/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2007 by Janne Karhu. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/particle.c * \ingroup bke */ #include #include #include #include "MEM_guardedalloc.h" #include "DNA_curve_types.h" #include "DNA_group_types.h" #include "DNA_key_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_particle_types.h" #include "DNA_smoke_types.h" #include "DNA_scene_types.h" #include "DNA_dynamicpaint_types.h" #include "BLI_blenlib.h" #include "BLI_noise.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BLI_kdtree.h" #include "BLI_rand.h" #include "BLI_threads.h" #include "BLI_linklist.h" #include "BLF_translation.h" #include "BKE_anim.h" #include "BKE_animsys.h" #include "BKE_boids.h" #include "BKE_cloth.h" #include "BKE_effect.h" #include "BKE_global.h" #include "BKE_group.h" #include "BKE_main.h" #include "BKE_lattice.h" #include "BKE_displist.h" #include "BKE_particle.h" #include "BKE_object.h" #include "BKE_material.h" #include "BKE_key.h" #include "BKE_library.h" #include "BKE_depsgraph.h" #include "BKE_modifier.h" #include "BKE_mesh.h" #include "BKE_cdderivedmesh.h" #include "BKE_pointcache.h" #include "BKE_scene.h" #include "BKE_deform.h" #include "RE_render_ext.h" static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex); static void do_child_modifiers(ParticleSimulationData *sim, ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa, float *orco, float mat[4][4], ParticleKey *state, float t); /* few helpers for countall etc. */ int count_particles(ParticleSystem *psys) { ParticleSettings *part = psys->part; PARTICLE_P; int tot = 0; LOOP_SHOWN_PARTICLES { if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) {} else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) {} else tot++; } return tot; } int count_particles_mod(ParticleSystem *psys, int totgr, int cur) { ParticleSettings *part = psys->part; PARTICLE_P; int tot = 0; LOOP_SHOWN_PARTICLES { if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) {} else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) {} else if (p % totgr == cur) tot++; } return tot; } /* we allocate path cache memory in chunks instead of a big contiguous * chunk, windows' memory allocater fails to find big blocks of memory often */ #define PATH_CACHE_BUF_SIZE 1024 static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int steps) { LinkData *buf; ParticleCacheKey **cache; int i, totkey, totbufkey; tot = MAX2(tot, 1); totkey = 0; cache = MEM_callocN(tot * sizeof(void *), "PathCacheArray"); while (totkey < tot) { totbufkey = MIN2(tot - totkey, PATH_CACHE_BUF_SIZE); buf = MEM_callocN(sizeof(LinkData), "PathCacheLinkData"); buf->data = MEM_callocN(sizeof(ParticleCacheKey) * totbufkey * steps, "ParticleCacheKey"); for (i = 0; i < totbufkey; i++) cache[totkey + i] = ((ParticleCacheKey *)buf->data) + i * steps; totkey += totbufkey; BLI_addtail(bufs, buf); } return cache; } static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs) { LinkData *buf; if (cache) MEM_freeN(cache); for (buf = bufs->first; buf; buf = buf->next) MEM_freeN(buf->data); BLI_freelistN(bufs); } /************************************************/ /* Getting stuff */ /************************************************/ /* get object's active particle system safely */ ParticleSystem *psys_get_current(Object *ob) { ParticleSystem *psys; if (ob == NULL) return NULL; for (psys = ob->particlesystem.first; psys; psys = psys->next) { if (psys->flag & PSYS_CURRENT) return psys; } return NULL; } short psys_get_current_num(Object *ob) { ParticleSystem *psys; short i; if (ob == NULL) return 0; for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++) if (psys->flag & PSYS_CURRENT) return i; return i; } void psys_set_current_num(Object *ob, int index) { ParticleSystem *psys; short i; if (ob == NULL) return; for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++) { if (i == index) psys->flag |= PSYS_CURRENT; else psys->flag &= ~PSYS_CURRENT; } } #if 0 /* UNUSED */ Object *psys_find_object(Scene *scene, ParticleSystem *psys) { Base *base; ParticleSystem *tpsys; for (base = scene->base.first; base; base = base->next) { for (tpsys = base->object->particlesystem.first; psys; psys = psys->next) { if (tpsys == psys) return base->object; } } return NULL; } #endif struct LatticeDeformData *psys_create_lattice_deform_data(ParticleSimulationData *sim) { struct LatticeDeformData *lattice_deform_data = NULL; if (psys_in_edit_mode(sim->scene, sim->psys) == 0) { Object *lattice = NULL; ModifierData *md = (ModifierData *)psys_get_modifier(sim->ob, sim->psys); for (; md; md = md->next) { if (md->type == eModifierType_Lattice) { LatticeModifierData *lmd = (LatticeModifierData *)md; lattice = lmd->object; break; } } if (lattice) lattice_deform_data = init_latt_deform(lattice, NULL); } return lattice_deform_data; } void psys_disable_all(Object *ob) { ParticleSystem *psys = ob->particlesystem.first; for (; psys; psys = psys->next) psys->flag |= PSYS_DISABLED; } void psys_enable_all(Object *ob) { ParticleSystem *psys = ob->particlesystem.first; for (; psys; psys = psys->next) psys->flag &= ~PSYS_DISABLED; } int psys_in_edit_mode(Scene *scene, ParticleSystem *psys) { return (scene->basact && (scene->basact->object->mode & OB_MODE_PARTICLE_EDIT) && psys == psys_get_current((scene->basact)->object) && (psys->edit || psys->pointcache->edit) && !psys->renderdata); } static void psys_create_frand(ParticleSystem *psys) { int i; float *rand = psys->frand = MEM_callocN(PSYS_FRAND_COUNT * sizeof(float), "particle randoms"); BLI_srandom(psys->seed); for (i = 0; i < 1024; i++, rand++) *rand = BLI_frand(); } int psys_check_enabled(Object *ob, ParticleSystem *psys) { ParticleSystemModifierData *psmd; if (psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE || !psys->part) return 0; psmd = psys_get_modifier(ob, psys); if (psys->renderdata || G.is_rendering) { if (!(psmd->modifier.mode & eModifierMode_Render)) return 0; } else if (!(psmd->modifier.mode & eModifierMode_Realtime)) return 0; /* perhaps not the perfect place, but we have to be sure the rands are there before usage */ if (!psys->frand) psys_create_frand(psys); else if (psys->recalc & PSYS_RECALC_RESET) { MEM_freeN(psys->frand); psys_create_frand(psys); } return 1; } int psys_check_edited(ParticleSystem *psys) { if (psys->part && psys->part->type == PART_HAIR) return (psys->flag & PSYS_EDITED || (psys->edit && psys->edit->edited)); else return (psys->pointcache->edit && psys->pointcache->edit->edited); } void psys_check_group_weights(ParticleSettings *part) { ParticleDupliWeight *dw, *tdw; GroupObject *go; int current = 0; if (part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first) { /* first remove all weights that don't have an object in the group */ dw = part->dupliweights.first; while (dw) { if (!BKE_group_object_exists(part->dup_group, dw->ob)) { tdw = dw->next; BLI_freelinkN(&part->dupliweights, dw); dw = tdw; } else dw = dw->next; } /* then add objects in the group to new list */ go = part->dup_group->gobject.first; while (go) { dw = part->dupliweights.first; while (dw && dw->ob != go->ob) dw = dw->next; if (!dw) { dw = MEM_callocN(sizeof(ParticleDupliWeight), "ParticleDupliWeight"); dw->ob = go->ob; dw->count = 1; BLI_addtail(&part->dupliweights, dw); } go = go->next; } dw = part->dupliweights.first; for (; dw; dw = dw->next) { if (dw->flag & PART_DUPLIW_CURRENT) { current = 1; break; } } if (!current) { dw = part->dupliweights.first; if (dw) dw->flag |= PART_DUPLIW_CURRENT; } } else { BLI_freelistN(&part->dupliweights); } } int psys_uses_gravity(ParticleSimulationData *sim) { return sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY && sim->psys->part && sim->psys->part->effector_weights->global_gravity != 