULL, 0, (mface->v3==mface->v4)? 3: 4); mface++; index+= 4; } make_edges(me, 0); // all edges convert_mfaces_to_mpolys(me); } } /* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */ /* return non-zero on error */ int nurbs_to_mdata(Object *ob, MVert **allvert, int *totvert, MEdge **alledge, int *totedge, MFace **allface, MLoop **allloop, MPoly **allpoly, int *totface, int *totloop, int *totpoly) { return nurbs_to_mdata_customdb(ob, &ob->disp, allvert, totvert, alledge, totedge, allface, allloop, allpoly, totface, totloop, totpoly); } /* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */ /* use specified dispbase */ int nurbs_to_mdata_customdb(Object *ob, ListBase *dispbase, MVert **allvert, int *_totvert, MEdge **alledge, int *_totedge, MFace **allface, MLoop **allloop, MPoly **allpoly, int *_totface, int *_totloop, int *_totpoly) { DispList *dl; Curve *cu; MVert *mvert; MFace *mface; MPoly *mpoly; MLoop *mloop; float *data; int a, b, ofs, vertcount, startvert, totvert=0, totvlak=0; int p1, p2, p3, p4, *index; int conv_polys= 0; int i, j; cu= ob->data; conv_polys|= cu->flag & CU_3D; /* 2d polys are filled with DL_INDEX3 displists */ conv_polys|= ob->type == OB_SURF; /* surf polys are never filled */ /* count */ dl= dispbase->first; while(dl) { if(dl->type==DL_SEGM) { totvert+= dl->parts*dl->nr; totvlak+= dl->parts*(dl->nr-1); } else if(dl->type==DL_POLY) { if(conv_polys) { totvert+= dl->parts*dl->nr; totvlak+= dl->parts*dl->nr; } } else if(dl->type==DL_SURF) { totvert+= dl->parts*dl->nr; totvlak+= (dl->parts-1+((dl->flag & DL_CYCL_V)==2))*(dl->nr-1+(dl->flag & DL_CYCL_U)); } else if(dl->type==DL_INDEX3) { totvert+= dl->nr; totvlak+= dl->parts; } dl= dl->next; } if(totvert==0) { /* error("can't convert"); */ /* Make Sure you check ob->data is a curve */ return -1; } *allvert= mvert= MEM_callocN(sizeof (MVert) * totvert, "nurbs_init mvert"); *allface= mface= MEM_callocN(sizeof (MFace) * totvlak, "nurbs_init mface"); *allloop = mloop = MEM_callocN(sizeof(MLoop) * totvlak * 4, "nurbs_init mloop"); *allpoly = mpoly = MEM_callocN(sizeof(MPoly) * totvlak * 4, "nurbs_init mloop"); /* verts and faces */ vertcount= 0; dl= dispbase->first; while(dl) { int smooth= dl->rt & CU_SMOOTH ? 1 : 0; if(dl->type==DL_SEGM) { startvert= vertcount; a= dl->parts*dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } for(a=0; aparts; a++) { ofs= a*dl->nr; for(b=1; bnr; b++) { mface->v1= startvert+ofs+b-1; mface->v2= startvert+ofs+b; if(smooth) mface->flag |= ME_SMOOTH; mface++; } } } else if(dl->type==DL_POLY) { if(conv_polys) { startvert= vertcount; a= dl->parts*dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } for(a=0; aparts; a++) { ofs= a*dl->nr; for(b=0; bnr; b++) { mface->v1= startvert+ofs+b; if(b==dl->nr-1) mface->v2= startvert+ofs; else mface->v2= startvert+ofs+b+1; if(smooth) mface->flag |= ME_SMOOTH; mface++; } } } } else if(dl->type==DL_INDEX3) { startvert= vertcount; a= dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } a= dl->parts; index= dl->index; while(a--) { mface->v1= startvert+index[0]; mface->v2= startvert+index[2]; mface->v3= startvert+index[1]; mface->v4= 0; mface->mat_nr= dl->col; test_index_face(mface, NULL, 0, 3); if(smooth) mface->flag |= ME_SMOOTH; mface++; index+= 3; } } else if(dl->type==DL_SURF) { startvert= vertcount; a= dl->parts*dl->nr; data= dl->verts; while(a--) { VECCOPY(mvert->co, data); data+=3; vertcount++; mvert++; } for(a=0; aparts; a++) { if( (dl->flag & DL_CYCL_V)==0 && a==dl->parts-1) break; if(dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */ p1= startvert+ dl->nr*a; /* p4 -> p3 -> */ p2= p1+ dl->nr-1; /* -----> next row */ p3= p1+ dl->nr; p4= p2+ dl->nr; b= 0; } else { p2= startvert+ dl->nr*a; p1= p2+1; p4= p2+ dl->nr; p3= p1+ dl->nr; b= 1; } if( (dl->flag & DL_CYCL_V) && a==dl->parts-1) { p3-= dl->parts*dl->nr; p4-= dl->parts*dl->nr; } for(; bnr; b++) { mface->v1= p1; mface->v2= p3; mface->v3= p4; mface->v4= p2; mface->mat_nr= dl->col; test_index_face(mface, NULL, 0, 4); if(smooth) mface->flag |= ME_SMOOTH; mface++; p4= p3; p3++; p2= p1; p1++; } } } dl= dl->next; } mface= *allface; j = 0; for (i=0; iv3) { mpoly--; i--; continue; } if (mface >= *allface + totvlak) break; mpoly->flag |= mface->flag & ME_SMOOTH; mpoly->loopstart= j; mpoly->totloop= mface->v4 ? 