/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2001-2002 NaN Holding BV. All rights reserved. */ /** \file * \ingroup bke */ #include #include #include #include "MEM_guardedalloc.h" #include "BLI_listbase.h" #include "BLI_string_utf8.h" #include "BLI_array.hh" #include "BLI_float4x4.hh" #include "BLI_math.h" #include "BLI_math_vec_types.hh" #include "BLI_rand.h" #include "BLI_span.hh" #include "BLI_vector.hh" #include "DNA_anim_types.h" #include "DNA_collection_types.h" #include "DNA_curves_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_pointcloud_types.h" #include "DNA_scene_types.h" #include "DNA_vfont_types.h" #include "DNA_volume_types.h" #include "BKE_collection.h" #include "BKE_duplilist.h" #include "BKE_editmesh.h" #include "BKE_editmesh_cache.h" #include "BKE_geometry_set.h" #include "BKE_geometry_set.hh" #include "BKE_global.h" #include "BKE_idprop.h" #include "BKE_instances.hh" #include "BKE_lattice.h" #include "BKE_main.h" #include "BKE_mesh.h" #include "BKE_mesh_iterators.h" #include "BKE_mesh_runtime.h" #include "BKE_modifier.h" #include "BKE_object.h" #include "BKE_particle.h" #include "BKE_scene.h" #include "BKE_type_conversions.hh" #include "BKE_vfont.h" #include "DEG_depsgraph.h" #include "DEG_depsgraph_query.h" #include "BLI_hash.h" #include "DNA_world_types.h" #include "NOD_geometry_nodes_log.hh" #include "RNA_access.h" #include "RNA_path.h" #include "RNA_prototypes.h" #include "RNA_types.h" using blender::Array; using blender::float3; using blender::float4x4; using blender::Span; using blender::Vector; using blender::bke::InstanceReference; using blender::bke::Instances; namespace geo_log = blender::nodes::geo_eval_log; /* -------------------------------------------------------------------- */ /** \name Internal Duplicate Context * \{ */ struct DupliContext { Depsgraph *depsgraph; /** XXX child objects are selected from this group if set, could be nicer. */ Collection *collection; /** Only to check if the object is in edit-mode. */ Object *obedit; Scene *scene; Object *object; float space_mat[4][4]; /** * Index of the top-level instance that contains this context or -1 when unused. * This is an index into the instances component of #preview_base_geometry. */ int preview_instance_index; /** * Top level geometry set that is previewed. */ const GeometrySet *preview_base_geometry; /** * A stack that contains all the "parent" objects of a particular instance when recursive * instancing is used. This is used to prevent objects from instancing themselves accidentally. * Use a vector instead of a stack because we want to use the #contains method. */ Vector *instance_stack; int persistent_id[MAX_DUPLI_RECUR]; int64_t instance_idx[MAX_DUPLI_RECUR]; const GeometrySet *instance_data[MAX_DUPLI_RECUR]; int level; const struct DupliGenerator *gen; /** Result containers. */ ListBase *duplilist; /* Legacy doubly-linked list. */ }; struct DupliGenerator { short type; /* Dupli Type, see members of #OB_DUPLI. */ void (*make_duplis)(const DupliContext *ctx); }; static const DupliGenerator *get_dupli_generator(const DupliContext *ctx); /** * Create initial context for root object. */ static void init_context(DupliContext *r_ctx, Depsgraph *depsgraph, Scene *scene, Object *ob, const float space_mat[4][4], Vector &instance_stack) { r_ctx->depsgraph = depsgraph; r_ctx->scene = scene; r_ctx->collection = nullptr; r_ctx->object = ob; r_ctx->obedit = OBEDIT_FROM_OBACT(ob); r_ctx->instance_stack = &instance_stack; if (space_mat) { copy_m4_m4(r_ctx->space_mat, space_mat); } else { unit_m4(r_ctx->space_mat); } r_ctx->level = 0; r_ctx->gen = get_dupli_generator(r_ctx); r_ctx->duplilist = nullptr; r_ctx->preview_instance_index = -1; r_ctx->preview_base_geometry = nullptr; } /** * Create sub-context for recursive duplis. */ static bool copy_dupli_context(DupliContext *r_ctx, const DupliContext *ctx, Object *ob, const float mat[4][4], int index, const GeometrySet *geometry = nullptr, int64_t instance_index = 0) { *r_ctx = *ctx; /* XXX annoying, previously was done by passing an ID* argument, * this at least is more explicit. */ if (ctx->gen && ctx->gen->type == OB_DUPLICOLLECTION) { r_ctx->collection = ctx->object->instance_collection; } r_ctx->object = ob; r_ctx->instance_stack = ctx->instance_stack; if (mat) { mul_m4_m4m4(r_ctx->space_mat, (float(*)[4])ctx->space_mat, mat); } r_ctx->persistent_id[r_ctx->level] = index; r_ctx->instance_idx[r_ctx->level] = instance_index; r_ctx->instance_data[r_ctx->level] = geometry; ++r_ctx->level; if (r_ctx->level == MAX_DUPLI_RECUR - 1) { std::cerr << "Warning: Maximum instance recursion level reached.\n"; return false; } r_ctx->gen = get_dupli_generator(r_ctx); return true; } /** * Generate a dupli instance. * * \param mat: is transform of the object relative to current context (including * #Object.object_to_world). */ static DupliObject *make_dupli(const DupliContext *ctx, Object *ob, const ID *object_data, const float mat[4][4], int index, const GeometrySet *geometry = nullptr, int64_t instance_index = 0) { DupliObject *dob; int i; /* Add a #DupliObject instance to the result container. */ if (ctx->duplilist) { dob = MEM_cnew("dupli object"); BLI_addtail(ctx->duplilist, dob); } else { return nullptr; } dob->ob = ob; dob->ob_data = const_cast(object_data); mul_m4_m4m4(dob->mat, (float(*)[4])ctx->space_mat, mat); dob->type = ctx->gen == nullptr ? 