0.0f; } /************************************************/ /* Freeing stuff */ /************************************************/ static void fluid_free_settings(SPHFluidSettings *fluid) { if (fluid) MEM_freeN(fluid); } void BKE_particlesettings_free(ParticleSettings *part) { MTex *mtex; int a; BKE_free_animdata(&part->id); free_partdeflect(part->pd); free_partdeflect(part->pd2); if (part->effector_weights) MEM_freeN(part->effector_weights); BLI_freelistN(&part->dupliweights); boid_free_settings(part->boids); fluid_free_settings(part->fluid); for (a = 0; a < MAX_MTEX; a++) { mtex = part->mtex[a]; if (mtex && mtex->tex) mtex->tex->id.us--; if (mtex) MEM_freeN(mtex); } } void free_hair(Object *UNUSED(ob), ParticleSystem *psys, int dynamics) { PARTICLE_P; LOOP_PARTICLES { if (pa->hair) MEM_freeN(pa->hair); pa->hair = NULL; pa->totkey = 0; } psys->flag &= ~PSYS_HAIR_DONE; if (psys->clmd) { if (dynamics) { BKE_ptcache_free_list(&psys->ptcaches); psys->clmd->point_cache = psys->pointcache = NULL; BLI_listbase_clear(&psys->clmd->ptcaches); modifier_free((ModifierData *)psys->clmd); psys->clmd = NULL; psys->pointcache = BKE_ptcache_add(&psys->ptcaches); } else { cloth_free_modifier(psys->clmd); } } if (psys->hair_in_dm) psys->hair_in_dm->release(psys->hair_in_dm); psys->hair_in_dm = NULL; if (psys->hair_out_dm) psys->hair_out_dm->release(psys->hair_out_dm); psys->hair_out_dm = NULL; } void free_keyed_keys(ParticleSystem *psys) { PARTICLE_P; if (psys->part->type == PART_HAIR) return; if (psys->particles && psys->particles->keys) { MEM_freeN(psys->particles->keys); LOOP_PARTICLES { if (pa->keys) { pa->keys = NULL; pa->totkey = 0; } } } } static void free_child_path_cache(ParticleSystem *psys) { psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs); psys->childcache = NULL; psys->totchildcache = 0; } void psys_free_path_cache(ParticleSystem *psys, PTCacheEdit *edit) { if (edit) { psys_free_path_cache_buffers(edit->pathcache, &edit->pathcachebufs); edit->pathcache = NULL; edit->totcached = 0; } if (psys) { psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs); psys->pathcache = NULL; psys->totcached = 0; free_child_path_cache(psys); } } void psys_free_children(ParticleSystem *psys) { if (psys->child) { MEM_freeN(psys->child); psys->child = NULL; psys->totchild = 0; } free_child_path_cache(psys); } void psys_free_particles(ParticleSystem *psys) { PARTICLE_P; if (psys->particles) { if (psys->part->type == PART_HAIR) { LOOP_PARTICLES { if (pa->hair) MEM_freeN(pa->hair); } } if (psys->particles->keys) MEM_freeN(psys->particles->keys); if (psys->particles->boid) MEM_freeN(psys->particles->boid); MEM_freeN(psys->particles); psys->particles = NULL; psys->totpart = 0; } } void psys_free_pdd(ParticleSystem *psys) { if (psys->pdd) { if (psys->pdd->cdata) MEM_freeN(psys->pdd->cdata); psys->pdd->cdata = NULL; if (psys->pdd->vdata) MEM_freeN(psys->pdd->vdata); psys->pdd->vdata = NULL; if (psys->pdd->ndata) MEM_freeN(psys->pdd->ndata); psys->pdd->ndata = NULL; if (psys->pdd->vedata) MEM_freeN(psys->pdd->vedata); psys->pdd->vedata = NULL; psys->pdd->totpoint = 0; psys->pdd->tot_vec_size = 0; } } /* free everything */ void psys_free(Object *ob, ParticleSystem *psys) { if (psys) { int nr = 0; ParticleSystem *tpsys; psys_free_path_cache(psys, NULL); free_hair(ob, psys, 1); psys_free_particles(psys); if (psys->edit && psys->free_edit) psys->free_edit(psys->edit); if (psys->child) { MEM_freeN(psys->child); psys->child = NULL; psys->totchild = 0; } /* check if we are last non-visible particle system */ for (tpsys = ob->particlesystem.first; tpsys; tpsys = tpsys->next) { if (tpsys->part) { if (ELEM(tpsys->part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) { nr++; break; } } } /* clear do-not-draw-flag */ if (!nr) ob->transflag &= ~OB_DUPLIPARTS; if (psys->part) { psys->part->id.us--; psys->part = NULL; } BKE_ptcache_free_list(&psys->ptcaches); psys->pointcache = NULL; BLI_freelistN(&psys->targets); BLI_bvhtree_free(psys->bvhtree); BLI_kdtree_free(psys->tree); if (psys->fluid_springs) MEM_freeN(psys->fluid_springs); pdEndEffectors(&psys->effectors); if (psys->frand) MEM_freeN(psys->frand); if (psys->pdd) { psys_free_pdd(psys); MEM_freeN(psys->pdd); } MEM_freeN(psys); } } /************************************************/ /* Rendering */ /************************************************/ /* these functions move away particle data and bring it back after * rendering, to make different render settings possible without * removing the previous data. this should be solved properly once */ typedef struct ParticleRenderElem { int curchild, totchild, reduce; float lambda, t, scalemin, scalemax; } ParticleRenderElem; typedef struct ParticleRenderData { ChildParticle *child; ParticleCacheKey **pathcache; ParticleCacheKey **childcache; ListBase pathcachebufs, childcachebufs; int totchild, totcached, totchildcache; DerivedMesh *dm; int totdmvert, totdmedge, totdmface; float mat[4][4]; float viewmat[4][4], winmat[4][4]; int winx, winy; int do_simplify; int timeoffset; ParticleRenderElem *elems; /* ORIGINDEX */ const int *index_mf_to_mpoly; const int *index_mp_to_orig; } ParticleRenderData; static float psys_render_viewport_falloff(double rate, float dist, float width) { return pow(rate, dist / width); } static float psys_render_projected_area(ParticleSystem *psys, const float center[3], float area, double vprate, float *viewport) { ParticleRenderData *data = psys->renderdata; float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius; /* transform to view space */ copy_v3_v3(co, center); co[3] = 1.0f; mul_m4_v4(data->viewmat, co); /* compute two vectors orthogonal to view vector */ normalize_v3_v3(view, co); ortho_basis_v3v3_v3(ortho1, ortho2, view); /* compute on screen minification */ w = co[2] * data->winmat[2][3] + data->winmat[3][3]; dx = data->winx * ortho2[0] * data->winmat[0][0]; dy = data->winy * ortho2[1] * data->winmat[1][1]; w = sqrtf(dx * dx + dy * dy) / w; /* w squared because we are working with area */ area = area * w * w; /* viewport of the screen test */ /* project point on screen */ mul_m4_v4(data->winmat, co); if (co[3] != 0.0f) { co[0] = 0.5f * data->winx * (1.0f + co[0] / co[3]); co[1] = 0.5f * data->winy * (1.0f + co[1] / co[3]); } /* screen space radius */ radius = sqrt(area / (float)M_PI); /* make smaller using fallof once over screen edge */ *viewport = 1.0f; if (co[0] + radius < 0.0f) *viewport *= psys_render_viewport_falloff(vprate, -(co[0] + radius), data->winx); else if (co[0] - radius > data->winx) *viewport *= psys_render_viewport_falloff(vprate, (co[0] - radius) - data->winx, data->winx); if (co[1] + radius < 0.0f) *viewport *= psys_render_viewport_falloff(vprate, -(co[1] + radius), data->winy); else if (co[1] - radius > data->winy) *viewport *= psys_render_viewport_falloff(vprate, (co[1] - radius) - data->winy, data->winy); return area; } void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[4][4], float winmat[4][4], int winx, int winy, int timeoffset) { ParticleRenderData *data; ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys); if (psys->renderdata) return; data = MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData"); data->child = psys->child; data->totchild = psys->totchild; data->pathcache = psys->pathcache; data->pathcachebufs.first = psys->pathcachebufs.first; data->pathcachebufs.last = psys->pathcachebufs.last; data->totcached = psys->totcached; data->childcache = psys->childcache; data->childcachebufs.first = psys->childcachebufs.first; data->childcachebufs.last = psys->childcachebufs.last; data->totchildcache = psys->totchildcache; if (psmd->dm) data->dm = CDDM_copy(psmd->dm); data->totdmvert = psmd->totdmvert; data->totdmedge = psmd->totdmedge; data->totdmface = psmd->totdmface; psys->child = NULL; psys->pathcache = NULL; psys->childcache = NULL; psys->totchild = psys->totcached = psys->totchildcache = 0; BLI_listbase_clear(&psys->pathcachebufs); BLI_listbase_clear(&psys->childcachebufs); copy_m4_m4(data->winmat, winmat); mul_m4_m4m4(data->viewmat, viewmat, ob->obmat); mul_m4_m4m4(data->mat, winmat, data->viewmat); data->winx = winx; data->winy = winy; data->timeoffset = timeoffset; psys->renderdata = data; /* Hair can and has to be recalculated if everything isn't displayed. */ if (psys->part->disp != 100 && psys->part->type == PART_HAIR) psys->recalc |= PSYS_RECALC_RESET; } void psys_render_restore(Object *ob, ParticleSystem *psys) { ParticleRenderData *data; ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys); float render_disp = psys_get_current_display_percentage(psys); float disp; data = psys->renderdata; if (!data) return; if (data->elems) MEM_freeN(data->elems); if (psmd->dm) { psmd->dm->needsFree = 1; psmd->dm->release(psmd->dm); } psys_free_path_cache(psys, NULL); if (psys->child) { MEM_freeN(psys->child); psys->child = 0; psys->totchild = 0; } psys->child = data->child; psys->totchild = data->totchild; psys->pathcache = data->pathcache; psys->pathcachebufs.first = data->pathcachebufs.first; psys->pathcachebufs.last = data->pathcachebufs.last; psys->totcached = data->totcached; psys->childcache = data->childcache; psys->childcachebufs.first = data->childcachebufs.first; psys->childcachebufs.last = data->childcachebufs.last; psys->totchildcache = data->totchildcache; psmd->dm = data->dm; psmd->totdmvert = data->totdmvert; psmd->totdmedge = data->totdmedge; psmd->totdmface = data->totdmface; psmd->flag &= ~eParticleSystemFlag_psys_updated; if (psmd->dm) psys_calc_dmcache(ob, psmd->dm, psys); MEM_freeN(data); psys->renderdata = NULL; /* restore particle display percentage */ disp = psys_get_current_display_percentage(psys); if (disp != render_disp) { PARTICLE_P; LOOP_PARTICLES { if (PSYS_FRAND(p) > disp) pa->flag |= PARS_NO_DISP; else pa->flag &= ~PARS_NO_DISP; } } } /* BMESH_TODO, for orig face data, we need to use MPoly */ int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot) { DerivedMesh *dm = ctx->dm; Mesh *me = (Mesh *)(ctx->sim.ob->data); MFace *mf, *mface; MVert *mvert; ParticleRenderData *data; ParticleRenderElem *elems, *elem; ParticleSettings *part = ctx->sim.psys->part; float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp; float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport; double vprate; int *facetotvert; int a, b, totorigface, totface, newtot, skipped; /* double lookup */ const int *index_mf_to_mpoly; const int *index_mp_to_orig; if (part->ren_as != PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND)) return tot; if (!ctx->sim.psys->renderdata) return tot; data = ctx->sim.psys->renderdata; if (data->timeoffset) return 0; if (!(part->simplify_flag & PART_SIMPLIFY_ENABLE)) return tot; mvert = dm->getVertArray(dm); mface = dm->getTessFaceArray(dm); totface = dm->getNumTessFaces(dm); totorigface = me->totpoly; if (totface == 0 || totorigface == 0) return tot; index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX); index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX); if (index_mf_to_mpoly == NULL) { index_mp_to_orig = NULL; } facearea = MEM_callocN(sizeof(float) * totorigface, "SimplifyFaceArea"); facecenter = MEM_callocN(sizeof(float[3]) * totorigface, "SimplifyFaceCenter"); facetotvert = MEM_callocN(sizeof(int) * totorigface, "SimplifyFaceArea"); elems = MEM_callocN(sizeof(ParticleRenderElem) * totorigface, "SimplifyFaceElem"); if (data->elems) MEM_freeN(data->elems); data->do_simplify = TRUE; data->elems = elems; data->index_mf_to_mpoly = index_mf_to_mpoly; data->index_mp_to_orig = index_mp_to_orig; /* compute number of children per original face */ for (a = 0; a < tot; a++) { b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a]; if (b != ORIGINDEX_NONE) { elems[b].totchild++; } } /* compute areas and centers of original faces */ for (mf = mface, a = 0; a < totface; a++, mf++) { b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a; if (b != ORIGINDEX_NONE) { copy_v3_v3(co1, mvert[mf->v1].co); copy_v3_v3(co2, mvert[mf->v2].co); copy_v3_v3(co3, mvert[mf->v3].co); add_v3_v3(facecenter[b], co1); add_v3_v3(facecenter[b], co2); add_v3_v3(facecenter[b], co3); if (mf->v4) { copy_v3_v3(co4, mvert[mf->v4].co); add_v3_v3(facecenter[b], co4); facearea[b] += area_quad_v3(co1, co2, co3, co4); facetotvert[b] += 4; } else { facearea[b] += area_tri_v3(co1, co2, co3); facetotvert[b] += 3; } } } for (a = 0; a < totorigface; a++) if (facetotvert[a] > 0) mul_v3_fl(facecenter[a], 1.0f / facetotvert[a]); /* for conversion from BU area / pixel area to reference screen size */ BKE_mesh_texspace_get(me, 0, 0, size); fac = ((size[0] + size[1] + size[2]) / 3.0f) / part->simplify_refsize; fac = fac * fac; powrate = log(0.5f) / log(part->simplify_rate * 0.5f); if (part->simplify_flag & PART_SIMPLIFY_VIEWPORT) vprate = pow(1.0f - part->simplify_viewport, 5.0); else vprate = 1.0; /* set simplification parameters per original face */ for (a = 0, elem = elems; a < totorigface; a++, elem++) { area = psys_render_projected_area(ctx->sim.psys, facecenter[a], facearea[a], vprate, &viewport); arearatio = fac * area / facearea[a]; if ((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) { /* lambda is percentage of elements to keep */ lambda = (arearatio < 1.0f) ? powf(arearatio, powrate) : 1.0f; lambda *= viewport; lambda = MAX2(lambda, 1.0f / elem->totchild); /* compute transition region */ t = part->simplify_transition; elem->t = (lambda - t < 0.0f) ? lambda : (lambda + t > 1.0f) ? 1.0f - lambda : t; elem->reduce = 1; /* scale at end and beginning of the transition region */ elem->scalemax = (lambda + t < 1.0f) ? 1.0f / lambda : 1.0f / (1.0f - elem->t * elem->t / t); elem->scalemin = (lambda + t < 1.0f) ? 0.0f : elem->scalemax * (1.0f - elem->t / t); elem->scalemin = sqrt(elem->scalemin); elem->scalemax = sqrt(elem->scalemax); /* clamp scaling */ scaleclamp = (float)min_ii(elem->totchild, 10); elem->scalemin = MIN2(scaleclamp, elem->scalemin); elem->scalemax = MIN2(scaleclamp, elem->scalemax); /* extend lambda to include transition */ lambda = lambda + elem->t; if (lambda > 1.0f) lambda = 1.0f; } else { lambda = arearatio; elem->scalemax = 1.0f; //sqrt(lambda); elem->scalemin = 1.0f; //sqrt(lambda); elem->reduce = 0; } elem->lambda = lambda; elem->scalemin = sqrt(elem->scalemin); elem->scalemax = sqrt(elem->scalemax); elem->curchild = 0; } MEM_freeN(facearea); MEM_freeN(facecenter); MEM_freeN(facetotvert); /* move indices and set random number skipping */ ctx->skip = MEM_callocN(sizeof(int) * tot, "SimplificationSkip"); skipped = 0; for (a = 0, newtot = 0; a < tot; a++) { b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a]; if (b != ORIGINDEX_NONE) { if (elems[b].curchild++ < ceil(elems[b].lambda * elems[b].totchild)) { ctx->index[newtot] = ctx->index[a]; ctx->skip[newtot] = skipped; skipped = 0; newtot++; } else skipped++; } else skipped++; } for (a = 0, elem = elems; a < totorigface; a++, elem++) elem->curchild = 0; return newtot; } int psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params) { ParticleRenderData *data; ParticleRenderElem *elem; float x, w, scale, alpha, lambda, t, scalemin, scalemax; int b; if (!