4 : 3; for (k=0; ktotloop; k++, mloop++, j++) { mloop->v = (&mface->v1)[k]; } } *_totpoly= i; *_totloop= j; *_totvert= totvert; *_totface= totvlak; make_edges_mdata(*allvert, *allface, *allloop, *allpoly, totvert, totvlak, *_totloop, *_totpoly, 0, alledge, _totedge); mfaces_strip_loose(*allface, _totface); return 0; } /* this may fail replacing ob->data, be sure to check ob->type */ void nurbs_to_mesh(Object *ob) { Main *bmain= G.main; Object *ob1; DerivedMesh *dm= ob->derivedFinal; Mesh *me; Curve *cu; MVert *allvert= NULL; MEdge *alledge= NULL; MFace *allface= NULL; MLoop *allloop = NULL; MPoly *allpoly = NULL; int totvert, totedge, totface, totloop, totpoly; cu= ob->data; if (dm == NULL) { if (nurbs_to_mdata (ob, &allvert, &totvert, &alledge, &totedge, &allface, &allloop, &allpoly, &totface, &totloop, &totpoly) != 0) { /* Error initializing */ return; } /* make mesh */ me= add_mesh("Mesh"); me->totvert= totvert; me->totface= totface; me->totedge= totedge; me->totloop = totloop; me->totpoly = totpoly; me->mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, allvert, me->totvert); me->medge= CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, alledge, me->totedge); me->mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_ASSIGN, allface, me->totface); me->mloop= CustomData_add_layer(&me->ldata, CD_MLOOP, CD_ASSIGN, allloop, me->totloop); me->mpoly= CustomData_add_layer(&me->pdata, CD_MPOLY, CD_ASSIGN, allpoly, me->totpoly); mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL, NULL, 0, NULL, NULL); } else { me= add_mesh("Mesh"); DM_to_mesh(dm, me, ob); } me->totcol= cu->totcol; me->mat= cu->mat; tex_space_mesh(me); cu->mat= NULL; cu->totcol= 0; if(ob->data) { free_libblock(&bmain->curve, ob->data); } ob->data= me; ob->type= OB_MESH; /* other users */ ob1= bmain->object.first; while(ob1) { if(ob1->data==cu) { ob1->type= OB_MESH; ob1->data= ob->data; id_us_plus((ID *)ob->data); } ob1= ob1->id.next; } } typedef struct EdgeLink { Link *next, *prev; void *edge; } EdgeLink; typedef struct VertLink { Link *next, *prev; int index; } VertLink; static void prependPolyLineVert(ListBase *lb, int index) { VertLink *vl= MEM_callocN(sizeof(VertLink), "VertLink"); vl->index = index; BLI_addhead(lb, vl); } static void appendPolyLineVert(ListBase *lb, int index) { VertLink *vl= MEM_callocN(sizeof(VertLink), "VertLink"); vl->index = index; BLI_addtail(lb, vl); } void mesh_to_curve(Scene *scene, Object *ob) { /* make new mesh data from the original copy */ DerivedMesh *dm= mesh_get_derived_final(scene, ob, CD_MASK_MESH); MVert *mverts= dm->getVertArray(dm); MEdge *med, *medge= dm->getEdgeArray(dm); MFace *mf, *mface= dm->getTessFaceArray(dm); int totedge = dm->getNumEdges(dm); int totface = dm->getNumTessFaces(dm); int totedges = 0; int i, needsFree = 0; /* only to detect edge polylines */ EdgeHash *eh = BLI_edgehash_new(); EdgeHash *eh_edge = BLI_edgehash_new(); ListBase edges = {NULL, NULL}; /* create edges from all faces (so as to find edges not in any faces) */ mf= mface; for (i = 0; i < totface; i++, mf++) { if (!BLI_edgehash_haskey(eh, mf->v1, mf->v2)) BLI_edgehash_insert(eh, mf->v1, mf->v2, NULL); if (!BLI_edgehash_haskey(eh, mf->v2, mf->v3)) BLI_edgehash_insert(eh, mf->v2, mf->v3, NULL); if (mf->v4) { if (!BLI_edgehash_haskey(eh, mf->v3, mf->v4)) BLI_edgehash_insert(eh, mf->v3, mf->v4, NULL); if (!BLI_edgehash_haskey(eh, mf->v4, mf->v1)) BLI_edgehash_insert(eh, mf->v4, mf->v1, NULL); } else { if (!BLI_edgehash_haskey(eh, mf->v3, mf->v1)) BLI_edgehash_insert(eh, mf->v3, mf->v1, NULL); } } med= medge; for(i=0; iv1, med->v2)) { EdgeLink *edl= MEM_callocN(sizeof(EdgeLink), "EdgeLink"); BLI_edgehash_insert(eh_edge, med->v1, med->v2, NULL); edl->edge= med; BLI_addtail(&edges, edl); totedges++; } } BLI_edgehash_free(eh_edge, NULL); BLI_edgehash_free(eh, NULL); if(edges.first) { Curve *cu = add_curve(ob->id.name+2, OB_CURVE); cu->flag |= CU_3D; while(edges.first) { /* each iteration find a polyline and add this as a nurbs poly spline */ ListBase polyline = {NULL, NULL}; /* store a list of VertLink's */ int closed = FALSE; int totpoly= 0; MEdge *med_current= ((EdgeLink *)edges.last)->edge; int startVert= med_current->v1; int endVert= med_current->v2; int ok= TRUE; appendPolyLineVert(&polyline, startVert); totpoly++; appendPolyLineVert(&polyline, endVert); totpoly++; BLI_freelinkN(&edges, edges.last); totedges--; while(ok) { /* while connected edges are found... */ ok = FALSE; i= totedges; while(i) { EdgeLink *edl; i-=1; edl= BLI_findlink(&edges, i); med= edl->edge; if(med->v1==endVert) { endVert = med->v2; appendPolyLineVert(&polyline, med->v2); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok= TRUE; } else if(med->v2==endVert) { endVert = med->v1; appendPolyLineVert(&polyline, endVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok= TRUE; } else if(med->v1==startVert) { startVert = med->v2; prependPolyLineVert(&polyline, startVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok= TRUE; } else if(med->v2==startVert) { startVert = med->v1; prependPolyLineVert(&polyline, startVert); totpoly++; BLI_freelinkN(&edges, edl); totedges--; ok= TRUE; } } } /* Now we have a polyline, make into a curve */ if(startVert==endVert) { BLI_freelinkN(&polyline, polyline.last); totpoly--; closed = TRUE; } /* --- nurbs --- */ { Nurb *nu; BPoint *bp; VertLink *vl; /* create new 'nurb' within the curve */ nu = (Nurb *)MEM_callocN(sizeof(Nurb), "MeshNurb"); nu->pntsu= totpoly; nu->pntsv= 1; nu->orderu= 4; nu->flagu= CU_NURB_ENDPOINT | (closed ? CU_NURB_CYCLIC:0); /* endpoint */ nu->resolu= 12; nu->bp= (BPoint *)MEM_callocN(sizeof(BPoint)*totpoly, "bpoints"); /* add points */ vl= polyline.first; for (i=0, bp=nu->bp; i < totpoly; i++, bp++, vl=(VertLink *)vl->next) { copy_v3_v3(bp->vec, mverts[vl->index].co); bp->f1= SELECT; bp->radius = bp->weight = 1.0; } BLI_freelistN(&polyline); /* add nurb to curve */ BLI_addtail(&cu->nurb, nu); } /* --- done with nurbs --- */ } ((Mesh *)ob->data)->id.us--; ob->data= cu; ob->type= OB_CURVE; /* curve objects can't contain DM in usual cases, we could free memory */ needsFree= 1; } dm->needsFree = needsFree; dm->release(dm); if (needsFree) { ob->derivedFinal = NULL; /* curve object could have got bounding box only in special cases */ if(ob->bb) { MEM_freeN(ob->bb); ob->bb= NULL; } } } void mesh_delete_material_index(Mesh *me, short index) { int i; for (i=0; itotpoly; i++) { MPoly *mp = &((MPoly*) me->mpoly)[i]; if (mp->mat_nr && mp->mat_nr>=index) mp->mat_nr--; } for (i=0; itotface; i++) { MFace *mf = &((MFace*) me->mface)[i]; if (mf->mat_nr && mf->mat_nr>=index) mf->mat_nr--; } } void mesh_set_smooth_flag(Object *meshOb, int enableSmooth) { Mesh *me = meshOb->data; int i; for (i=0; itotpoly; i++) { MPoly *mp = &((MPoly*) me->mpoly)[i]; if (enableSmooth) { mp->flag |= ME_SMOOTH; } else { mp->flag &= ~ME_SMOOTH; } } for (i=0; itotface; i++) { MFace *mf = &((MFace*) me->mface)[i]; if (enableSmooth) { mf->flag |= ME_SMOOTH; } else { mf->flag &= ~ME_SMOOTH; } } mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL, NULL, 0, NULL, NULL); } void mesh_calc_normals(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys, int