/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "BKE_attribute_access.hh" #include "BKE_attribute_math.hh" #include "BKE_mesh_runtime.h" #include "BKE_mesh_sample.hh" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" namespace blender::bke::mesh_surface_sample { template BLI_NOINLINE static void sample_point_attribute(const Mesh &mesh, const Span looptri_indices, const Span bary_coords, const VArray &data_in, const IndexMask mask, const MutableSpan data_out) { const Span looptris{BKE_mesh_runtime_looptri_ensure(&mesh), BKE_mesh_runtime_looptri_len(&mesh)}; for (const int i : mask) { const int looptri_index = looptri_indices[i]; const MLoopTri &looptri = looptris[looptri_index]; const float3 &bary_coord = bary_coords[i]; const int v0_index = mesh.mloop[looptri.tri[0]].v; const int v1_index = mesh.mloop[looptri.tri[1]].v; const int v2_index = mesh.mloop[looptri.tri[2]].v; const T v0 = data_in[v0_index]; const T v1 = data_in[v1_index]; const T v2 = data_in[v2_index]; const T interpolated_value = attribute_math::mix3(bary_coord, v0, v1, v2); data_out[i] = interpolated_value; } } void sample_point_attribute(const Mesh &mesh, const Span looptri_indices, const Span bary_coords, const GVArray &data_in, const IndexMask mask, const GMutableSpan data_out) { BLI_assert(data_in.size() == mesh.totvert); BLI_assert(data_in.type() == data_out.type()); const CPPType &type = data_in.type(); attribute_math::convert_to_static_type(type, [&](auto dummy) { using T = decltype(dummy); sample_point_attribute( mesh, looptri_indices, bary_coords, data_in.typed(), mask, data_out.typed()); }); } template BLI_NOINLINE static void sample_corner_attribute(const Mesh &mesh, const Span looptri_indices, const Span bary_coords, const VArray &data_in, const IndexMask mask, const MutableSpan data_out) { const Span looptris{BKE_mesh_runtime_looptri_ensure(&mesh), BKE_mesh_runtime_looptri_len(&mesh)}; for (const int i : mask) { const int looptri_index = looptri_indices[i]; const MLoopTri &looptri = looptris[looptri_index]; const float3 &bary_coord = bary_coords[i]; const int loop_index_0 = looptri.tri[0]; const int loop_index_1 = looptri.tri[1]; const int loop_index_2 = looptri.tri[2]; const T v0 = data_in[loop_index_0]; const T v1 = data_in[loop_index_1]; const T v2 = data_in[loop_index_2]; const T interpolated_value = attribute_math::mix3(bary_coord, v0, v1, v2); data_out[i] = interpolated_value; } } void sample_corner_attribute(const Mesh &mesh, const Span looptri_indices, const Span bary_coords, const GVArray &data_in, const IndexMask mask, const GMutableSpan data_out) { BLI_assert(data_in.size() == mesh.totloop); BLI_assert(data_in.type() == data_out.type()); const CPPType &type = data_in.type(); attribute_math::convert_to_static_type(type, [&](auto dummy) { using T = decltype(dummy); sample_corner_attribute( mesh, looptri_indices, bary_coords, data_in.typed(), mask, data_out.typed()); }); } template void sample_face_attribute(const Mesh &mesh, const Span looptri_indices, const VArray &data_in, const IndexMask mask, const MutableSpan data_out) { const Span looptris{BKE_mesh_runtime_looptri_ensure(&mesh), BKE_mesh_runtime_looptri_len(&mesh)}; for (const int i : mask) { const int looptri_index = looptri_indices[i]; const MLoopTri &looptri = looptris[looptri_index]; const int poly_index = looptri.poly; data_out[i] = data_in[poly_index]; } } void sample_face_attribute(const Mesh &mesh, const Span looptri_indices, const GVArray &data_in, const IndexMask mask, const GMutableSpan data_out) { BLI_assert(data_in.size() == mesh.totpoly); BLI_assert(data_in.type() == data_out.type()); const