/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributors: Matt Ebb, Hamed Zaghaghi * Based on original code by Drew Whitehouse / Houdini Ocean Toolkit * OpenMP hints by Christian Schnellhammer * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/ocean.c * \ingroup bke */ #include #include #include #include "MEM_guardedalloc.h" #include "DNA_scene_types.h" #include "BLI_math.h" #include "BLI_path_util.h" #include "BLI_rand.h" #include "BLI_task.h" #include "BLI_threads.h" #include "BLI_utildefines.h" #include "BKE_image.h" #include "BKE_ocean.h" #include "IMB_imbuf.h" #include "IMB_imbuf_types.h" #include "RE_render_ext.h" #ifdef WITH_OCEANSIM /* Ocean code */ #include "fftw3.h" #define GRAVITY 9.81f typedef struct Ocean { /* ********* input parameters to the sim ********* */ float _V; float _l; float _w; float _A; float _damp_reflections; float _wind_alignment; float _depth; float _wx; float _wz; float _L; /* dimensions of computational grid */ int _M; int _N; /* spatial size of computational grid */ float _Lx; float _Lz; float normalize_factor; /* init w */ float time; short _do_disp_y; short _do_normals; short _do_chop; short _do_jacobian; /* mutex for threaded texture access */ ThreadRWMutex oceanmutex; /* ********* sim data arrays ********* */ /* two dimensional arrays of complex */ fftw_complex *_fft_in; /* init w sim w */ fftw_complex *_fft_in_x; /* init w sim w */ fftw_complex *_fft_in_z; /* init w sim w */ fftw_complex *_fft_in_jxx; /* init w sim w */ fftw_complex *_fft_in_jzz; /* init w sim w */ fftw_complex *_fft_in_jxz; /* init w sim w */ fftw_complex *_fft_in_nx; /* init w sim w */ fftw_complex *_fft_in_nz; /* init w sim w */ fftw_complex *_htilda; /* init w sim w (only once) */ /* fftw "plans" */ fftw_plan _disp_y_plan; /* init w sim r */ fftw_plan _disp_x_plan; /* init w sim r */ fftw_plan _disp_z_plan; /* init w sim r */ fftw_plan _N_x_plan; /* init w sim r */ fftw_plan _N_z_plan; /* init w sim r */ fftw_plan _Jxx_plan; /* init w sim r */ fftw_plan _Jxz_plan; /* init w sim r */ fftw_plan _Jzz_plan; /* init w sim r */ /* two dimensional arrays of float */ double *_disp_y; /* init w sim w via plan? */ double *_N_x; /* init w sim w via plan? */ /* all member of this array has same values, so convert this array to a float to reduce memory usage (MEM01)*/ /*float * _N_y; */ double _N_y; /* sim w ********* can be rearranged? */ double *_N_z; /* init w sim w via plan? */ double *_disp_x; /* init w sim w via plan? */ double *_disp_z; /* init w sim w via plan? */ /* two dimensional arrays of float */ /* Jacobian and minimum eigenvalue */ double *_Jxx; /* init w sim w */ double *_Jzz; /* init w sim w */ double *_Jxz; /* init w sim w */ /* one dimensional float array */ float *_kx; /* init w sim r */ float *_kz; /* init w sim r */ /* two dimensional complex array */ fftw_complex *_h0; /* init w sim r */ fftw_complex *_h0_minus; /* init w sim r */ /* two dimensional float array */ float *_k; /* init w sim r */ } Ocean; static float nextfr(RNG *rng, float min, float max) { return BLI_rng_get_float(rng) * (min - max) + max; } static float gaussRand(RNG *rng) { /* Note: to avoid numerical problems with very small numbers, we make these variables singe-precision floats, * but later we call the double-precision log() and sqrt() functions instead of logf() and sqrtf(). */ float x; float y; float length2; do { x = (float) (nextfr(rng, -1, 1)); y = (float)(nextfr(rng, -1, 1)); length2 = x * x + y * y; } while (length2 >= 1 || length2 == 0); return x * sqrtf(-2.0f * logf(length2) / length2); } /** * Some useful functions */ MINLINE float catrom(float p0, float p1, float p2, float p3, float f) { return 0.5f * ((2.0f * p1) + (-p0 + p2) * f + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * f * f + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * f * f * f); } MINLINE float omega(float k, float depth) { return sqrtf(GRAVITY * k * tanhf(k * depth)); } /* modified Phillips spectrum */ static float Ph(struct Ocean *o, float kx, float kz) { float tmp; float k2 = kx * kx + kz * kz; if (k2 == 0.0f) { return 0.0f; /* no DC component */ } /* damp out the waves going in the direction opposite the wind */ tmp = (o->_wx * kx + o->_wz * kz) / sqrtf(k2); if (tmp < 0) { tmp *= o->_damp_reflections; } return o->_A * expf(-1.0f / (k2 * (o->_L * o->_L))) * expf(-k2 * (o->_l * o->_l)) * powf(fabsf(tmp), o->_wind_alignment) / (k2 * k2); } static void compute_eigenstuff(struct OceanResult *ocr, float jxx, float jzz, float jxz) { float a, b, qplus, qminus; a = jxx + jzz; b = sqrt((jxx - jzz) * (jxx - jzz) + 4 * jxz * jxz); ocr->Jminus = 0.5f * (a - b); ocr->Jplus = 0.5f * (a + b); qplus = (ocr->Jplus - jxx) / jxz; qminus = (ocr->Jminus - jxx) / jxz; a = sqrt(1 + qplus * qplus); b = sqrt(1 + qminus * qminus); ocr->Eplus[0] = 1.0f / a; ocr->Eplus[1] = 0.0f; ocr->Eplus[2] = qplus / a; ocr->Eminus[0] = 1.0f / b; ocr->Eminus[1] = 0.0f; ocr->Eminus[2] = qminus / b; } /* * instead of Complex.h * in fftw.h "fftw_complex" typedefed as double[2] * below you can see functions are needed to work with such complex numbers. * */ static void init_complex(fftw_complex cmpl, float real, float image) { cmpl[0] = real; cmpl[1] = image; } #if 0 /* unused */ static void add_complex_f(fftw_complex res, fftw_complex cmpl, float f) { res[0] = cmpl[0] + f; res[1] = cmpl[1]; } #endif static void add_comlex_c(fftw_complex res, fftw_complex cmpl1, fftw_complex cmpl2) { res[0] = cmpl1[0] + cmpl2[0]; res[1] = cmpl1[1] + cmpl2[1]; } static void mul_complex_f(fftw_complex res, fftw_complex cmpl, float f) { res[0] = cmpl[0] * (double)f; res[1] = cmpl[1] * (double)f; } static void mul_complex_c(fftw_complex res, fftw_complex cmpl1, fftw_complex cmpl2) { fftwf_complex temp; temp[0] = cmpl1[0] * cmpl2[0] - cmpl1[1] * cmpl2[1]; temp[1] = cmpl1[0] * cmpl2[1] + cmpl1[1] * cmpl2[0]; res[0] = temp[0]; res[1] = temp[1]; } static float real_c(fftw_complex cmpl) { return cmpl[0]; } static float image_c(fftw_complex cmpl) { return cmpl[1]; } static void conj_complex(fftw_complex res, fftw_complex cmpl1) { res[0] = cmpl1[0]; res[1] = -cmpl1[1]; } static void exp_complex(fftw_complex res, fftw_complex cmpl) { float r = expf(cmpl[0]); res[0] = cosf(cmpl[1]) * r; res[1] = sinf(cmpl[1]) * r; } float BKE_ocean_jminus_to_foam(float jminus, float coverage) { float foam = jminus * -0.005f + coverage; CLAMP(foam, 0.0f, 1.0f); return foam * foam; } void BKE_ocean_eval_uv(struct Ocean *oc, struct OceanResult *ocr, float u, float v) { int i0, i1, j0, j1; float frac_x, frac_z; float uu, vv; /* first wrap the texture so 0 <= (u, v) < 1 */ u = fmodf(u, 1.0f); v = fmodf(v, 1.0f); if (u < 0) u += 1.0f; if (v < 0) v += 1.0f; BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ); uu = u * oc->_M; vv = v * oc->_N; i0 = (int)floor(uu); j0 = (int)floor(vv); i1 = (i0 + 1); j1 = (j0 + 1); frac_x = uu - i0; frac_z = vv - j0; i0 = i0 % oc->_M; j0 = j0 % oc->_N; i1 = i1 % oc->_M; j1 = j1 % oc->_N; #define BILERP(m) (interpf(interpf(m[i1 * oc->_N + j1], m[i0 * oc->_N + j1], frac_x), \ interpf(m[i1 * oc->_N + j0], m[i0 * oc->_N + j0], frac_x), \ frac_z)) { if (oc->_do_disp_y) { ocr->disp[1] = BILERP(oc->_disp_y); } if (oc->_do_normals) { ocr->normal[0] = BILERP(oc->_N_x); ocr->normal[1] = oc->_N_y /*BILERP(oc->_N_y) (MEM01)*/; ocr->normal[2] = BILERP(oc->_N_z); } if (oc->_do_chop) { ocr->disp[0] = BILERP(oc->_disp_x); ocr->disp[2] = BILERP(oc->_disp_z); } else { ocr->disp[0] = 0.0; ocr->disp[2] = 0.0; } if (oc->_do_jacobian) { compute_eigenstuff(ocr, BILERP(oc->_Jxx), BILERP(oc->_Jzz), BILERP(oc->_Jxz)); } } #undef BILERP BLI_rw_mutex_unlock(&oc->oceanmutex); } /* use catmullrom interpolation rather than linear */ void BKE_ocean_eval_uv_catrom(struct Ocean *oc, struct OceanResult *ocr, float u, float v) { int i0, i1, i2, i3, j0, j1, j2, j3; float frac_x, frac_z; float uu, vv; /* first wrap the texture so 0 <= (u, v) < 1 */ u = fmod(u, 1.0f); v = fmod(v, 1.0f); if (u < 0) u += 1.0f; if (v < 0) v += 1.0f; BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ); uu = u * oc->_M; vv = v * oc->_N; i1 = (int)floor(uu); j1 = (int)floor(vv); i2 = (i1 + 1); j2 = (j1 + 1); frac_x = uu - i1; frac_z = vv - j1; i1 = i1 % oc->_M; j1 = j1 % oc->_N; i2 = i2 % oc->_M; j2 = j2 % oc->_N; i0 = (i1 - 1); i3 = (i2 + 1); i0 = i0 < 0 ? i0 + oc->_M : i0; i3 = i3 >= oc->_M ? i3 - oc->_M : i3; j0 = (j1 - 1); j3 = (j2 + 1); j0 = j0 < 0 ? j0 + oc->_N : j0; j3 = j3 >= oc->_N ? j3 - oc->_N : j3; #define INTERP(m) catrom(catrom(m[i0 * oc->_N + j0], m[i1 * oc->_N + j0], \ m[i2 * oc->_N + j0], m[i3 * oc->_N + j0], frac_x), \ catrom(m[i0 * oc->_N + j1], m[i1 * oc->_N + j1], \ m[i2 * oc->_N + j1], m[i3 * oc->_N + j1], frac_x), \ catrom(m[i0 * oc->_N + j2], m[i1 * oc->_N + j2], \ m[i2 * oc->_N + j2], m[i3 * oc->_N + j2], frac_x), \ catrom(m[i0 * oc->_N + j3], m[i1 * oc->_N + j3], \ m[i2 * oc->_N + j3], m[i3 * oc->_N + j3], frac_x), \ frac_z) { if (oc->_do_disp_y) { ocr->disp[1] = INTERP(oc->_disp_y); } if (oc->_do_normals) { ocr->normal[0] = INTERP(oc->_N_x); ocr->normal[1] = oc->_N_y /*INTERP(oc->_N_y) (MEM01)*/; ocr->normal[2] = INTERP(oc->_N_z); } if (oc->_do_chop) { ocr->disp[0] = INTERP(oc->_disp_x); ocr->disp[2] = INTERP(oc->_disp_z); } else { ocr->disp[0] = 0.0; ocr->disp[2] = 0.0; } if (oc->_do_jacobian) { compute_eigenstuff(ocr, INTERP(oc->_Jxx), INTERP(oc->_Jzz), INTERP(oc->_Jxz)); } } #undef