UNUSED(numLoops), int numPolys, float (*polyNors_r)[3], MFace *mfaces, int numFaces, int *origIndexFace, float (*faceNors_r)[3]) { float (*pnors)[3] = polyNors_r, (*fnors)[3] = faceNors_r; float (*tnorms)[3], (*edgevecbuf)[3]; float **vertcos = NULL, **vertnos = NULL; BLI_array_declare(vertcos); BLI_array_declare(vertnos); int i, j, maxPolyVerts = 0; MFace *mf; MPoly *mp; MLoop *ml; if (numPolys == 0) { return; } mp = mpolys; for (i=0; itotloop, maxPolyVerts); } if (maxPolyVerts == 0) { return; } /*first go through and calculate normals for all the polys*/ edgevecbuf = MEM_callocN(sizeof(float)*3*maxPolyVerts, "edgevecbuf mesh.c"); tnorms = MEM_callocN(sizeof(float)*3*numVerts, "tnorms mesh.c"); if (!pnors) pnors = MEM_callocN(sizeof(float)*3*numPolys, "poly_nors mesh.c"); if (!fnors) fnors = MEM_callocN(sizeof(float)*3*numFaces, "face nors mesh.c"); mp = mpolys; for (i=0; iloopstart, mverts, pnors[i]); ml = mloop + mp->loopstart; BLI_array_empty(vertcos); BLI_array_empty(vertnos); for (j=0; jtotloop; j++) { int vindex = ml[j].v; BLI_array_append(vertcos, mverts[vindex].co); BLI_array_append(vertnos, tnorms[vindex]); } accumulate_vertex_normals_poly(vertnos, pnors[i], vertcos, edgevecbuf, mp->totloop); } /* following Mesh convention; we use vertex coordinate itself for normal in this case */ for(i=0; ico); normal_float_to_short_v3(mv->no, no); } if (origIndexFace && fnors==faceNors_r && numFaces) { mf = mfaces; for (i=0; iv4)? tnorms[mf->v4]: NULL; float *c4 = (mf->v4)? mverts[mf->v4].co: NULL; if(mf->v4) normal_quad_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co); else normal_tri_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co); accumulate_vertex_normals(tnorms[mf->v1], tnorms[mf->v2], tnorms[mf->v3], n4, f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, c4); } /* following Mesh convention; we use vertex coordinate itself for normal in this case */ for(i=0; ico); normal_float_to_short_v3(mv->no, no); } MEM_freeN(tnorms); if(fnors != faceNors_r) MEM_freeN(fnors); } static void bmesh_corners_to_loops(Mesh *me, int findex, int loopstart, int numTex, int numCol) { MTFace *texface; MTexPoly *texpoly; MCol *mcol; MLoopCol *mloopcol; MLoopUV *mloopuv; MFace *mf; int i; mf = me->mface + findex; for(i=0; i < numTex; i++){ texface = CustomData_get_n(&me->fdata, CD_MTFACE, findex, i); texpoly = CustomData_get_n(&me->pdata, CD_MTEXPOLY, findex, i); texpoly->tpage = texface->tpage; texpoly->flag = texface->flag; texpoly->transp = texface->transp; texpoly->mode = texface->mode; texpoly->tile = texface->tile; texpoly->unwrap = texface->unwrap; mloopuv = CustomData_get_n(&me->ldata, CD_MLOOPUV, loopstart, i); mloopuv->uv[0] = texface->uv[0][0]; mloopuv->uv[1] = texface->uv[0][1]; mloopuv++; mloopuv->uv[0] = texface->uv[1][0]; mloopuv->uv[1] = texface->uv[1][1]; mloopuv++; mloopuv->uv[0] = texface->uv[2][0]; mloopuv->uv[1] = texface->uv[2][1]; mloopuv++; if (mf->v4) { mloopuv->uv[0] = texface->uv[3][0]; mloopuv->uv[1] = texface->uv[3][1]; mloopuv++; } } for(i=0; i < numCol; i++){ mloopcol = CustomData_get_n(&me->ldata, CD_MLOOPCOL, loopstart, i); mcol = CustomData_get_n(&me->fdata, CD_MCOL, findex, i); mloopcol->r = mcol[0].r; mloopcol->g = mcol[0].g; mloopcol->b = mcol[0].b; mloopcol->a = mcol[0].a; mloopcol++; mloopcol->r = mcol[1].r; mloopcol->g = mcol[1].g; mloopcol->b = mcol[1].b; mloopcol->a = mcol[1].a; mloopcol++; mloopcol->r = mcol[2].r; mloopcol->g = mcol[2].g; mloopcol->b = mcol[2].b; mloopcol->a = mcol[2].a; mloopcol++; if (mf->v4) { mloopcol->r = mcol[3].r; mloopcol->g = mcol[3].g; mloopcol->b = mcol[3].b; mloopcol->a = mcol[3].a; mloopcol++; } } if (CustomData_has_layer(&me->fdata, CD_MDISPS)) { MDisps *ld = CustomData_get(&me->ldata, loopstart, CD_MDISPS); MDisps *fd = CustomData_get(&me->fdata, findex, CD_MDISPS); float (*disps)[3] = fd->disps; int i, tot = mf->v4 ? 