0 : ctx->gen->type; dob->preview_base_geometry = ctx->preview_base_geometry; dob->preview_instance_index = ctx->preview_instance_index; /* Set persistent id, which is an array with a persistent index for each level * (particle number, vertex number, ..). by comparing this we can find the same * dupli-object between frames, which is needed for motion blur. * The last level is ordered first in the array. */ dob->persistent_id[0] = index; for (i = 1; i < ctx->level + 1; i++) { dob->persistent_id[i] = ctx->persistent_id[ctx->level - i]; } /* Fill rest of values with #INT_MAX which index will never have as value. */ for (; i < MAX_DUPLI_RECUR; i++) { dob->persistent_id[i] = INT_MAX; } /* Store geometry set data for attribute lookup in innermost to outermost * order, copying only non-null entries to save space. */ const int max_instance = sizeof(dob->instance_data) / sizeof(void *); int next_instance = 0; if (geometry != nullptr) { dob->instance_idx[next_instance] = int(instance_index); dob->instance_data[next_instance] = geometry; next_instance++; } for (i = ctx->level - 1; i >= 0 && next_instance < max_instance; i--) { if (ctx->instance_data[i] != nullptr) { dob->instance_idx[next_instance] = int(ctx->instance_idx[i]); dob->instance_data[next_instance] = ctx->instance_data[i]; next_instance++; } } /* Meta-balls never draw in duplis, they are instead merged into one by the basis * meta-ball outside of the group. this does mean that if that meta-ball is not in the * scene, they will not show up at all, limitation that should be solved once. */ if (object_data && GS(object_data->name) == ID_MB) { dob->no_draw = true; } /* Random number. * The logic here is designed to match Cycles. */ dob->random_id = BLI_hash_string(dob->ob->id.name + 2); if (dob->persistent_id[0] != INT_MAX) { for (i = 0; i < MAX_DUPLI_RECUR; i++) { dob->random_id = BLI_hash_int_2d(dob->random_id, uint(dob->persistent_id[i])); } } else { dob->random_id = BLI_hash_int_2d(dob->random_id, 0); } if (ctx->object != ob) { dob->random_id ^= BLI_hash_int(BLI_hash_string(ctx->object->id.name + 2)); } return dob; } static DupliObject *make_dupli(const DupliContext *ctx, Object *ob, const float mat[4][4], int index, const GeometrySet *geometry = nullptr, int64_t instance_index = 0) { return make_dupli(ctx, ob, static_cast(ob->data), mat, index, geometry, instance_index); } /** * Recursive dupli-objects. * * \param space_mat: is the local dupli-space (excluding dupli #Object.object_to_world). */ static void make_recursive_duplis(const DupliContext *ctx, Object *ob, const float space_mat[4][4], int index, const GeometrySet *geometry = nullptr, int64_t instance_index = 0) { if (ctx->instance_stack->contains(ob)) { /* Avoid recursive instances. */ printf("Warning: '%s' object is trying to instance itself.\n", ob->id.name + 2); return; } /* Simple preventing of too deep nested collections with #MAX_DUPLI_RECUR. */ if (ctx->level < MAX_DUPLI_RECUR) { DupliContext rctx; if (!copy_dupli_context(&rctx, ctx, ob, space_mat, index, geometry, instance_index)) { return; } if (rctx.gen) { ctx->instance_stack->append(ob); rctx.gen->make_duplis(&rctx); ctx->instance_stack->remove_last(); } } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Internal Child Duplicates (Used by Other Functions) * \{ */ using MakeChildDuplisFunc = void (*)(const DupliContext *ctx, void *userdata, Object *child); static bool is_child(const Object *ob, const Object *parent) { const Object *ob_parent = ob->parent; while (ob_parent) { if (ob_parent == parent) { return true; } ob_parent = ob_parent->parent; } return false; } /** * Create duplis from every child in scene or collection. */ static void make_child_duplis(const DupliContext *ctx, void *userdata, MakeChildDuplisFunc make_child_duplis_cb) { Object *parent = ctx->object; if (ctx->collection) { eEvaluationMode mode = DEG_get_mode(ctx->depsgraph); FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (ctx->collection, ob, mode) { if ((ob != ctx->obedit) && is_child(ob, parent)) { DupliContext pctx; if (copy_dupli_context(&pctx, ctx, ctx->object, nullptr, _base_id)) { /* Meta-balls have a different dupli handling. */ if (ob->type != OB_MBALL) { ob->flag |= OB_DONE; /* Doesn't render. */ } make_child_duplis_cb(&pctx, userdata, ob); } } } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; } else { /* FIXME: using a mere counter to generate a 'persistent' dupli id is very weak. One possible * better solution could be to use `session_uuid` of ID's instead? */ int persistent_dupli_id = 0; DEGObjectIterSettings deg_iter_settings{}; deg_iter_settings.depsgraph = ctx->depsgraph; /* NOTE: this set of flags ensure we only iterate over objects that have a base in either the * current scene, or the set (background) scene. */ deg_iter_settings.flags = DEG_ITER_OBJECT_FLAG_LINKED_DIRECTLY | DEG_ITER_OBJECT_FLAG_LINKED_VIA_SET; DEG_OBJECT_ITER_BEGIN (°_iter_settings, ob) { if ((ob != ctx->obedit) && is_child(ob, parent)) { DupliContext pctx; if (copy_dupli_context(&pctx, ctx, ctx->object, nullptr, persistent_dupli_id)) { /* Meta-balls have a different dupli-handling. */ if (ob->type != OB_MBALL) { ob->flag |= OB_DONE; /* Doesn't render. */ } make_child_duplis_cb(&pctx, userdata, ob); } } persistent_dupli_id++; } DEG_OBJECT_ITER_END; } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Internal Data Access Utilities * \{ */ static const Mesh *mesh_data_from_duplicator_object(Object *ob, BMEditMesh **r_em, const float (**r_vert_coords)[3], const float (**r_vert_normals)[3]) { /* Gather mesh info. */ BMEditMesh *em = BKE_editmesh_from_object(ob); const Mesh *me_eval; *r_em = nullptr; *r_vert_coords = nullptr; if (r_vert_normals != nullptr) { *r_vert_normals = nullptr; } /* We do not need any render-specific handling anymore, depsgraph takes care of that. */ /* NOTE: Do direct access to the evaluated mesh: this function is used * during meta balls evaluation. But even without those all the objects * which are needed for correct instancing are already evaluated. */ if (em != nullptr) { /* Note that this will only show deformation if #eModifierMode_OnCage is enabled. * We could change this but it matches 2.7x behavior. */ me_eval = BKE_object_get_editmesh_eval_cage(ob); if ((me_eval == nullptr) || (me_eval->runtime->wrapper_type == ME_WRAPPER_TYPE_BMESH)) { EditMeshData *emd = me_eval ? me_eval->runtime->edit_data : nullptr; /* Only assign edit-mesh in the case we can't use `me_eval`. */ *r_em = em; me_eval = nullptr; if ((emd != nullptr) && (emd->vertexCos != nullptr)) { *r_vert_coords = emd->vertexCos; if (r_vert_normals != nullptr) { BKE_editmesh_cache_ensure_vert_normals(em, emd); *r_vert_normals = emd->vertexNos; } } } } else { me_eval = BKE_object_get_evaluated_mesh(ob); } return me_eval; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Dupli-Collection Implementation (#OB_DUPLICOLLECTION) * \{ */ static void make_duplis_collection(const DupliContext *ctx) { Object *ob = ctx->object; Collection *collection; float collection_mat[4][4]; if (ob->instance_collection == nullptr) { return; } collection = ob->instance_collection; /* Combine