INTERP BLI_rw_mutex_unlock(&oc->oceanmutex); } void BKE_ocean_eval_xz(struct Ocean *oc, struct OceanResult *ocr, float x, float z) { BKE_ocean_eval_uv(oc, ocr, x / oc->_Lx, z / oc->_Lz); } void BKE_ocean_eval_xz_catrom(struct Ocean *oc, struct OceanResult *ocr, float x, float z) { BKE_ocean_eval_uv_catrom(oc, ocr, x / oc->_Lx, z / oc->_Lz); } /* note that this doesn't wrap properly for i, j < 0, but its not really meant for that being just a way to get * the raw data out to save in some image format. */ void BKE_ocean_eval_ij(struct Ocean *oc, struct OceanResult *ocr, int i, int j) { BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ); i = abs(i) % oc->_M; j = abs(j) % oc->_N; ocr->disp[1] = oc->_do_disp_y ? (float)oc->_disp_y[i * oc->_N + j] : 0.0f; if (oc->_do_chop) { ocr->disp[0] = oc->_disp_x[i * oc->_N + j]; ocr->disp[2] = oc->_disp_z[i * oc->_N + j]; } else { ocr->disp[0] = 0.0f; ocr->disp[2] = 0.0f; } if (oc->_do_normals) { ocr->normal[0] = oc->_N_x[i * oc->_N + j]; ocr->normal[1] = oc->_N_y /* oc->_N_y[i * oc->_N + j] (MEM01) */; ocr->normal[2] = oc->_N_z[i * oc->_N + j]; normalize_v3(ocr->normal); } if (oc->_do_jacobian) { compute_eigenstuff(ocr, oc->_Jxx[i * oc->_N + j], oc->_Jzz[i * oc->_N + j], oc->_Jxz[i * oc->_N + j]); } BLI_rw_mutex_unlock(&oc->oceanmutex); } typedef struct OceanSimulateData { Ocean *o; float t; float scale; float chop_amount; } OceanSimulateData; static void ocean_compute_htilda(void *userdata, const int i) { OceanSimulateData *osd = userdata; const Ocean *o = osd->o; const float scale = osd->scale; const float t = osd->t; int j; /* note the <= _N/2 here, see the fftw doco about the mechanics of the complex->real fft storage */ for (j = 0; j <= o->_N / 2; ++j) { fftw_complex exp_param1; fftw_complex exp_param2; fftw_complex conj_param; init_complex(exp_param1, 0.0, omega(o->_k[i * (1 + o->_N / 2) + j], o->_depth) * t); init_complex(exp_param2, 0.0, -omega(o->_k[i * (1 + o->_N / 2) + j], o->_depth) * t); exp_complex(exp_param1, exp_param1); exp_complex(exp_param2, exp_param2); conj_complex(conj_param, o->_h0_minus[i * o->_N + j]); mul_complex_c(exp_param1, o->_h0[i * o->_N + j], exp_param1); mul_complex_c(exp_param2, conj_param, exp_param2); add_comlex_c(o->_htilda[i * (1 + o->_N / 2) + j], exp_param1, exp_param2); mul_complex_f(o->_fft_in[i * (1 + o->_N / 2) + j], o->_htilda[i * (1 + o->_N / 2) + j], scale); } } static void ocean_compute_displacement_y(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; fftw_execute(o->_disp_y_plan); } static void ocean_compute_displacement_x(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; const float scale = osd->scale; const float chop_amount = osd->chop_amount; int i, j; for (i = 0; i < o->_M; ++i) { for (j = 0; j <= o->_N / 2; ++j) { fftw_complex mul_param; fftw_complex minus_i; init_complex(minus_i, 0.0, -1.0); init_complex(mul_param, -scale, 0); mul_complex_f(mul_param, mul_param, chop_amount); mul_complex_c(mul_param, mul_param, minus_i); mul_complex_c(mul_param, mul_param, o->_htilda[i * (1 + o->_N / 2) + j]); mul_complex_f(mul_param, mul_param, ((o->_k[i * (1 + o->_N / 2) + j] == 0.0f) ? 0.0f : o->_kx[i] / o->_k[i * (1 + o->_N / 2) + j])); init_complex(o->_fft_in_x[i * (1 + o->_N / 2) + j], real_c(mul_param), image_c(mul_param)); } } fftw_execute(o->_disp_x_plan); } static void ocean_compute_displacement_z(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; const float scale = osd->scale; const float chop_amount = osd->chop_amount; int i, j; for (i = 0; i < o->_M; ++i) { for (j = 0; j <= o->_N / 2; ++j) { fftw_complex mul_param; fftw_complex minus_i; init_complex(minus_i, 0.0, -1.0); init_complex(mul_param, -scale, 0); mul_complex_f(mul_param, mul_param, chop_amount); mul_complex_c(mul_param, mul_param, minus_i); mul_complex_c(mul_param, mul_param, o->_htilda[i * (1 + o->_N / 2) + j]); mul_complex_f(mul_param, mul_param, ((o->_k[i * (1 + o->_N / 2) + j] == 0.0f) ? 0.0f : o->_kz[j] / o->_k[i * (1 + o->_N / 2) + j])); init_complex(o->_fft_in_z[i * (1 + o->_N / 2) + j], real_c(mul_param), image_c(mul_param)); } } fftw_execute(o->_disp_z_plan); } static void ocean_compute_jacobian_jxx(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; const float chop_amount = osd->chop_amount; int i, j; for (i = 0; i < o->_M; ++i) { for (j = 0; j <= o->_N / 2; ++j) { fftw_complex mul_param; /* init_complex(mul_param, -scale, 0); */ init_complex(mul_param, -1, 0); mul_complex_f(mul_param, mul_param, chop_amount); mul_complex_c(mul_param, mul_param, o->_htilda[i * (1 + o->_N / 2) + j]); mul_complex_f(mul_param, mul_param, ((o->_k[i * (1 + o->_N / 2) + j] == 0.0f) ? 