4 : 3; int side, corners; corners = multires_mdisp_corners(fd); if (corners == 0) { /* Empty MDisp layers appear in at least one of the sintel.blend files. Not sure why this happens, but it seems fine to just ignore them here. If corners==0 for a non-empty layer though, something went wrong. */ BLI_assert(fd->totdisp == 0); } else { side = sqrt(fd->totdisp / corners); for (i=0; itotdisp = side*side; if (ld->disps) BLI_cellalloc_free(ld->disps); ld->disps = BLI_cellalloc_calloc(sizeof(float)*3*side*side, "converted loop mdisps"); if (fd->disps) { memcpy(ld->disps, disps, sizeof(float)*3*side*side); } } } } } void convert_mfaces_to_mpolys(Mesh *mesh) { MFace *mf; MLoop *ml; MPoly *mp; MEdge *me; EdgeHash *eh; int numTex, numCol; int i, j, totloop; mesh->totpoly = mesh->totface; mesh->mpoly = MEM_callocN(sizeof(MPoly)*mesh->totpoly, "mpoly converted"); CustomData_add_layer(&mesh->pdata, CD_MPOLY, CD_ASSIGN, mesh->mpoly, mesh->totpoly); numTex = CustomData_number_of_layers(&mesh->fdata, CD_MTFACE); numCol = CustomData_number_of_layers(&mesh->fdata, CD_MCOL); totloop = 0; mf = mesh->mface; for (i=0; itotface; i++, mf++) { totloop += mf->v4 ? 4 : 3; } mesh->totloop = totloop; mesh->mloop = MEM_callocN(sizeof(MLoop)*mesh->totloop, "mloop converted"); CustomData_add_layer(&mesh->ldata, CD_MLOOP, CD_ASSIGN, mesh->mloop, totloop); CustomData_to_bmeshpoly(&mesh->fdata, &mesh->pdata, &mesh->ldata, mesh->totloop, mesh->totpoly); eh = BLI_edgehash_new(); /*build edge hash*/ me = mesh->medge; for (i=0; itotedge; i++, me++) { BLI_edgehash_insert(eh, me->v1, me->v2, SET_INT_IN_POINTER(i)); } j = 0; /*current loop index*/ ml = mesh->mloop; mf = mesh->mface; mp = mesh->mpoly; for (i=0; itotface; i++, mf++, mp++) { mp->loopstart = j; mp->totloop = mf->v4 ? 4 : 3; mp->mat_nr = mf->mat_nr; mp->flag = mf->flag; #define ML(v1, v2) {ml->v = mf->v1; ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(eh, mf->v1, mf->v2)); ml++; j++;} ML(v1, v2); ML(v2, v3); if (mf->v4) { ML(v3, v4); ML(v4, v1); } else { ML(v3, v1); } #undef ML bmesh_corners_to_loops(mesh, i, mp->loopstart, numTex, numCol); } /* note, we dont convert FGons at all, these are not even real ngons, * they have their own UV's, colors etc - its more an editing feature. */ BLI_edgehash_free(eh, NULL); } float (*mesh_getVertexCos(Mesh *me, int *numVerts_r))[3] { int i, numVerts = me->totvert; float (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "vertexcos1"); if (numVerts_r) *numVerts_r = numVerts; for (i=0; imvert[i].co); return cos; } UvVertMap *make_uv_vert_map(struct MFace *mface, struct MTFace *tface, unsigned int totface, unsigned int totvert, int selected, float *limit) { UvVertMap *vmap; UvMapVert *buf; MFace *mf; MTFace *tf; unsigned int a; int i, totuv, nverts; totuv = 0; /* generate UvMapVert array */ mf= mface; tf= tface; for(a=0; aflag & ME_HIDE) && (mf->flag & ME_FACE_SEL))) totuv += (mf->v4)? 4: 3; if(totuv==0) return NULL; vmap= (UvVertMap*)MEM_callocN(sizeof(*vmap), "UvVertMap"); if (!vmap) return NULL; vmap->vert= (UvMapVert**)MEM_callocN(sizeof(*vmap->vert)*totvert, "UvMapVert*"); buf= vmap->buf= (UvMapVert*)MEM_callocN(sizeof(*vmap->buf)*totuv, "UvMapVert"); if (!vmap->vert || !vmap->buf) { free_uv_vert_map(vmap); return NULL; } mf= mface; tf= tface; for(a=0; aflag & ME_HIDE) && (mf->flag & ME_FACE_SEL))) { nverts= (mf->v4)? 