collection offset and `obmat`. */ unit_m4(collection_mat); sub_v3_v3(collection_mat[3], collection->instance_offset); mul_m4_m4m4(collection_mat, ob->object_to_world, collection_mat); /* Don't access 'ob->object_to_world' from now on. */ eEvaluationMode mode = DEG_get_mode(ctx->depsgraph); FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (collection, cob, mode) { if (cob != ob) { float mat[4][4]; /* Collection dupli-offset, should apply after everything else. */ mul_m4_m4m4(mat, collection_mat, cob->object_to_world); make_dupli(ctx, cob, mat, _base_id); /* Recursion. */ make_recursive_duplis(ctx, cob, collection_mat, _base_id); } } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; } static const DupliGenerator gen_dupli_collection = { OB_DUPLICOLLECTION, /* type */ make_duplis_collection /* make_duplis */ }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for Geometry) * \{ */ /** Values shared between different mesh types. */ struct VertexDupliData_Params { /** * It's important we use this context instead of the `ctx` passed into #make_child_duplis * since these won't match in the case of recursion. */ const DupliContext *ctx; bool use_rotation; }; struct VertexDupliData_Mesh { VertexDupliData_Params params; int totvert; Span positions; const float (*vert_normals)[3]; const float (*orco)[3]; }; struct VertexDupliData_EditMesh { VertexDupliData_Params params; BMEditMesh *em; /* Can be nullptr. */ const float (*vert_coords)[3]; const float (*vert_normals)[3]; /** * \note The edit-mesh may assign #DupliObject.orco in cases when a regular mesh wouldn't. * For edit-meshes we only check for deformation, for regular meshes we check if #CD_ORCO exists. * * At the moment this isn't a meaningful difference since requesting #CD_ORCO causes the * edit-mesh to be converted into a mesh. */ bool has_orco; }; /** * \param no: The direction, * currently this is copied from a `short[3]` normal without division. * Can be null when \a use_rotation is false. */ static void get_duplivert_transform(const float co[3], const float no[3], const bool use_rotation, const short axis, const short upflag, float r_mat[4][4]) { float quat[4]; const float size[3] = {1.0f, 1.0f, 1.0f}; if (use_rotation) { /* Construct rotation matrix from normals. */ float no_flip[3]; negate_v3_v3(no_flip, no); vec_to_quat(quat, no_flip, axis, upflag); } else { unit_qt(quat); } loc_quat_size_to_mat4(r_mat, co, quat, size); } static DupliObject *vertex_dupli(const DupliContext *ctx, Object *inst_ob, const float child_imat[4][4], int index, const float co[3], const float no[3], const bool use_rotation) { /* `obmat` is transform to vertex. */ float obmat[4][4]; get_duplivert_transform(co, no, use_rotation, inst_ob->trackflag, inst_ob->upflag, obmat); float space_mat[4][4]; /* Make offset relative to inst_ob using relative child transform. */ mul_mat3_m4_v3(child_imat, obmat[3]); /* Apply `obmat` _after_ the local vertex transform. */ mul_m4_m4m4(obmat, inst_ob->object_to_world, obmat); /* Space matrix is constructed by removing `obmat` transform, * this yields the world-space transform for recursive duplis. */ mul_m4_m4m4(space_mat, obmat, inst_ob->world_to_object); DupliObject *dob = make_dupli(ctx, inst_ob, obmat, index); /* Recursion. */ make_recursive_duplis(ctx, inst_ob, space_mat, index); return dob; } static void make_child_duplis_verts_from_mesh(const DupliContext *ctx, void *userdata, Object *inst_ob) { VertexDupliData_Mesh *vdd = (VertexDupliData_Mesh *)userdata; const bool use_rotation = vdd->params.use_rotation; const int totvert = vdd->totvert; invert_m4_m4(inst_ob->world_to_object, inst_ob->object_to_world); /* Relative transform from parent to child space. */ float child_imat[4][4]; mul_m4_m4m4(child_imat, inst_ob->world_to_object, ctx->object->object_to_world); for (int i = 0; i < totvert; i++) { DupliObject *dob = vertex_dupli(vdd->params.ctx, inst_ob, child_imat, i, vdd->positions[i], vdd->vert_normals[i], use_rotation); if (vdd->orco) { copy_v3_v3(dob->orco, vdd->orco[i]); } } } static void make_child_duplis_verts_from_editmesh(const DupliContext *ctx, void *userdata, Object *inst_ob) { VertexDupliData_EditMesh *vdd = (VertexDupliData_EditMesh *)userdata; BMEditMesh *em = vdd->em; const bool use_rotation = vdd->params.use_rotation; invert_m4_m4(inst_ob->world_to_object, inst_ob->object_to_world); /* Relative transform from parent to child space. */ float child_imat[4][4]; mul_m4_m4m4(child_imat, inst_ob->world_to_object, ctx->object->object_to_world); BMVert *v; BMIter iter; int i; const float(*vert_coords)[3] = vdd->vert_coords; const float(*vert_normals)[3] = vdd->vert_normals; BM_ITER_MESH_INDEX (v, &iter, em->bm, BM_VERTS_OF_MESH, i) { const float *co, *no; if (vert_coords != nullptr) { co = vert_coords[i]; no = vert_normals ? vert_normals[i] : nullptr; } else { co = v->co; no = v->no; } DupliObject *dob = vertex_dupli(vdd->params.ctx, inst_ob, child_imat, i, co, no, use_rotation); if (vdd->has_orco) { copy_v3_v3(dob->orco, v->co); } } } static void make_duplis_verts(const DupliContext *ctx) { Object *parent = ctx->object; const bool use_rotation = parent->transflag & OB_DUPLIROT; /* Gather mesh info. */ BMEditMesh *em = nullptr; const float(*vert_coords)[3] = nullptr; const float(*vert_normals)[3] = nullptr; const Mesh *me_eval = mesh_data_from_duplicator_object( parent, &em, &vert_coords, use_rotation ? &vert_normals : nullptr); if (em == nullptr && me_eval == nullptr) { return; } VertexDupliData_Params vdd_params{ctx, use_rotation}; if (em != nullptr) { VertexDupliData_EditMesh vdd{}; vdd.params = vdd_params; vdd.em = em; vdd.vert_coords = vert_coords; vdd.vert_normals = vert_normals; vdd.has_orco = (vert_coords != nullptr); make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_editmesh); } else { VertexDupliData_Mesh vdd{}; vdd.params = vdd_params; vdd.totvert = me_eval->totvert; vdd.positions = me_eval->positions(); vdd.vert_normals = BKE_mesh_vertex_normals_ensure(me_eval); vdd.orco = (const float(*)[3])CustomData_get_layer(&me_eval->vdata, CD_ORCO); make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_mesh); } } static const DupliGenerator gen_dupli_verts = { OB_DUPLIVERTS, /* type */ make_duplis_verts /* make_duplis */ }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for 3D Text) * \{ */ static Object *find_family_object( Main *bmain, const char *family, size_t family_len, uint ch, GHash *family_gh) { void *ch_key = POINTER_FROM_UINT(ch); Object **ob_pt; if ((ob_pt = (Object **)BLI_ghash_lookup_p(family_gh, ch_key))) { return *ob_pt; } char ch_utf8[BLI_UTF8_MAX + 1]; size_t ch_utf8_len; ch_utf8_len = BLI_str_utf8_from_unicode(ch, ch_utf8, sizeof(ch_utf8) - 1); ch_utf8[ch_utf8_len] = '\0'; ch_utf8_len += 1; /* Compare with null terminator. */ LISTBASE_FOREACH (Object *, ob, &bmain->objects) { if (STREQLEN(ob->id.name + 2 + family_len, ch_utf8, ch_utf8_len)) { if (STREQLEN(ob->id.name + 2, family, family_len)) { /* Inserted value can be nullptr, just to save searches in future. */ BLI_ghash_insert(family_gh, ch_key, ob); return ob; } } } return nullptr; } static void make_duplis_font(const DupliContext *ctx) { Object *par = ctx->object; GHash *family_gh; Object *ob; Curve *cu; struct CharTrans *ct, *chartransdata = nullptr; float vec[3], obmat[4][4], pmat[4][4], fsize, xof, yof; int text_len, a; size_t family_len; const char32_t *text = nullptr; bool text_free = false; /* Font dupli-verts not supported inside collections. */ if (ctx->collection) { return; } copy_m4_m4(pmat, par->object_to_world); /* In `par` the family name is stored, use this to find the other objects. */ BKE_vfont_to_curve_ex( par, (Curve *)par->data, FO_DUPLI, nullptr, &text, &text_len, &text_free, &chartransdata); if (text == nullptr || chartransdata == nullptr) { return; } cu = (Curve *)par->data; fsize = cu->fsize; xof = cu->xof; yof = cu->yof; ct = chartransdata; /* Cache result. */ family_len = strlen(cu->family); family_gh = BLI_ghash_int_new_ex(__func__, 256); /* Safety check even if it might fail badly when called for original object. */ const bool is_eval_curve = DEG_is_evaluated_id(&cu->id); /* Advance matching BLI_str_utf8_as_utf32. */ for (a = 0; a < text_len; a++, ct++) { /* XXX That G.main is *really* ugly, but not sure what to do here. * Definitively don't think it would be safe to put back `Main *bmain` pointer * in #DupliContext as done in 2.7x? */ ob = find_family_object(G.main, cu->family, family_len, uint(text[a]), family_gh); if (is_eval_curve) { /* Workaround for the above hack. */ ob = DEG_get_evaluated_object(ctx->depsgraph, ob); } if (ob) { vec[0] = fsize * (ct->xof - xof); vec[1] = fsize * (ct->yof - yof); vec[2] = 0.0; mul_m4_v3(pmat, vec); copy_m4_m4(obmat, par->object_to_world); if (UNLIKELY(ct->rot != 0.0f)) { float rmat[4][4]; zero_v3(obmat[3]); axis_angle_to_mat4_single(rmat, 'Z', -ct->rot); mul_m4_m4m4(obmat, obmat, rmat); } copy_v3_v3(obmat[3], vec); make_dupli(ctx, ob, obmat, a); } } if (text_free) { MEM_freeN((void *)text); } BLI_ghash_free(family_gh, nullptr, nullptr); MEM_freeN(chartransdata); } static const DupliGenerator gen_dupli_verts_font = { OB_DUPLIVERTS, /* type */ make_duplis_font /* make_duplis */ }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Instances Geometry Component Implementation * \{ */ static void make_duplis_geometry_set_impl(const DupliContext *ctx, const GeometrySet &geometry_set, const float parent_transform[4][4], bool geometry_set_is_instance, bool use_new_curves_type) { int component_index = 0; if (ctx->object->type != OB_MESH || geometry_set_is_instance) { if (const Mesh *mesh = geometry_set.get_mesh_for_read()) { make_dupli(ctx, ctx->object, &mesh->id, parent_transform, component_index++); } } if (ctx->object->type != OB_VOLUME || geometry_set_is_instance) { if (const Volume *volume = geometry_set.get_volume_for_read()) { make_dupli(ctx, ctx->object, &volume->id, parent_transform, component_index++); } } if (!ELEM(ctx->object->type, OB_CURVES_LEGACY, OB_FONT, OB_CURVES) || geometry_set_is_instance) { if (const CurveComponent *component = geometry_set.get_component_for_read()) { if (use_new_curves_type) { if (const Curves *curves = component->get_for_read()) { make_dupli(ctx, ctx->object, &curves->id, parent_transform, component_index++); } } else { if (const Curve *curve = component->get_curve_for_render()) { make_dupli(ctx, ctx->object, &curve->id, parent_transform, component_index++); } } } } if (ctx->object->type != OB_POINTCLOUD || geometry_set_is_instance) { if (const PointCloud *pointcloud = geometry_set.get_pointcloud_for_read()) { make_dupli(ctx, ctx->object, &pointcloud->id, parent_transform, component_index++); } } const bool creates_duplis_for_components = component_index >= 1; const Instances *instances = geometry_set.get_instances_for_read(); if (instances == nullptr) { return; } const DupliContext *instances_ctx = ctx; /* Create a sub-context if some duplis were created above. This is to avoid dupli id collisions * between the instances component below and the other components above. */ DupliContext new_instances_ctx; if (creates_duplis_for_components) { if (!copy_dupli_context(&new_instances_ctx, ctx, ctx->object, nullptr, component_index)) { return; } instances_ctx = &new_instances_ctx; } Span instance_offset_matrices = instances->transforms(); Span reference_handles = instances->reference_handles(); Span almost_unique_ids = instances->almost_unique_ids(); Span references = instances->references(); for (int64_t i : instance_offset_matrices.index_range()) { const InstanceReference &reference = references[reference_handles[i]]; const int id = almost_unique_ids[i]; const DupliContext *ctx_for_instance = instances_ctx; /* Set the #preview_instance_index when necessary. */ DupliContext tmp_ctx_for_instance; if (instances_ctx->preview_base_geometry == &geometry_set) { tmp_ctx_for_instance = *instances_ctx; tmp_ctx_for_instance.preview_instance_index = i; ctx_for_instance = &tmp_ctx_for_instance; } switch (reference.type()) { case InstanceReference::Type::Object: { Object &object = reference.object(); float matrix[4][4]; mul_m4_m4m4(matrix, parent_transform, instance_offset_matrices[i].values); make_dupli(ctx_for_instance, &object, matrix, id, &geometry_set, i); float space_matrix[4][4]; mul_m4_m4m4(space_matrix, instance_offset_matrices[i].values, object.world_to_object); mul_m4_m4_pre(space_matrix, parent_transform); make_recursive_duplis(ctx_for_instance, &object, space_matrix, id, &geometry_set, i); break; } case