0.0f : o->_kx[i] * o->_kx[i] / o->_k[i * (1 + o->_N / 2) + j])); init_complex(o->_fft_in_jxx[i * (1 + o->_N / 2) + j], real_c(mul_param), image_c(mul_param)); } } fftw_execute(o->_Jxx_plan); for (i = 0; i < o->_M; ++i) { for (j = 0; j < o->_N; ++j) { o->_Jxx[i * o->_N + j] += 1.0; } } } static void ocean_compute_jacobian_jzz(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; const float chop_amount = osd->chop_amount; int i, j; for (i = 0; i < o->_M; ++i) { for (j = 0; j <= o->_N / 2; ++j) { fftw_complex mul_param; /* init_complex(mul_param, -scale, 0); */ init_complex(mul_param, -1, 0); mul_complex_f(mul_param, mul_param, chop_amount); mul_complex_c(mul_param, mul_param, o->_htilda[i * (1 + o->_N / 2) + j]); mul_complex_f(mul_param, mul_param, ((o->_k[i * (1 + o->_N / 2) + j] == 0.0f) ? 0.0f : o->_kz[j] * o->_kz[j] / o->_k[i * (1 + o->_N / 2) + j])); init_complex(o->_fft_in_jzz[i * (1 + o->_N / 2) + j], real_c(mul_param), image_c(mul_param)); } } fftw_execute(o->_Jzz_plan); for (i = 0; i < o->_M; ++i) { for (j = 0; j < o->_N; ++j) { o->_Jzz[i * o->_N + j] += 1.0; } } } static void ocean_compute_jacobian_jxz(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; const float chop_amount = osd->chop_amount; int i, j; for (i = 0; i < o->_M; ++i) { for (j = 0; j <= o->_N / 2; ++j) { fftw_complex mul_param; /* init_complex(mul_param, -scale, 0); */ init_complex(mul_param, -1, 0); mul_complex_f(mul_param, mul_param, chop_amount); mul_complex_c(mul_param, mul_param, o->_htilda[i * (1 + o->_N / 2) + j]); mul_complex_f(mul_param, mul_param, ((o->_k[i * (1 + o->_N / 2) + j] == 0.0f) ? 0.0f : o->_kx[i] * o->_kz[j] / o->_k[i * (1 + o->_N / 2) + j])); init_complex(o->_fft_in_jxz[i * (1 + o->_N / 2) + j], real_c(mul_param), image_c(mul_param)); } } fftw_execute(o->_Jxz_plan); } static void ocean_compute_normal_x(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; int i, j; for (i = 0; i < o->_M; ++i) { for (j = 0; j <= o->_N / 2; ++j) { fftw_complex mul_param; init_complex(mul_param, 0.0, -1.0); mul_complex_c(mul_param, mul_param, o->_htilda[i * (1 + o->_N / 2) + j]); mul_complex_f(mul_param, mul_param, o->_kx[i]); init_complex(o->_fft_in_nx[i * (1 + o->_N / 2) + j], real_c(mul_param), image_c(mul_param)); } } fftw_execute(o->_N_x_plan); } static void ocean_compute_normal_z(TaskPool *pool, void *UNUSED(taskdata), int UNUSED(threadid)) { OceanSimulateData *osd = BLI_task_pool_userdata(pool); const Ocean *o = osd->o; int i, j; for (i = 0; i < o->_M; ++i) { for (j = 0; j <= o->_N / 2; ++j) { fftw_complex mul_param; init_complex(mul_param, 0.0, -1.0); mul_complex_c(mul_param, mul_param, o->_htilda[i * (1 + o->_N / 2) + j]); mul_complex_f(mul_param, mul_param, o->_kz[i]); init_complex(o->_fft_in_nz[i * (1 + o->_N / 2) + j], real_c(mul_param), image_c(mul_param)); } } fftw_execute(o->_N_z_plan); } void BKE_ocean_simulate(struct Ocean *o, float t, float scale, float chop_amount) { TaskScheduler *scheduler = BLI_task_scheduler_get(); TaskPool *pool; OceanSimulateData osd; scale *= o->normalize_factor; osd.o = o; osd.t = t; osd.scale = scale; osd.chop_amount = chop_amount; pool = BLI_task_pool_create(scheduler, &osd); BLI_rw_mutex_lock(&o->oceanmutex, THREAD_LOCK_WRITE); /* Note about multi-threading here: we have to run a first set of computations (htilda one) before we can run * all others, since they all depend on it. * So we make a first parallelized forloop run for htilda, and then pack all other computations into * a set of parallel tasks. * This is not optimal in all cases, but remains reasonably simple and should be OK most of the time. */ /* compute a new htilda */ BLI_task_parallel_range(0, o->_M, &osd, ocean_compute_htilda, o->_M > 16); if (o->_do_disp_y) { BLI_task_pool_push(pool, ocean_compute_displacement_y, NULL, false, TASK_PRIORITY_HIGH); } if (o->_do_chop) { BLI_task_pool_push(pool, ocean_compute_displacement_x, NULL, false, TASK_PRIORITY_HIGH); BLI_task_pool_push(pool, ocean_compute_displacement_z, NULL, false, TASK_PRIORITY_HIGH); } if (o->_do_jacobian) { BLI_task_pool_push(pool, ocean_compute_jacobian_jxx, NULL, false, TASK_PRIORITY_HIGH); BLI_task_pool_push(pool, ocean_compute_jacobian_jzz, NULL, false, TASK_PRIORITY_HIGH); BLI_task_pool_push(pool, ocean_compute_jacobian_jxz, NULL, false, TASK_PRIORITY_HIGH); } if (o->_do_normals) { BLI_task_pool_push(pool, ocean_compute_normal_x, NULL, false, TASK_PRIORITY_HIGH); BLI_task_pool_push(pool, ocean_compute_normal_z, NULL, false, TASK_PRIORITY_HIGH); #if 0 for (i = 0; i < o->_M; ++i) { for (j = 0; j < o->_N; ++j) { o->_N_y[i * o->_N + j] = 1.0f / scale; } } (MEM01) #endif o->_N_y = 1.0f / scale; } BLI_task_pool_work_and_wait(pool); BLI_rw_mutex_unlock(&o->oceanmutex); BLI_task_pool_free(pool); } static void set_height_normalize_factor(struct Ocean *oc) { float res = 1.0; float max_h = 0.0; int i, j; if (!oc->_do_disp_y) return; oc->normalize_factor = 1.0; BKE_ocean_simulate(oc, 0.0, 1.0, 0); BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_READ); for (i = 0; i < oc->_M; ++i) { for (j = 0; j < oc->_N; ++j) { if (max_h < fabs(oc->_disp_y[i * oc->_N + j])) { max_h = fabs(oc->_disp_y[i * oc->_N + j]); } } } BLI_rw_mutex_unlock(&oc->oceanmutex); if (max_h == 0.0f) max_h = 0.00001f; /* just in case ... */ res = 1.0f / (max_h); oc->normalize_factor = res; } struct Ocean *BKE_ocean_add(void) { Ocean *oc = MEM_callocN(sizeof(Ocean), "ocean sim data"); BLI_rw_mutex_init(&oc->oceanmutex); return oc; } void BKE_ocean_init(struct Ocean *o, int M, int N, float Lx, float Lz, float V, float l, float A, float w, float damp, float alignment, float depth, float time, short do_height_field, short do_chop, short do_normals, short do_jacobian, int seed) { RNG *rng; int i, j, ii; BLI_rw_mutex_lock(&o->oceanmutex, THREAD_LOCK_WRITE); o->_M = M; o->_N = N; o->_V = V; o->_l = l; o->_A = A; o->_w = w; o->_damp_reflections = 1.0f - damp; o->_wind_alignment = alignment; o->_depth = depth; o->_Lx = Lx; o->_Lz = Lz; o->_wx = cos(w); o->_wz = -sin(w); /* wave direction */ o->_L = V * V / GRAVITY; /* largest wave for a given velocity V */ o->time = time; o->_do_disp_y = do_height_field; o->_do_normals = do_normals; o->_do_chop = do_chop; o->_do_jacobian = do_jacobian; o->_k = (float *) MEM_mallocN(M * (1 + N / 2) * sizeof(float), "ocean_k"); o->_h0 = (fftw_complex *) MEM_mallocN(M * N * sizeof(fftw_complex), "ocean_h0"); o->_h0_minus = (fftw_complex *) MEM_mallocN(M * N * sizeof(fftw_complex), "ocean_h0_minus"); o->_kx = (float *) MEM_mallocN(o->_M * sizeof(float), "ocean_kx"); o->_kz = (float *) MEM_mallocN(o->_N * sizeof(float), "ocean_kz"); /* make this robust in the face of erroneous usage */ if (o->_Lx == 0.0f) o->_Lx = 0.001f; if (o->_Lz == 0.0f) o->_Lz = 0.001f; /* the +ve components and DC */ for (i = 0; i <= o->_M / 2; ++i) o->_kx[i] = 2.0f * (float)M_PI * i / o->_Lx; /* the -ve components */ for (i = o->_M - 1, ii = 0; i > o->_M / 2; --i, ++ii) o->_kx[i] = -2.0f * (float)M_PI * ii / o->_Lx; /* the +ve components and DC */ for (i = 0; i <= o->_N / 2; ++i) o->_kz[i] = 2.0f * (float)M_PI * i / o->_Lz; /* the -ve components */ for (i = o->_N - 1, ii = 0; i > o->_N / 2; --i, ++ii) o->_kz[i] = -2.0f * (float)M_PI * ii / o->_Lz; /* pre-calculate the k matrix */ for (i = 0; i < o->_M; ++i) for (j = 0; j <= o->_N / 2; ++j) o->_k[i * (1 + o->_N / 2) + j] = sqrt(o->_kx[i] * o->_kx[i] + o->_kz[j] * o->_kz[j]); /*srand(seed);*/ rng = BLI_rng_new(seed); for (i = 0; i < o->_M; ++i) { for (j = 0; j < o->_N; ++j) { float r1 = gaussRand(rng); float r2 = gaussRand(rng); fftw_complex r1r2; init_complex(r1r2, r1, r2); mul_complex_f(o->_h0[i * o->_N + j], r1r2, (float)(sqrt(Ph(o, o->_kx[i], o->_kz[j]) / 2.0f))); mul_complex_f(o->_h0_minus[i * o->_N + j], r1r2, (float)(sqrt(Ph(o, -o->_kx[i], -o->_kz[j]) / 2.0f))); } } o->_fft_in = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in"); o->_htilda = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_htilda"); BLI_lock_thread(LOCK_FFTW); if (o->_do_disp_y) { o->_disp_y = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_y"); o->_disp_y_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in, o->_disp_y, FFTW_ESTIMATE); } if (o->_do_normals) { o->_fft_in_nx = (fftw_complex *) MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_nx"); o->_fft_in_nz = (fftw_complex *) MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_nz"); o->_N_x = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_N_x"); /* o->_N_y = (float *) fftwf_malloc(o->_M * o->_N * sizeof(float)); (MEM01) */ o->_N_z = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_N_z"); o->_N_x_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_nx, o->_N_x, FFTW_ESTIMATE); o->_N_z_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_nz, o->_N_z, FFTW_ESTIMATE); } if (o->_do_chop) { o->_fft_in_x = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_x"); o->_fft_in_z = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_z"); o->_disp_x = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_x"); o->_disp_z = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_disp_z"); o->_disp_x_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_x, o->_disp_x, FFTW_ESTIMATE); o->_disp_z_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_z, o->_disp_z, FFTW_ESTIMATE); } if (o->_do_jacobian) { o->_fft_in_jxx = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_jxx"); o->_fft_in_jzz = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_jzz"); o->_fft_in_jxz = (fftw_complex *)MEM_mallocN(o->_M * (1 + o->_N / 2) * sizeof(fftw_complex), "ocean_fft_in_jxz"); o->_Jxx = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jxx"); o->_Jzz = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jzz"); o->_Jxz = (double *)MEM_mallocN(o->_M * o->_N * sizeof(double), "ocean_Jxz"); o->_Jxx_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_jxx, o->_Jxx, FFTW_ESTIMATE); o->_Jzz_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_jzz, o->_Jzz, FFTW_ESTIMATE); o->_Jxz_plan = fftw_plan_dft_c2r_2d(o->_M, o->_N, o->_fft_in_jxz, o->_Jxz, FFTW_ESTIMATE); } BLI_unlock_thread(LOCK_FFTW); BLI_rw_mutex_unlock(&o->oceanmutex); set_height_normalize_factor(o); BLI_rng_free(rng); } void BKE_ocean_free_data(struct Ocean *oc) { if (!oc) return; BLI_rw_mutex_lock(&oc->oceanmutex, THREAD_LOCK_WRITE); BLI_lock_thread(LOCK_FFTW); if (oc->_do_disp_y) { fftw_destroy_plan(oc->_disp_y_plan); MEM_freeN(oc->_disp_y); } if (oc->_do_normals) { MEM_freeN(oc->_fft_in_nx); MEM_freeN(oc->_fft_in_nz); fftw_destroy_plan(oc->_N_x_plan); fftw_destroy_plan(oc->_N_z_plan); MEM_freeN(oc->_N_x); /*fftwf_free(oc->_N_y); (MEM01)*/ MEM_freeN(oc->_N_z); } if (oc->_do_chop) { MEM_freeN(oc->_fft_in_x); MEM_freeN(oc->_fft_in_z); fftw_destroy_plan(oc->_disp_x_plan); fftw_destroy_plan(oc->_disp_z_plan); MEM_freeN(oc->_disp_x); MEM_freeN(oc->_disp_z); } if (oc->_do_jacobian) { MEM_freeN(oc->_fft_in_jxx); MEM_freeN(oc->_fft_in_jzz); MEM_freeN(oc->_fft_in_jxz); fftw_destroy_plan(oc->_Jxx_plan); fftw_destroy_plan(oc->_Jzz_plan); fftw_destroy_plan(oc->_Jxz_plan); MEM_freeN(oc->_Jxx); MEM_freeN(oc->_Jzz); MEM_freeN(oc->_Jxz); } BLI_unlock_thread(LOCK_FFTW); if (oc->_fft_in) MEM_freeN(oc->_fft_in); /* check that ocean data has been initialized */ if (oc->_htilda) { MEM_freeN(oc->_htilda); MEM_freeN(oc->_k); MEM_freeN(oc->_h0); MEM_freeN(oc->_h0_minus); MEM_freeN(oc->_kx); MEM_freeN(oc->_kz); } BLI_rw_mutex_unlock(&oc->oceanmutex); } void BKE_ocean_free(struct Ocean *oc) { if (!oc) return; BKE_ocean_free_data(oc); BLI_rw_mutex_end(&oc->oceanmutex); MEM_freeN(oc); } #undef GRAVITY /* ********* Baking/Caching ********* */ #define CACHE_TYPE_DISPLACE 1 #define CACHE_TYPE_FOAM 2 #define CACHE_TYPE_NORMAL 3 static void cache_filename(char *string, const char *path, const char *relbase, int frame, int type) { char cachepath[FILE_MAX]; const char *fname; switch (type) { case CACHE_TYPE_FOAM: fname = "foam_"; break; case CACHE_TYPE_NORMAL: fname = "normal_"; break; case CACHE_TYPE_DISPLACE: default: fname = "disp_"; break; } BLI_join_dirfile(cachepath, sizeof(cachepath), path, fname); BKE_image_path_from_imtype(string, cachepath, relbase, frame, R_IMF_IMTYPE_OPENEXR, true, true, ""); } /* silly functions but useful to inline when the args do a lot of indirections */ MINLINE void rgb_to_rgba_unit_alpha(float r_rgba[4], const float rgb[3]) { r_rgba[0] = rgb[0]; r_rgba[1] = rgb[1]; r_rgba[2] = rgb[2]; r_rgba[3] = 1.0f; } MINLINE void value_to_rgba_unit_alpha(float r_rgba[4], const float value) { r_rgba[0] = value; r_rgba[1] = value; r_rgba[2] = value; r_rgba[3] = 1.0f; } void BKE_ocean_free_cache(struct OceanCache *och) { int i, f = 0; if (!och) return; if (och->ibufs_disp) { for (i = och->start, f = 0; i <= och->end; i++, f++) { if (och->ibufs_disp[f]) { IMB_freeImBuf(och->ibufs_disp[f]); } } MEM_freeN(och->ibufs_disp); } if (och->ibufs_foam) { for (i = och->start, f = 0; i <= och->end; i++, f++) { if (och->ibufs_foam[f]) { IMB_freeImBuf(och->ibufs_foam[f]); } } MEM_freeN(och->ibufs_foam); } if (och->ibufs_norm) { for (i = och->start, f = 0; i <= och->end; i++, f++) { if (och->ibufs_norm[f]) { IMB_freeImBuf(och->ibufs_norm[f]); } } MEM_freeN(och->ibufs_norm); } if (och->time) MEM_freeN(och->time); MEM_freeN(och); } void BKE_ocean_cache_eval_uv(struct OceanCache *och, struct OceanResult *ocr, int f, float u, float v) { int res_x = och->resolution_x; int res_y = och->resolution_y; float result[4]; u = fmod(u, 1.0); v = fmod(v, 1.0); if (u < 0) u += 1.0f; if (v < 0) v += 1.0f; if (och->ibufs_disp[f]) { ibuf_sample(och->ibufs_disp[f], u, v, (1.0f / (float)res_x), (1.0f / (float)res_y), result); copy_v3_v3(ocr->disp, result); } if (och->ibufs_foam[f]) { ibuf_sample(och->ibufs_foam[f], u, v, (1.0f / (float)res_x), (1.0f / (float)res_y), result); ocr->foam = result[0]; } if (och->ibufs_norm[f]) { ibuf_sample(och->ibufs_norm[f], u, v, (1.0f / (float)res_x), (1.0f / (float)res_y), result); copy_v3_v3(ocr->normal, result); } } void BKE_ocean_cache_eval_ij(struct OceanCache *och, struct OceanResult *ocr, int