4: 3; for(i=0; itfindex= i; buf->f= a; buf->separate = 0; buf->next= vmap->vert[*(&mf->v1 + i)]; vmap->vert[*(&mf->v1 + i)]= buf; buf++; } } } /* sort individual uvs for each vert */ tf= tface; for(a=0; avert[a]; UvMapVert *iterv, *v, *lastv, *next; float *uv, *uv2, uvdiff[2]; while(vlist) { v= vlist; vlist= vlist->next; v->next= newvlist; newvlist= v; uv= (tf+v->f)->uv[v->tfindex]; lastv= NULL; iterv= vlist; while(iterv) { next= iterv->next; uv2= (tf+iterv->f)->uv[iterv->tfindex]; sub_v2_v2v2(uvdiff, uv2, uv); if(fabsf(uv[0]-uv2[0]) < limit[0] && fabsf(uv[1]-uv2[1]) < limit[1]) { if(lastv) lastv->next= next; else vlist= next; iterv->next= newvlist; newvlist= iterv; } else lastv=iterv; iterv= next; } newvlist->separate = 1; } vmap->vert[a]= newvlist; } return vmap; } UvMapVert *get_uv_map_vert(UvVertMap *vmap, unsigned int v) { return vmap->vert[v]; } void free_uv_vert_map(UvVertMap *vmap) { if (vmap) { if (vmap->vert) MEM_freeN(vmap->vert); if (vmap->buf) MEM_freeN(vmap->buf); MEM_freeN(vmap); } } /* Generates a map where the key is the vertex and the value is a list of faces that use that vertex as a corner. The lists are allocated from one memory pool. */ void create_vert_face_map(ListBase **map, IndexNode **mem, const MFace *mface, const int totvert, const int totface) { int i,j; IndexNode *node = NULL; (*map) = MEM_callocN(sizeof(ListBase) * totvert, "vert face map"); (*mem) = MEM_callocN(sizeof(IndexNode) * totface*4, "vert face map mem"); node = *mem; /* Find the users */ for(i = 0; i < totface; ++i){ for(j = 0; j < (mface[i].v4?4:3); ++j, ++node) { node->index = i; BLI_addtail(&(*map)[((unsigned int*)(&mface[i]))[j]], node); } } } /* Generates a map where the key is the vertex and the value is a list of edges that use that vertex as an endpoint. The lists are allocated from one memory pool. */ void create_vert_edge_map(ListBase **map, IndexNode **mem, const MEdge *medge, const int totvert, const int totedge) { int i, j; IndexNode *node = NULL; (*map) = MEM_callocN(sizeof(ListBase) * totvert, "vert edge map"); (*mem) = MEM_callocN(sizeof(IndexNode) * totedge * 2, "vert edge map mem"); node = *mem; /* Find the users */ for(i = 0; i < totedge; ++i){ for(j = 0; j < 2; ++j, ++node) { node->index = i; BLI_addtail(&(*map)[((unsigned int*)(&medge[i].v1))[j]], node); } } } /* Partial Mesh Visibility */ PartialVisibility *mesh_pmv_copy(PartialVisibility *pmv) { PartialVisibility *n= MEM_dupallocN(pmv); n->vert_map= MEM_dupallocN(pmv->vert_map); n->edge_map= MEM_dupallocN(pmv->edge_map); n->old_edges= MEM_dupallocN(pmv->old_edges); n->old_faces= MEM_dupallocN(pmv->old_faces); return n; } void mesh_pmv_free(PartialVisibility *pv) { MEM_freeN(pv->vert_map); MEM_freeN(pv->edge_map); MEM_freeN(pv->old_faces); MEM_freeN(pv->old_edges); MEM_freeN(pv); } void mesh_pmv_revert(Mesh *me) { if(me->pv) { unsigned i; MVert *nve, *old_verts; /* Reorder vertices */ nve= me->mvert; old_verts = MEM_mallocN(sizeof(MVert)*me->pv->totvert,"PMV revert verts"); for(i=0; ipv->totvert; ++i) old_verts[i]= nve[me->pv->vert_map[i]]; /* Restore verts, edges and faces */ CustomData_free_layer_active(&me->vdata, CD_MVERT, me->totvert); CustomData_free_layer_active(&me->edata, CD_MEDGE, me->totedge); CustomData_free_layer_active(&me->fdata, CD_MFACE, me->totface); CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, old_verts, me->pv->totvert); CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, me->pv->old_edges, me->pv->totedge); CustomData_add_layer(&me->fdata, CD_MFACE, CD_ASSIGN, me->pv->old_faces, me->pv->totface); mesh_update_customdata_pointers(me); me->totvert= me->pv->totvert; me->totedge= me->pv->totedge; me->totface= me->pv->totface; me->pv->old_edges= NULL; me->pv->old_faces= NULL; /* Free maps */ MEM_freeN(me->pv->edge_map); me->pv->edge_map= NULL; MEM_freeN(me->pv->vert_map); me->pv->vert_map= NULL; } } void mesh_pmv_off(Mesh *me) { if(me->pv) { mesh_pmv_revert(me); MEM_freeN(me->pv); me->pv= NULL; } } void mesh_loops_to_tri_corners(CustomData *fdata, CustomData *ldata, CustomData *pdata, int lindex[3], int findex, int polyindex) { MTFace *texface; MTexPoly *texpoly; MCol *mcol; MLoopCol *mloopcol; MLoopUV *mloopuv; int i, j, hasWCol = CustomData_has_layer(ldata, CD_WEIGHT_MLOOPCOL); int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY); int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL); for(i=0; i < numTex; i++){ texface = CustomData_get_n(fdata, CD_MTFACE, findex, i); texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, polyindex, i); texface->tpage = texpoly->tpage; texface->flag = texpoly->flag; texface->transp = texpoly->transp; texface->mode = texpoly->mode; texface->tile = texpoly->tile; texface->unwrap = texpoly->unwrap; for (j=0; j<3; j++) { mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, lindex[j], i); texface->uv[j][0] = mloopuv->uv[0]; texface->uv[j][1] = mloopuv->uv[1]; } } for(i=0; i < numCol; i++){ mcol = CustomData_get_n(fdata, CD_MCOL, findex, i); for (j=0; j<3; j++) { mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, lindex[j], i); mcol[j].r = mloopcol->r; mcol[j].g = mloopcol->g; mcol[j].b = mloopcol->b; mcol[j].a = mloopcol->a; } } if (hasWCol) { mcol = CustomData_get(fdata, findex, CD_WEIGHT_MCOL); for (j=0; j<3; j++) { mloopcol = CustomData_get(ldata, lindex[j], CD_WEIGHT_MLOOPCOL); mcol[j].r = mloopcol->r; mcol[j].g = mloopcol->g; mcol[j].b = mloopcol->b; mcol[j].a = mloopcol->a; } } } /* this function recreates a tesselation. returns number of tesselation faces. use_poly_origindex sets whether or not the tesselation faces' origindex layer should point to original poly indices or real poly indices. use_face_origindex sets the tesselation faces' origindex layer to point to the tesselation faces themselves, not the polys. if both of the above are 0, it'll use the indices of the mpolys of the MPoly data in pdata, and ignore the origindex layer altogether. */ int mesh_recalcTesselation(CustomData *fdata, CustomData *ldata, CustomData *pdata, MVert *mvert, int totface, int UNUSED(totloop), int totpoly, int use_poly_origindex, int use_face_origindex) { MPoly *mp, *mpoly; MLoop *ml, *mloop; MFace *mf = NULL, *mface; BLI_array_declare(mf); EditVert *v, *lastv, *firstv; EditFace *f; BLI_array_declare(origIndex); int i, j, k, lindex[4], *origIndex = NULL, *polyorigIndex; int numTex, numCol; mpoly = CustomData_get_layer(pdata, CD_MPOLY); mloop = CustomData_get_layer(ldata, CD_MLOOP); numTex = CustomData_number_of_layers(ldata, CD_MLOOPUV); numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL); k = 0; mp = mpoly; polyorigIndex = use_poly_origindex? CustomData_get_layer(pdata, CD_ORIGINDEX) : NULL; for (i=0; itotloop > 2) { ml = mloop + mp->loopstart; BLI_begin_edgefill(); firstv = NULL; lastv = NULL; for (j=0; jtotloop; j++, ml++) { v = BLI_addfillvert(mvert[ml->v].co); if (polyorigIndex && use_poly_origindex) v->hash = polyorigIndex[i]; else v->hash = i; v->keyindex = mp->loopstart + j; if (lastv) BLI_addfilledge(lastv, v); if (!firstv) firstv = v; lastv = v; } BLI_addfilledge(lastv, firstv); BLI_edgefill(2); for (f=fillfacebase.first; f; f=f->next) { BLI_array_growone(mf); BLI_array_growone(origIndex); /*these are loop indices, they'll be transformed into vert indices later.*/ mf[k].v1 = f->v1->keyindex; mf[k].v2 = f->v2->keyindex; mf[k].v3 = f->v3->keyindex; /*put poly index in mf->v4*/ mf[k].v4 = f->v1->hash; mf[k].mat_nr = mp->mat_nr; mf[k].flag = mp->flag; origIndex[k] = use_face_origindex ? k : f->v1->hash; k++; } BLI_end_edgefill(); } } CustomData_free(fdata, totface); memset(fdata, 0, sizeof(CustomData)); totface = k; CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mf, totface); CustomData_add_layer(fdata, CD_ORIGINDEX, CD_ASSIGN, origIndex, totface); CustomData_from_bmeshpoly(fdata, pdata, ldata, totface); mface = mf; for (i=0; iv1 > mf->v2) SWAP(int, mf->v1, mf->v2); if (mf->v2 > mf->v3) SWAP(int, mf->v2, mf->v3); if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2); if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2); if (mf->v2 > mf->v3) SWAP(int, mf->v2, mf->v3); if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2); lindex[0] = mf->v1; lindex[1] = mf->v2; lindex[2] = mf->v3; /*transform loop indices to vert indices*/ mf->v1 = mloop[mf->v1].v; mf->v2 = mloop[mf->v2].v; mf->v3 = mloop[mf->v3].v; mesh_loops_to_tri_corners(fdata, ldata, pdata, lindex, i, mf->v4); mf->v4 = 0; } return totface; } /* * COMPUTE POLY NORMAL * * Computes the normal of a planar * polygon See Graphics Gems for * computing newell normal. * */ static void mesh_calc_ngon_normal(MPoly *mpoly, MLoop *loopstart, MVert *mvert, float *normal) { MVert *v1, *v2, *v3; double u[3], v[3], w[3]; double n[3] = {0.0, 0.0, 0.0}, l; int i; for(i = 0; i < mpoly->totloop; i++){ v1 = mvert + loopstart[i].v; v2 = mvert + loopstart[(i+1)%mpoly->totloop].v; v3 = mvert + loopstart[(i+2)%mpoly->totloop].v; VECCOPY(u, v1->co); VECCOPY(v, v2->co); VECCOPY(w, v3->co); /*this fixes some weird numerical error*/ if (i==0) { u[0] += 0.0001f; u[1] += 0.0001f; u[2] += 0.0001f; } /* newell's method so thats?: (a[1] - b[1]) * (a[2] + b[2]); a[1]*b[2] - b[1]*a[2] - b[1]*b[2] + a[1]*a[2] odd. half of that is the cross product. . .what's the other half? also could be like a[1]*(b[2] + a[2]) - b[1]*(a[2] - b[2]) */ n[0] += (u[1] - v[1]) * (u[2] + v[2]); n[1] += (u[2] - v[2]) * (u[0] + v[0]); n[2] += (u[0] - v[0]) * (u[1] + v[1]); } l = n[0]*n[0]+n[1]*n[1]+n[2]*n[2]; l = sqrt(l); if (l == 0.0) { normal[0] = 0.0f; normal[1] = 0.0f; normal[2] = 1.0f; return; } else l = 1.0f / l; n[0] *= l; n[1] *= l; n[2] *= l; normal[0] = (float) n[0]; normal[1] = (float) n[1]; normal[2] = (float) n[2]; } void mesh_calc_poly_normal(MPoly *mpoly, MLoop *loopstart, MVert *mvarray, float *no) { if(mpoly->totloop > 4) { mesh_calc_ngon_normal(mpoly, loopstart, mvarray, no); } else if(mpoly->totloop == 3){ MVert *v1, *v2, *v3; v1 = mvarray + (loopstart++)->v; v2 = mvarray + (loopstart++)->v; v3 = mvarray + loopstart->v; normal_tri_v3( no,v1->co, v2->co, v3->co); } else if(mpoly->totloop == 4){ MVert *v1, *v2, *v3, *v4; v1 = mvarray + (loopstart++)->v; v2 = mvarray + (loopstart++)->v; v3 = mvarray + (loopstart++)->v; v4 = mvarray + loopstart->v; normal_quad_v3( no,v1->co, v2->co, v3->co, v4->co); } else{ /*horrible, two sided face!*/ no[0] = 0.0; no[1] = 0.0; no[2] = 1.0; } } /* basic vertex data functions */ int minmax_mesh(Mesh *me, float min[3], float max[3]) { int i= me->totvert; MVert *mvert; for(mvert= me->mvert; i--; mvert++) { DO_MINMAX(mvert->co, min, max); } return (me->totvert != 0); } int mesh_center_median(Mesh *me, float cent[3]) { int i= me->totvert; MVert *mvert; zero_v3(cent); for(mvert= me->mvert; i--; mvert++) { add_v3_v3(cent, mvert->co); } /* otherwise we get NAN for 0 verts */ if(me->totvert) { mul_v3_fl(cent, 1.0f/(float)me->totvert); } return (me->totvert != 0); } int mesh_center_bounds(Mesh *me, float cent[3]) { float min[3], max[3]; INIT_MINMAX(min, max); if(minmax_mesh(me, min, max)) { mid_v3_v3v3(cent, min, max); return 1; } return 0; } void mesh_translate(Mesh *me, float offset[3], int do_keys) { int i= me->totvert; MVert *mvert; for(mvert= me->mvert; i--; mvert++) { add_v3_v3(mvert->co, offset); } if (do_keys && me->key) { KeyBlock *kb; for (kb=me->key->block.first; kb; kb=kb->next) { float *fp= kb->data; for (i= kb->totelem; i--; fp+=3) { add_v3_v3(fp, offset); } } } } void BKE_mesh_ensure_navmesh(Mesh *me) { if (!CustomData_has_layer(&me->fdata, CD_RECAST)) { int i; int numFaces = me->totface; int* recastData; CustomData_add_layer_named(&me->fdata, CD_RECAST, CD_CALLOC, NULL, numFaces, "recastData"); recastData = (int*)CustomData_get_layer(&me->fdata, CD_RECAST); for (i=0; ifdata, CD_RECAST, CD_REFERENCE, recastData, numFaces, "recastData"); } }