InstanceReference::Type::Collection: { Collection &collection = reference.collection(); float collection_matrix[4][4]; unit_m4(collection_matrix); sub_v3_v3(collection_matrix[3], collection.instance_offset); mul_m4_m4_pre(collection_matrix, instance_offset_matrices[i].values); mul_m4_m4_pre(collection_matrix, parent_transform); DupliContext sub_ctx; if (!copy_dupli_context(&sub_ctx, ctx_for_instance, ctx_for_instance->object, nullptr, id, &geometry_set, i)) { break; } eEvaluationMode mode = DEG_get_mode(ctx_for_instance->depsgraph); int object_id = 0; FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (&collection, object, mode) { if (object == ctx_for_instance->object) { continue; } float instance_matrix[4][4]; mul_m4_m4m4(instance_matrix, collection_matrix, object->object_to_world); make_dupli(&sub_ctx, object, instance_matrix, object_id++); make_recursive_duplis(&sub_ctx, object, collection_matrix, object_id++); } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; break; } case InstanceReference::Type::GeometrySet: { float new_transform[4][4]; mul_m4_m4m4(new_transform, parent_transform, instance_offset_matrices[i].values); DupliContext sub_ctx; if (copy_dupli_context(&sub_ctx, ctx_for_instance, ctx_for_instance->object, nullptr, id, &geometry_set, i)) { make_duplis_geometry_set_impl( &sub_ctx, reference.geometry_set(), new_transform, true, false); } break; } case InstanceReference::Type::None: { break; } } } } static void make_duplis_geometry_set(const DupliContext *ctx) { const GeometrySet *geometry_set = ctx->object->runtime.geometry_set_eval; make_duplis_geometry_set_impl(ctx, *geometry_set, ctx->object->object_to_world, false, false); } static const DupliGenerator gen_dupli_geometry_set = { 0, make_duplis_geometry_set, }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Dupli-Faces Implementation (#OB_DUPLIFACES) * \{ */ /** Values shared between different mesh types. */ struct FaceDupliData_Params { /** * It's important we use this context instead of the `ctx` passed into #make_child_duplis * since these won't match in the case of recursion. */ const DupliContext *ctx; bool use_scale; }; struct FaceDupliData_Mesh { FaceDupliData_Params params; int totface; const MPoly *mpoly; const MLoop *mloop; Span positions; const float (*orco)[3]; const MLoopUV *mloopuv; }; struct FaceDupliData_EditMesh { FaceDupliData_Params params; BMEditMesh *em; bool has_orco, has_uvs; int cd_loop_uv_offset; /* Can be nullptr. */ const float (*vert_coords)[3]; }; static void get_dupliface_transform_from_coords(Span coords, const bool use_scale, const float scale_fac, float r_mat[4][4]) { using namespace blender::math; /* Location. */ float3 location(0); for (const float3 &coord : coords) { location += coord; } location *= 1.0f / float(coords.size()); /* Rotation. */ float quat[4]; float3 f_no = normalize(cross_poly(coords)); tri_to_quat_ex(quat, coords[0], coords[1], coords[2], f_no); /* Scale. */ float scale; if (use_scale) { const float area = area_poly_v3((const float(*)[3])coords.data(), uint(coords.size())); scale = sqrtf(area) * scale_fac; } else { scale = 1.0f; } loc_quat_size_to_mat4(r_mat, location, quat, float3(scale)); } static DupliObject *face_dupli(const DupliContext *ctx, Object *inst_ob, const float child_imat[4][4], const int index, const bool use_scale, const float scale_fac, Span coords) { float obmat[4][4]; float space_mat[4][4]; /* `obmat` is transform to face. */ get_dupliface_transform_from_coords(coords, use_scale, scale_fac, obmat); /* Make offset relative to inst_ob using relative child transform. */ mul_mat3_m4_v3(child_imat, obmat[3]); /* XXX ugly hack to ensure same behavior as in master. * This should not be needed, #Object.parentinv is not consistent outside of parenting. */ { float imat[3][3]; copy_m3_m4(imat, inst_ob->parentinv); mul_m4_m3m4(obmat, imat, obmat); } /* Apply `obmat` _after_ the local face transform. */ mul_m4_m4m4(obmat, inst_ob->object_to_world, obmat); /* Space matrix is constructed by removing `obmat` transform, * this yields the world-space transform for recursive duplis. */ mul_m4_m4m4(space_mat, obmat, inst_ob->world_to_object); DupliObject *dob = make_dupli(ctx, inst_ob, obmat, index); /* Recursion. */ make_recursive_duplis(ctx, inst_ob, space_mat, index); return dob; } static DupliObject *face_dupli_from_mesh(const DupliContext *ctx, Object *inst_ob, const float child_imat[4][4], const int index, const bool use_scale, const float scale_fac, /* Mesh variables. */ const MPoly *mpoly, const MLoop *mloopstart, const Span positions) { const int coords_len = mpoly->totloop; Array coords(coords_len); const MLoop *ml = mloopstart; for (int i = 0; i < coords_len; i++, ml++) { coords[i] = positions[ml->v]; } return face_dupli(ctx, inst_ob, child_imat, index, use_scale, scale_fac, coords); } static DupliObject *face_dupli_from_editmesh(const DupliContext *ctx, Object *inst_ob, const float child_imat[4][4], const int index, const bool use_scale, const float scale_fac, /* Mesh variables. */ BMFace *f, const float (*vert_coords)[3]) { const int coords_len = f->len; Array coords(coords_len); BMLoop *l_first, *l_iter; int i = 0; l_iter = l_first = BM_FACE_FIRST_LOOP(f); if (vert_coords != nullptr) { do { copy_v3_v3(coords[i++], vert_coords[BM_elem_index_get(l_iter->v)]); } while ((l_iter = l_iter->next) != l_first); } else { do { copy_v3_v3(coords[i++], l_iter->v->co); } while ((l_iter = l_iter->next) != l_first); } return face_dupli(ctx, inst_ob, child_imat, index, use_scale, scale_fac, coords); } static void make_child_duplis_faces_from_mesh(const DupliContext *ctx, void *userdata, Object *inst_ob) { FaceDupliData_Mesh *fdd = (FaceDupliData_Mesh *)userdata; const MPoly *mpoly = fdd->mpoly, *mp; const MLoop *mloop = fdd->mloop; const float(*orco)[3] = fdd->orco; const MLoopUV *mloopuv = fdd->mloopuv; const int totface = fdd->totface; const bool use_scale = fdd->params.use_scale; int a; float child_imat[4][4]; invert_m4_m4(inst_ob->world_to_object, inst_ob->object_to_world); /* Relative transform from parent to child space. */ mul_m4_m4m4(child_imat, inst_ob->world_to_object, ctx->object->object_to_world); const float scale_fac = ctx->object->instance_faces_scale; for (a = 0, mp = mpoly; a < totface; a++, mp++) { const MLoop *loopstart = mloop + mp->loopstart; DupliObject *dob = face_dupli_from_mesh(fdd->params.ctx, inst_ob, child_imat, a, use_scale, scale_fac, mp, loopstart, fdd->positions); const float w = 1.0f / float(mp->totloop); if (orco) { for (int j = 0; j < mp->totloop; j++) { madd_v3_v3fl(dob->orco, orco[loopstart[j].v], w); } } if (mloopuv) { for (int j = 0; j < mp->totloop; j++) { madd_v2_v2fl(dob->uv, mloopuv[mp->loopstart + j].uv, w); } } } } static void make_child_duplis_faces_from_editmesh(const DupliContext *ctx, void *userdata, Object *inst_ob) { FaceDupliData_EditMesh *fdd = (FaceDupliData_EditMesh *)userdata; BMEditMesh *em = fdd->em; float child_imat[4][4]; int a; BMFace *f; BMIter iter; const bool use_scale = fdd->params.use_scale; const float(*vert_coords)[3] = fdd->vert_coords; BLI_assert((vert_coords == nullptr) || (em->bm->elem_index_dirty & BM_VERT) == 0); invert_m4_m4(inst_ob->world_to_object, inst_ob->object_to_world); /* Relative transform from parent to child space. */ mul_m4_m4m4(child_imat, inst_ob->world_to_object, ctx->object->object_to_world); const float scale_fac = ctx->object->instance_faces_scale; BM_ITER_MESH_INDEX (f, &iter, em->bm, BM_FACES_OF_MESH, a) { DupliObject *dob = face_dupli_from_editmesh( fdd->params.ctx, inst_ob, child_imat, a, use_scale, scale_fac, f, vert_coords); if (fdd->has_orco) { const float w = 1.0f / float(f->len); BMLoop *l_first, *l_iter; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { madd_v3_v3fl(dob->orco, l_iter->v->co, w); } while ((l_iter = l_iter->next) != l_first); } if (fdd->has_uvs) { BM_face_uv_calc_center_median(f, fdd->cd_loop_uv_offset, dob->uv); } } } static void make_duplis_faces(const DupliContext *ctx) { Object *parent = ctx->object; /* Gather mesh info. */ BMEditMesh *em = nullptr; const float(*vert_coords)[3] = nullptr; const Mesh *me_eval = mesh_data_from_duplicator_object(parent, &em, &vert_coords, nullptr); if (em == nullptr && me_eval == nullptr) { return; } FaceDupliData_Params fdd_params = {ctx, (parent->transflag & OB_DUPLIFACES_SCALE) != 0}; if (em != nullptr) { const int uv_idx = CustomData_get_render_layer(&em->bm->ldata, CD_MLOOPUV); FaceDupliData_EditMesh fdd{}; fdd.params = fdd_params; fdd.em = em; fdd.vert_coords = vert_coords; fdd.has_orco = (vert_coords != nullptr); fdd.has_uvs = (uv_idx != -1); fdd.cd_loop_uv_offset = (uv_idx != -1) ? CustomData_get_n_offset(&em->bm->ldata, CD_MLOOPUV, uv_idx) : -1; make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_editmesh); } else { const int uv_idx = CustomData_get_render_layer(&me_eval->ldata, CD_MLOOPUV); FaceDupliData_Mesh fdd{}; fdd.params = fdd_params; fdd.totface = me_eval->totpoly; fdd.mpoly = me_eval->polys().data(); fdd.mloop = me_eval->loops().data(); fdd.positions = me_eval->positions(); fdd.mloopuv = (uv_idx != -1) ? (const MLoopUV *)CustomData_get_layer_n( &me_eval->ldata, CD_MLOOPUV, uv_idx) : nullptr; fdd.orco = (const float(*)[3])CustomData_get_layer(&me_eval->vdata, CD_ORCO); make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_mesh); } } static const DupliGenerator gen_dupli_faces = { OB_DUPLIFACES, /* type */ make_duplis_faces /* make_duplis */ }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Dupli-Particles Implementation (#OB_DUPLIPARTS) * \{ */ static void make_duplis_particle_system(const DupliContext *ctx, ParticleSystem *psys) { Scene *scene = ctx->scene; Object *par = ctx->object; eEvaluationMode mode = DEG_get_mode(ctx->depsgraph); bool for_render = mode == DAG_EVAL_RENDER; Object *ob = nullptr, **oblist = nullptr; DupliObject *dob; ParticleSettings *part; ParticleData *pa; ChildParticle *cpa = nullptr; ParticleKey state; ParticleCacheKey *cache; float ctime, scale = 1.0f; float tmat[4][4], mat[4][4], pamat[4][4], size = 0.0; int a, b, hair = 0; int totpart, totchild; int no_draw_flag = PARS_UNEXIST; if (psys == nullptr) { return; } part = psys->part; if (part == nullptr) { return; } if (!psys_check_enabled(par, psys, for_render)) { return; } if (!for_render) { no_draw_flag |= PARS_NO_DISP; } /* NOTE: in old animation system, used parent object's time-offset. */ ctime = DEG_get_ctime(ctx->depsgraph); totpart = psys->totpart; totchild = psys->totchild; if ((for_render || part->draw_as == PART_DRAW_REND) && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) { ParticleSimulationData sim = {nullptr}; sim.depsgraph = ctx->depsgraph; sim.scene = scene; sim.ob = par; sim.psys = psys; sim.psmd = psys_get_modifier(par, psys); /* Make sure emitter `world_to_object` is in global coordinates instead of render view * coordinates. */ invert_m4_m4(par->world_to_object, par->object_to_world); /* First check for loops (particle system object used as dupli-object). */ if (part->ren_as == PART_DRAW_OB) { if (ELEM(part->instance_object, nullptr, par)) { return; } } else { /* #PART_DRAW_GR. */ if (part->instance_collection == nullptr) { return; } const ListBase dup_collection_objects = BKE_collection_object_cache_get( part->instance_collection); if (BLI_listbase_is_empty(&dup_collection_objects)) { return; } if (BLI_findptr(&dup_collection_objects, par, offsetof(Base, object))) { return; } } /* If we have a hair particle system, use the path cache. */ if (part->type == PART_HAIR) { if (psys->flag & PSYS_HAIR_DONE) { hair = (totchild == 0 || psys->childcache) && psys->pathcache; } if (!hair) { return; } /* We use cache, update `totchild` according to cached data. */ totchild = psys->totchildcache; totpart = psys->totcached; } RNG *rng = BLI_rng_new_srandom(31415926u + uint(psys->seed)); psys->lattice_deform_data = psys_create_lattice_deform_data(&sim); /* Gather list of objects or single object. */ int totcollection = 0; const bool use_whole_collection = part->draw & PART_DRAW_WHOLE_GR; const bool use_collection_count = part->draw & PART_DRAW_COUNT_GR && !use_whole_collection; if (part->ren_as == PART_DRAW_GR) { if (use_collection_count) { psys_find_group_weights(part); LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) { FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN ( part->instance_collection, object, mode) { if (dw->ob == object) { totcollection += dw->count; break; } } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; } } else { FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN ( part->instance_collection, object, mode) { (void)object; totcollection++; } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; } oblist = (Object **)MEM_callocN(size_t(totcollection) * sizeof(Object *), "dupcollection object list"); if (use_collection_count) { a = 0; LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) { FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN ( part->instance_collection, object, mode) { if (dw->ob == object) { for (b = 0; b < dw->count; b++, a++) { oblist[a] = dw->ob; } break; } } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; } } else { a = 0; FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN ( part->instance_collection, object, mode) { oblist[a] = object; a++; } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; } } else { ob = part->instance_object; } if (totchild == 0 || part->draw & PART_DRAW_PARENT) { a = 0; } else { a = totpart; } for (pa = psys->particles; a < totpart + totchild; a++, pa++) { if (a < totpart) { /* Handle parent particle. */ if (pa->flag & no_draw_flag) { continue; } #if 0 /* UNUSED */ pa_num = pa->num; #endif size = pa->size; } else { /* Handle child particle. */ cpa = &psys->child[a - totpart]; #if 0 /* UNUSED */ pa_num = a; #endif size = psys_get_child_size(psys, cpa, ctime, nullptr); } /* Some hair paths might be non-existent so they can't be used for duplication. */ if (hair && psys->pathcache && ((a < totpart && psys->pathcache[a]->segments < 0) || (a >= totpart && psys->childcache[a - totpart]->segments < 0))) { continue; } if (part->ren_as == PART_DRAW_GR) { /* Prevent divide by zero below T28336. */ if (totcollection == 0) { continue; } /* For collections, pick the object based on settings. */ if (part->draw & PART_DRAW_RAND_GR && !use_whole_collection) { b = BLI_rng_get_int(rng) % totcollection; } else { b = a % totcollection; } ob = oblist[b]; } if (hair) { /* Hair we handle separate and compute transform based on hair keys. */ if (a < totpart) { cache = psys->pathcache[a]; psys_get_dupli_path_transform(&sim, pa, nullptr, cache, pamat, &scale); } else { cache = psys->childcache[a - totpart]; psys_get_dupli_path_transform(&sim, nullptr, cpa, cache, pamat, &scale); } copy_v3_v3(pamat[3], cache->co); pamat[3][3] = 1.0f; } else { /* First key. */ state.time = ctime; if (psys_get_particle_state(&sim, a, &state, false) == 0) { continue; } float tquat[4]; normalize_qt_qt(tquat, state.rot); quat_to_mat4(pamat, tquat); copy_v3_v3(pamat[3], state.co); pamat[3][3] = 1.0f; } if (part->ren_as == PART_DRAW_GR && psys->part->draw & PART_DRAW_WHOLE_GR) { b = 0; FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN ( part->instance_collection, object, mode) { copy_m4_m4(tmat, oblist[b]->object_to_world); /* Apply collection instance offset. */ sub_v3_v3(tmat[3], part->instance_collection->instance_offset); /* Apply particle scale. */ mul_mat3_m4_fl(tmat, size * scale); mul_v3_fl(tmat[3], size * scale); /* Individual particle transform. */ mul_m4_m4m4(mat, pamat, tmat); dob = make_dupli(ctx, object, mat, a); dob->particle_system = psys; psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco); b++; } FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END; } else { float obmat[4][4]; copy_m4_m4(obmat, ob->object_to_world); float vec[3]; copy_v3_v3(vec, obmat[3]); zero_v3(obmat[3]); /* Particle rotation uses x-axis as the aligned axis, * so pre-rotate the object accordingly. */ if ((part->draw & PART_DRAW_ROTATE_OB) == 0) { float xvec[3], q[4], size_mat[4][4], original_size[3]; mat4_to_size(original_size, obmat); size_to_mat4(size_mat, original_size); xvec[0] = -1.0f; xvec[1] = xvec[2] = 0; vec_to_quat(q, xvec, ob->trackflag, ob->upflag); quat_to_mat4(obmat, q); obmat[3][3] = 1.0f; /* Add scaling if requested. */ if ((part->draw & PART_DRAW_NO_SCALE_OB) == 0) { mul_m4_m4m4(obmat, obmat, size_mat); } } else if (part->draw & PART_DRAW_NO_SCALE_OB) { /* Remove scaling. */ float size_mat[4][4], original_size[3]; mat4_to_size(original_size, obmat); size_to_mat4(size_mat, original_size); invert_m4(size_mat); mul_m4_m4m4(obmat, obmat, size_mat); } mul_m4_m4m4(tmat, pamat, obmat); mul_mat3_m4_fl(tmat, size * scale); copy_m4_m4(mat, tmat); if (part->draw & PART_DRAW_GLOBAL_OB) { add_v3_v3v3(mat[3], mat[3], vec); } dob = make_dupli(ctx, ob, mat, a); dob->particle_system = psys; psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco); } } BLI_rng_free(rng); } /* Clean up. */ if (oblist) { MEM_freeN(oblist); } if (psys->lattice_deform_data) { BKE_lattice_deform_data_destroy(psys->lattice_deform_data); psys->lattice_deform_data = nullptr; } } static void make_duplis_particles(const DupliContext *ctx) { /* Particle system take up one level in id, the particles another. */ int psysid; LISTBASE_FOREACH_INDEX (ParticleSystem *, psys, &ctx->object->particlesystem, psysid) { /* Particles create one more level for persistent `psys` index. */ DupliContext pctx; if (copy_dupli_context(&pctx, ctx, ctx->object, nullptr, psysid)) { make_duplis_particle_system(&pctx, psys); } } } static const DupliGenerator gen_dupli_particles = { OB_DUPLIPARTS, /* type */ make_duplis_particles /* make_duplis */ }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Dupli-Generator Selector For The Given Context * \{ */ static const DupliGenerator *get_dupli_generator(const DupliContext *ctx) { int transflag = ctx->object->transflag; int visibility_flag = ctx->object->visibility_flag; if ((transflag & OB_DUPLI) == 0 && ctx->object->runtime.geometry_set_eval == nullptr) { return nullptr; } /* Metaball objects can't create instances, but the dupli system is used to "instance" their * evaluated mesh to render engines. We need to exit early to avoid recursively instancing the * evaluated metaball mesh on metaball instances that already contribute to the basis. */ if (ctx->object->type == OB_MBALL && ctx->level > 0) { return nullptr; } /* Should the dupli's be generated for this object? - Respect restrict flags. */ if (DEG_get_mode(ctx->depsgraph) == DAG_EVAL_RENDER ? (visibility_flag & OB_HIDE_RENDER) : (visibility_flag & OB_HIDE_VIEWPORT)) { return nullptr; } /* Give "Object as Font" instances higher priority than geometry set instances, to retain * the behavior from before curve object meshes were processed as instances internally. */ if (transflag & OB_DUPLIVERTS) { if (ctx->object->type == OB_FONT) { return &gen_dupli_verts_font; } } if (ctx->object->runtime.geometry_set_eval != nullptr) { if (BKE_object_has_geometry_set_instances(ctx->object)) { return &gen_dupli_geometry_set; } } if (transflag & OB_DUPLIPARTS) { return &gen_dupli_particles; } if (transflag & OB_DUPLIVERTS) { if (ctx->object->type == OB_MESH) { return &gen_dupli_verts; } } else if (transflag & OB_DUPLIFACES) { if (ctx->object->type == OB_MESH) { return &gen_dupli_faces; } } else if (transflag & OB_DUPLICOLLECTION) { return &gen_dupli_collection; } return nullptr; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Dupli-Container Implementation * \{ */ ListBase *object_duplilist(Depsgraph *depsgraph, Scene *sce, Object *ob) { ListBase *duplilist = MEM_cnew("duplilist"); DupliContext ctx; Vector instance_stack; instance_stack.append(ob); init_context(&ctx, depsgraph, sce, ob, nullptr, instance_stack); if (ctx.gen) { ctx.duplilist = duplilist; ctx.gen->make_duplis(&ctx); } return duplilist; } ListBase *object_duplilist_preview(Depsgraph *depsgraph, Scene *sce, Object *ob_eval, const ViewerPath *viewer_path) { ListBase *duplilist = MEM_cnew("duplilist"); DupliContext ctx; Vector instance_stack; instance_stack.append(ob_eval); init_context(&ctx, depsgraph, sce, ob_eval, nullptr, instance_stack); ctx.duplilist = duplilist; Object *ob_orig = DEG_get_original_object(ob_eval); LISTBASE_FOREACH (ModifierData *, md_orig, &ob_orig->modifiers) { if (md_orig->type != eModifierType_Nodes) { continue; } NodesModifierData *nmd_orig = reinterpret_cast(md_orig); if (nmd_orig->runtime_eval_log == nullptr) { continue; } geo_log::GeoModifierLog *log = static_cast( nmd_orig->runtime_eval_log); if (const geo_log::ViewerNodeLog *viewer_log = log->find_viewer_node_log_for_path( *viewer_path)) { ctx.preview_base_geometry = &viewer_log->geometry; make_duplis_geometry_set_impl( &ctx, viewer_log->geometry, ob_eval->object_to_world, true, ob_eval->type == OB_CURVES); } } return duplilist; } void free_object_duplilist(ListBase *lb) { BLI_freelistN(lb); MEM_freeN(lb); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Uniform attribute lookup * \{ */ /** Lookup instance attributes assigned via geometry nodes. */ static bool find_geonode_attribute_rgba(const DupliObject *dupli, const char *name, float r_value[4]) { using namespace blender; /* Loop over layers from innermost to outermost. */ for (const int i : IndexRange(sizeof(dupli->instance_data) / sizeof(void *))) { /* Skip non-geonode layers. */ if (dupli->instance_data[i] == nullptr) { continue; } const InstancesComponent *component = dupli->instance_data[i]->get_component_for_read(); if (component == nullptr) { continue; } /* Attempt to look up the attribute. */ std::optional attributes = component->attributes(); const VArray data = attributes->lookup(name); /* If the attribute was found and converted to float RGBA successfully, output it. */ if (data) { copy_v4_v4(r_value, data[dupli->instance_idx[i]]); return true; } } return false; } /** Lookup an arbitrary RNA property and convert it to RGBA if possible. */ static bool find_rna_property_rgba(PointerRNA *id_ptr, const char *name, float r_data[4]) { if (id_ptr->data == nullptr) { return false; } /* First, check custom properties. */ IDProperty *group = RNA_struct_idprops(id_ptr, false); PropertyRNA *prop = nullptr; if (group && group->type == IDP_GROUP) { prop = (PropertyRNA *)IDP_GetPropertyFromGroup(group, name); } /* If not found, do full path lookup. */ PointerRNA ptr; if (prop != nullptr) { ptr = *id_ptr; } else if (!RNA_path_resolve(id_ptr, name, &ptr, &prop)) { return false; } if (prop == nullptr) { return false; } /* Convert the value to RGBA if possible. */ PropertyType type = RNA_property_type(prop); int array_len = RNA_property_array_length(&ptr, prop); if (array_len == 0) { float value; if (type == PROP_FLOAT) { value = RNA_property_float_get(&ptr, prop); } else if (type == PROP_INT) { value = float(RNA_property_int_get(&ptr, prop)); } else if (type == PROP_BOOLEAN) { value = RNA_property_boolean_get(&ptr, prop) ? 1.0f : 0.0f; } else { return false; } copy_v4_fl4(r_data, value, value, value, 1); return true; } if (type == PROP_FLOAT && array_len <= 4) { copy_v4_fl4(r_data, 0, 0, 0, 1); RNA_property_float_get_array(&ptr, prop, r_data); return true; } if (type == PROP_INT && array_len <= 4) { int tmp[4] = {0, 0, 0, 1}; RNA_property_int_get_array(&ptr, prop, tmp); for (int i = 0; i < 4; i++) { r_data[i] = float(tmp[i]); } return true; } return false; } static bool find_rna_property_rgba(ID *id, const char *name, float r_data[4]) { PointerRNA ptr; RNA_id_pointer_create(id, &ptr); return find_rna_property_rgba(&ptr, name, r_data); } bool BKE_object_dupli_find_rgba_attribute( Object *ob, DupliObject *dupli, Object *dupli_parent, const char *name, float r_value[4]) { /* Check the dupli particle system. */ if (dupli && dupli->particle_system) { ParticleSettings *settings = dupli->particle_system->part; if (find_rna_property_rgba(&settings->id, name, r_value)) { return true; } } /* Check geometry node dupli instance attributes. */ if (dupli && find_geonode_attribute_rgba(dupli, name, r_value)) { return true; } /* Check the dupli parent object. */ if (dupli_parent && find_rna_property_rgba(&dupli_parent->id, name, r_value)) { return true; } /* Check the main object. */ if (ob) { if (find_rna_property_rgba(&ob->id, name, r_value)) { return true; } /* Check the main object data (e.g. mesh). */ if (ob->data && find_rna_property_rgba((ID *)ob->data, name, r_value)) { return true; } } copy_v4_fl(r_value, 0.0f); return false; } bool BKE_view_layer_find_rgba_attribute(struct Scene *scene, struct ViewLayer *layer, const char *name, float r_value[4]) { if (layer) { PointerRNA layer_ptr; RNA_pointer_create(&scene->id, &RNA_ViewLayer, layer, &layer_ptr); if (find_rna_property_rgba(&layer_ptr, name, r_value)) { return true; } } if (find_rna_property_rgba(&scene->id, name, r_value)) { return true; } if (scene->world && find_rna_property_rgba(&scene->world->id, name, r_value)) { return true; } copy_v4_fl(r_value, 0.0f); return false; } /** \} */