f, int i, int j) { const int res_x = och->resolution_x; const int res_y = och->resolution_y; if (i < 0) i = -i; if (j < 0) j = -j; i = i % res_x; j = j % res_y; if (och->ibufs_disp[f]) { copy_v3_v3(ocr->disp, &och->ibufs_disp[f]->rect_float[4 * (res_x * j + i)]); } if (och->ibufs_foam[f]) { ocr->foam = och->ibufs_foam[f]->rect_float[4 * (res_x * j + i)]; } if (och->ibufs_norm[f]) { copy_v3_v3(ocr->normal, &och->ibufs_norm[f]->rect_float[4 * (res_x * j + i)]); } } struct OceanCache *BKE_ocean_init_cache(const char *bakepath, const char *relbase, int start, int end, float wave_scale, float chop_amount, float foam_coverage, float foam_fade, int resolution) { OceanCache *och = MEM_callocN(sizeof(OceanCache), "ocean cache data"); och->bakepath = bakepath; och->relbase = relbase; och->start = start; och->end = end; och->duration = (end - start) + 1; och->wave_scale = wave_scale; och->chop_amount = chop_amount; och->foam_coverage = foam_coverage; och->foam_fade = foam_fade; och->resolution_x = resolution * resolution; och->resolution_y = resolution * resolution; och->ibufs_disp = MEM_callocN(sizeof(ImBuf *) * och->duration, "displacement imbuf pointer array"); och->ibufs_foam = MEM_callocN(sizeof(ImBuf *) * och->duration, "foam imbuf pointer array"); och->ibufs_norm = MEM_callocN(sizeof(ImBuf *) * och->duration, "normal imbuf pointer array"); och->time = NULL; return och; } void BKE_ocean_simulate_cache(struct OceanCache *och, int frame) { char string[FILE_MAX]; int f = frame; /* ibufs array is zero based, but filenames are based on frame numbers */ /* still need to clamp frame numbers to valid range of images on disk though */ CLAMP(frame, och->start, och->end); f = frame - och->start; /* shift to 0 based */ /* if image is already loaded in mem, return */ if (och->ibufs_disp[f] != NULL) return; /* use default color spaces since we know for sure cache files were saved with default settings too */ cache_filename(string, och->bakepath, och->relbase, frame, CACHE_TYPE_DISPLACE); och->ibufs_disp[f] = IMB_loadiffname(string, 0, NULL); #if 0 if (och->ibufs_disp[f] == NULL) printf("error loading %s\n", string); else printf("loaded cache %s\n", string); #endif cache_filename(string, och->bakepath, och->relbase, frame, CACHE_TYPE_FOAM); och->ibufs_foam[f] = IMB_loadiffname(string, 0, NULL); #if 0 if (och->ibufs_foam[f] == NULL) printf("error loading %s\n", string); else printf("loaded cache %s\n", string); #endif cache_filename(string, och->bakepath, och->relbase, frame, CACHE_TYPE_NORMAL); och->ibufs_norm[f] = IMB_loadiffname(string, 0, NULL); #if 0 if (och->ibufs_norm[f] == NULL) printf("error loading %s\n", string); else printf("loaded cache %s\n", string); #endif } void BKE_ocean_bake(struct Ocean *o, struct OceanCache *och, void (*update_cb)(void *, float progress, int *cancel), void *update_cb_data) { /* note: some of these values remain uninitialized unless certain options * are enabled, take care that BKE_ocean_eval_ij() initializes a member * before use - campbell */ OceanResult ocr; ImageFormatData imf = {0}; int f, i = 0, x, y, cancel = 0; float progress; ImBuf *ibuf_foam, *ibuf_disp, *ibuf_normal; float *prev_foam; int res_x = och->resolution_x; int res_y = och->resolution_y; char string[FILE_MAX]; //RNG *rng; if (!o) return; if (o->_do_jacobian) prev_foam = MEM_callocN(res_x * res_y * sizeof(float), "previous frame foam bake data"); else prev_foam = NULL; //rng = BLI_rng_new(0); /* setup image format */ imf.imtype = R_IMF_IMTYPE_OPENEXR; imf.depth = R_IMF_CHAN_DEPTH_16; imf.exr_codec = R_IMF_EXR_CODEC_ZIP; for (f = och->start, i = 0; f <= och->end; f++, i++) { /* create a new imbuf to store image for this frame */ ibuf_foam = IMB_allocImBuf(res_x, res_y, 32, IB_rectfloat); ibuf_disp = IMB_allocImBuf(res_x, res_y, 32, IB_rectfloat); ibuf_normal = IMB_allocImBuf(res_x, res_y, 32, IB_rectfloat); BKE_ocean_simulate(o, och->time[i], och->wave_scale, och->chop_amount); /* add new foam */ for (y = 0; y < res_y; y++) { for (x = 0; x < res_x; x++) { BKE_ocean_eval_ij(o, &ocr, x, y); /* add to the image */ rgb_to_rgba_unit_alpha(&ibuf_disp->rect_float[4 * (res_x * y + x)], ocr.disp); if (o->_do_jacobian) { /* TODO, cleanup unused code - campbell */ float /*r, */ /* UNUSED */ pr = 0.0f, foam_result; float neg_disp, neg_eplus; ocr.foam = BKE_ocean_jminus_to_foam(ocr.Jminus, och->foam_coverage); /* accumulate previous value for this cell */ if (i > 0) { pr = prev_foam[res_x * y + x]; } /* r = BLI_rng_get_float(rng); */ /* UNUSED */ /* randomly reduce foam */ /* pr = pr * och->foam_fade; */ /* overall fade */ /* remember ocean coord sys is Y up! * break up the foam where height (Y) is low (wave valley), and X and Z displacement is greatest */ #if 0 vec[0] = ocr.disp[0]; vec[1] = ocr.disp[2]; hor_stretch = len_v2(vec); CLAMP(hor_stretch, 0.0, 1.0); #endif neg_disp = ocr.disp[1] < 0.0f ? 