CPPType &type = data_in.type(); attribute_math::convert_to_static_type(type, [&](auto dummy) { using T = decltype(dummy); sample_face_attribute(mesh, looptri_indices, data_in.typed(), mask, data_out.typed()); }); } MeshAttributeInterpolator::MeshAttributeInterpolator(const Mesh *mesh, const IndexMask mask, const Span positions, const Span looptri_indices) : mesh_(mesh), mask_(mask), positions_(positions), looptri_indices_(looptri_indices) { BLI_assert(positions.size() == looptri_indices.size()); } Span MeshAttributeInterpolator::ensure_barycentric_coords() { if (!bary_coords_.is_empty()) { BLI_assert(bary_coords_.size() >= mask_.min_array_size()); return bary_coords_; } bary_coords_.reinitialize(mask_.min_array_size()); const Span looptris{BKE_mesh_runtime_looptri_ensure(mesh_), BKE_mesh_runtime_looptri_len(mesh_)}; for (const int i : mask_) { const int looptri_index = looptri_indices_[i]; const MLoopTri &looptri = looptris[looptri_index]; const int v0_index = mesh_->mloop[looptri.tri[0]].v; const int v1_index = mesh_->mloop[looptri.tri[1]].v; const int v2_index = mesh_->mloop[looptri.tri[2]].v; interp_weights_tri_v3(bary_coords_[i], mesh_->mvert[v0_index].co, mesh_->mvert[v1_index].co, mesh_->mvert[v2_index].co, positions_[i]); } return bary_coords_; } Span MeshAttributeInterpolator::ensure_nearest_weights() { if (!nearest_weights_.is_empty()) { BLI_assert(nearest_weights_.size() >= mask_.min_array_size()); return nearest_weights_; } nearest_weights_.reinitialize(mask_.min_array_size()); const Span looptris{BKE_mesh_runtime_looptri_ensure(mesh_), BKE_mesh_runtime_looptri_len(mesh_)}; for (const int i : mask_) { const int looptri_index = looptri_indices_[i]; const MLoopTri &looptri = looptris[looptri_index]; const int v0_index = mesh_->mloop[looptri.tri[0]].v; const int v1_index = mesh_->mloop[looptri.tri[1]].v; const int v2_index = mesh_->mloop[looptri.tri[2]].v; const float d0 = len_squared_v3v3(positions_[i], mesh_->mvert[v0_index].co); const float d1 = len_squared_v3v3(positions_[i], mesh_->mvert[v1_index].co); const float d2 = len_squared_v3v3(positions_[i], mesh_->mvert[v2_index].co); nearest_weights_[i] = MIN3_PAIR(d0, d1, d2, float3(1, 0, 0), float3(0, 1, 0), float3(0, 0, 1)); } return nearest_weights_; } void MeshAttributeInterpolator::sample_data(const GVArray &src, const AttributeDomain domain, const eAttributeMapMode mode, const GMutableSpan dst) { if (src.is_empty() || dst.is_empty()) { return; } /* Compute barycentric coordinates only when they are needed. */ Span weights; if (ELEM(domain, ATTR_DOMAIN_POINT, ATTR_DOMAIN_CORNER)) { switch (mode) { case eAttributeMapMode::INTERPOLATED: weights = ensure_barycentric_coords(); break; case eAttributeMapMode::NEAREST: weights = ensure_nearest_weights(); break; } } /* Interpolate the source attributes on the surface. */ switch (domain) { case ATTR_DOMAIN_POINT: { sample_point_attribute(*mesh_, looptri_indices_, weights, src, mask_, dst); break; } case ATTR_DOMAIN_FACE: { sample_face_attribute(*mesh_, looptri_indices_, src, mask_, dst); break; } case ATTR_DOMAIN_CORNER: { sample_corner_attribute(*mesh_, looptri_indices_, weights, src, mask_, dst); break; } case ATTR_DOMAIN_EDGE: { /* Not yet supported. */ break; } default: { BLI_assert_unreachable(); break; } } } void MeshAttributeInterpolator::sample_attribute(const ReadAttributeLookup &src_attribute, OutputAttribute &dst_attribute, eAttributeMapMode mode) { if (src_attribute && dst_attribute) { this->sample_data(src_attribute.varray, src_attribute.domain, mode, dst_attribute.as_span()); } } } // namespace blender::bke::mesh_surface_sample