1.0f + ocr.disp[1] : 1.0f; neg_disp = neg_disp < 0.0f ? 0.0f : neg_disp; /* foam, 'ocr.Eplus' only initialized with do_jacobian */ neg_eplus = ocr.Eplus[2] < 0.0f ? 1.0f + ocr.Eplus[2] : 1.0f; neg_eplus = neg_eplus < 0.0f ? 0.0f : neg_eplus; #if 0 if (ocr.disp[1] < 0.0 || r > och->foam_fade) pr *= och->foam_fade; pr = pr * (1.0 - hor_stretch) * ocr.disp[1]; pr = pr * neg_disp * neg_eplus; #endif if (pr < 1.0f) pr *= pr; pr *= och->foam_fade * (0.75f + neg_eplus * 0.25f); /* A full clamping should not be needed! */ foam_result = min_ff(pr + ocr.foam, 1.0f); prev_foam[res_x * y + x] = foam_result; /*foam_result = min_ff(foam_result, 1.0f); */ value_to_rgba_unit_alpha(&ibuf_foam->rect_float[4 * (res_x * y + x)], foam_result); } if (o->_do_normals) { rgb_to_rgba_unit_alpha(&ibuf_normal->rect_float[4 * (res_x * y + x)], ocr.normal); } } } /* write the images */ cache_filename(string, och->bakepath, och->relbase, f, CACHE_TYPE_DISPLACE); if (0 == BKE_imbuf_write(ibuf_disp, string, &imf)) printf("Cannot save Displacement File Output to %s\n", string); if (o->_do_jacobian) { cache_filename(string, och->bakepath, och->relbase, f, CACHE_TYPE_FOAM); if (0 == BKE_imbuf_write(ibuf_foam, string, &imf)) printf("Cannot save Foam File Output to %s\n", string); } if (o->_do_normals) { cache_filename(string, och->bakepath, och->relbase, f, CACHE_TYPE_NORMAL); if (0 == BKE_imbuf_write(ibuf_normal, string, &imf)) printf("Cannot save Normal File Output to %s\n", string); } IMB_freeImBuf(ibuf_disp); IMB_freeImBuf(ibuf_foam); IMB_freeImBuf(ibuf_normal); progress = (f - och->start) / (float)och->duration; update_cb(update_cb_data, progress, &cancel); if (cancel) { if (prev_foam) MEM_freeN(prev_foam); //BLI_rng_free(rng); return; } } //BLI_rng_free(rng); if (prev_foam) MEM_freeN(prev_foam); och->baked = 1; } #else /* WITH_OCEANSIM */ /* stub */ typedef struct Ocean { /* need some data here, C does not allow empty struct */ int stub; } Ocean; float BKE_ocean_jminus_to_foam(float UNUSED(jminus), float UNUSED(coverage)) { return 0.0f; } void BKE_ocean_eval_uv(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(u), float UNUSED(v)) { } /* use catmullrom interpolation rather than linear */ void BKE_ocean_eval_uv_catrom(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(u), float UNUSED(v)) { } void BKE_ocean_eval_xz(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(x), float UNUSED(z)) { } void BKE_ocean_eval_xz_catrom(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), float UNUSED(x), float UNUSED(z)) { } void BKE_ocean_eval_ij(struct Ocean *UNUSED(oc), struct OceanResult *UNUSED(ocr), int UNUSED(i), int UNUSED(j)) { } void BKE_ocean_simulate(struct Ocean *UNUSED(o), float UNUSED(t), float UNUSED(scale), float UNUSED(chop_amount)) { } struct Ocean *BKE_ocean_add(void) { Ocean *oc = MEM_callocN(sizeof(Ocean), "ocean sim data"); return oc; } void BKE_ocean_init(struct Ocean *UNUSED(o), int UNUSED(M), int UNUSED(N), float UNUSED(Lx), float UNUSED(Lz), float UNUSED(V), float UNUSED(l), float UNUSED(A), float UNUSED(w), float UNUSED(damp), float UNUSED(alignment), float UNUSED(depth), float UNUSED(time), short UNUSED(do_height_field), short UNUSED(do_chop), short UNUSED(do_normals), short UNUSED(do_jacobian), int UNUSED(seed)) { } void BKE_ocean_free_data(struct Ocean *UNUSED(oc)) { } void BKE_ocean_free(struct Ocean *oc) { if (!oc) return; MEM_freeN(oc); } /* ********* Baking/Caching ********* */ void BKE_ocean_free_cache(struct OceanCache *och) { if (!och) return; MEM_freeN(och); } void BKE_ocean_cache_eval_uv(struct OceanCache *UNUSED(och), struct OceanResult *UNUSED(ocr), int UNUSED(f), float UNUSED(u), float UNUSED(v)) { } void BKE_ocean_cache_eval_ij(struct OceanCache *UNUSED(och), struct OceanResult *UNUSED(ocr), int UNUSED(f), int UNUSED(i), int UNUSED(j)) { } OceanCache *BKE_ocean_init_cache(const char *UNUSED(bakepath), const char *UNUSED(relbase), int UNUSED(start), int UNUSED(end), float UNUSED(wave_scale), float UNUSED(chop_amount), float UNUSED(foam_coverage), float UNUSED(foam_fade), int UNUSED(resolution)) { OceanCache *och = MEM_callocN(sizeof(OceanCache), "ocean cache data"); return och; } void BKE_ocean_simulate_cache(struct OceanCache *UNUSED(och), int UNUSED(frame)) { } void BKE_ocean_bake(struct Ocean *UNUSED(o), struct OceanCache *UNUSED(och), void (*update_cb)(void *, float progress, int *cancel), void *UNUSED(update_cb_data)) { /* unused */ (void)update_cb; } #endif /* WITH_OCEANSIM */