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE))) return 0; data = psys->renderdata; if (!data->do_simplify) return 0; b = (data->index_mf_to_mpoly) ? DM_origindex_mface_mpoly(data->index_mf_to_mpoly, data->index_mp_to_orig, cpa->num) : cpa->num; if (b == ORIGINDEX_NONE) { return 0; } elem = &data->elems[b]; lambda = elem->lambda; t = elem->t; scalemin = elem->scalemin; scalemax = elem->scalemax; if (!elem->reduce) { scale = scalemin; alpha = 1.0f; } else { x = (elem->curchild + 0.5f) / elem->totchild; if (x < lambda - t) { scale = scalemax; alpha = 1.0f; } else if (x >= lambda + t) { scale = scalemin; alpha = 0.0f; } else { w = (lambda + t - x) / (2.0f * t); scale = scalemin + (scalemax - scalemin) * w; alpha = w; } } params[0] = scale; params[1] = alpha; elem->curchild++; return 1; } /************************************************/ /* Interpolation */ /************************************************/ static float interpolate_particle_value(float v1, float v2, float v3, float v4, const float w[4], int four) { float value; value = w[0] * v1 + w[1] * v2 + w[2] * v3; if (four) value += w[3] * v4; CLAMP(value, 0.f, 1.f); return value; } void psys_interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result, int velocity) { float t[4]; if (type < 0) { interp_cubic_v3(result->co, result->vel, keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt); } else { key_curve_position_weights(dt, t, type); interp_v3_v3v3v3v3(result->co, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); if (velocity) { float temp[3]; if (dt > 0.999f) { key_curve_position_weights(dt - 0.001f, t, type); interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); sub_v3_v3v3(result->vel, result->co, temp); } else { key_curve_position_weights(dt + 0.001f, t, type); interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); sub_v3_v3v3(result->vel, temp, result->co); } } } } typedef struct ParticleInterpolationData { HairKey *hkey[2]; DerivedMesh *dm; MVert *mvert[2]; int keyed; ParticleKey *kkey[2]; PointCache *cache; PTCacheMem *pm; PTCacheEditPoint *epoint; PTCacheEditKey *ekey[2]; float birthtime, dietime; int bspline; } ParticleInterpolationData; /* Assumes pointcache->mem_cache exists, so for disk cached particles call psys_make_temp_pointcache() before use */ /* It uses ParticleInterpolationData->pm to store the current memory cache frame so it's thread safe. */ static void get_pointcache_keys_for_time(Object *UNUSED(ob), PointCache *cache, PTCacheMem **cur, int index, float t, ParticleKey *key1, ParticleKey *key2) { static PTCacheMem *pm = NULL; int index1, index2; if (index < 0) { /* initialize */ *cur = cache->mem_cache.first; if (*cur) *cur = (*cur)->next; } else { if (*cur) { while (*cur && (*cur)->next && (float)(*cur)->frame < t) *cur = (*cur)->next; pm = *cur; index2 = BKE_ptcache_mem_index_find(pm, index); index1 = BKE_ptcache_mem_index_find(pm->prev, index); BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame); if (index1 < 0) copy_particle_key(key1, key2, 1); else BKE_ptcache_make_particle_key(key1, index1, pm->prev->data, (float)pm->prev->frame); } else if (cache->mem_cache.first) { pm = cache->mem_cache.first; index2 = BKE_ptcache_mem_index_find(pm, index); BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame); copy_particle_key(key1, key2, 1); } } } static int get_pointcache_times_for_particle(PointCache *cache, int index, float *start, float *end) { PTCacheMem *pm; int ret = 0; for (pm = cache->mem_cache.first; pm; pm = pm->next) { if (BKE_ptcache_mem_index_find(pm, index) >= 0) { *start = pm->frame; ret++; break; } } for (pm = cache->mem_cache.last; pm; pm = pm->prev) { if (BKE_ptcache_mem_index_find(pm, index) >= 0) { *end = pm->frame; ret++; break; } } return ret == 2; } float psys_get_dietime_from_cache(PointCache *cache, int index) { PTCacheMem *pm; int dietime = 10000000; /* some max value so that we can default to pa->time+lifetime */ for (pm = cache->mem_cache.last; pm; pm = pm->prev) { if (BKE_ptcache_mem_index_find(pm, index) >= 0) return (float)pm->frame; } return (float)dietime; } static void init_particle_interpolation(Object *ob, ParticleSystem *psys, ParticleData *pa, ParticleInterpolationData *pind) { if (pind->epoint) { PTCacheEditPoint *point = pind->epoint; pind->ekey[0] = point->keys; pind->ekey[1] = point->totkey > 1 ? point->keys + 1 : NULL; pind->birthtime = *(point->keys->time); pind->dietime = *((point->keys + point->totkey - 1)->time); } else if (pind->keyed) { ParticleKey *key = pa->keys; pind->kkey[0] = key; pind->kkey[1] = pa->totkey > 1 ? key + 1 : NULL; pind->birthtime = key->time; pind->dietime = (key + pa->totkey - 1)->time; } else if (pind->cache) { float start = 0.0f, end = 0.0f; get_pointcache_keys_for_time(ob, pind->cache, &pind->pm, -1, 0.0f, NULL, NULL); pind->birthtime = pa ? pa->time : pind->cache->startframe; pind->dietime = pa ? pa->dietime : pind->cache->endframe; if (get_pointcache_times_for_particle(pind->cache, pa - psys->particles, &start, &end)) { pind->birthtime = MAX2(pind->birthtime, start); pind->dietime = MIN2(pind->dietime, end); } } else { HairKey *key = pa->hair; pind->hkey[0] = key; pind->hkey[1] = key + 1; pind->birthtime = key->time; pind->dietime = (key + pa->totkey - 1)->time; if (pind->dm) { pind->mvert[0] = CDDM_get_vert(pind->dm, pa->hair_index); pind->mvert[1] = pind->mvert[0] + 1; } } } static void edit_to_particle(ParticleKey *key, PTCacheEditKey *ekey) { copy_v3_v3(key->co, ekey->co); if (ekey->vel) { copy_v3_v3(key->vel, ekey->vel); } key->time = *(ekey->time); } static void hair_to_particle(ParticleKey *key, HairKey *hkey) { copy_v3_v3(key->co, hkey->co); key->time = hkey->time; } static void mvert_to_particle(ParticleKey *key, MVert *mvert, HairKey *hkey) { copy_v3_v3(key->co, mvert->co); key->time = hkey->time; } static void do_particle_interpolation(ParticleSystem *psys, int p, ParticleData *pa, float t, ParticleInterpolationData *pind, ParticleKey *result) { PTCacheEditPoint *point = pind->epoint; ParticleKey keys[4]; int point_vel = (point && point->keys->vel); float real_t, dfra, keytime, invdt = 1.f; /* billboards wont fill in all of these, so start cleared */ memset(keys, 0, sizeof(keys)); /* interpret timing and find keys */ if (point) { if (result->time < 0.0f) real_t = -result->time; else real_t = *(pind->ekey[0]->time) + t * (*(pind->ekey[0][point->totkey - 1].time) - *(pind->ekey[0]->time)); while (*(pind->ekey[1]->time) < real_t) pind->ekey[1]++; pind->ekey[0] = pind->ekey[1] - 1; } else if (pind->keyed) { /* we have only one key, so let's use that */ if (pind->kkey[1] == NULL) { copy_particle_key(result, pind->kkey[0], 1); return; } if (result->time < 0.0f) real_t = -result->time; else real_t = pind->kkey[0]->time + t * (pind->kkey[0][pa->totkey - 1].time - pind->kkey[0]->time); if (psys->part->phystype == PART_PHYS_KEYED && psys->flag & PSYS_KEYED_TIMING) { ParticleTarget *pt = psys->targets.first; pt = pt->next; while (pt && pa->time + pt->time < real_t) pt = pt->next; if (pt) { pt = pt->prev; if (pa->time + pt->time + pt->duration > real_t) real_t = pa->time + pt->time; } else real_t = pa->time + ((ParticleTarget *)psys->targets.last)->time; } CLAMP(real_t, pa->time, pa->dietime); while (pind->kkey[1]->time < real_t) pind->kkey[1]++; pind->kkey[0] = pind->kkey[1] - 1; } else if (pind->cache) { if (result->time < 0.0f) /* flag for time in frames */ real_t = -result->time; else real_t = pa->time + t * (pa->dietime - pa->time); } else { if (result->time < 0.0f) real_t = -result->time; else real_t = pind->hkey[0]->time + t * (pind->hkey[0][pa->totkey - 1].time - pind->hkey[0]->time); while (pind->hkey[1]->time < real_t) { pind->hkey[1]++; pind->mvert[1]++; } pind->hkey[0] = pind->hkey[1] - 1; } /* set actual interpolation keys */ if (point) { edit_to_particle(keys + 1, pind->ekey[0]); edit_to_particle(keys + 2, pind->ekey[1]); } else if (pind->dm) { pind->mvert[0] = pind->mvert[1] - 1; mvert_to_particle(keys + 1, pind->mvert[0], pind->hkey[0]); mvert_to_particle(keys + 2, pind->mvert[1], pind->hkey[1]); } else if (pind->keyed) { memcpy(keys + 1, pind->kkey[0], sizeof(ParticleKey)); memcpy(keys + 2, pind->kkey[1], sizeof(ParticleKey)); } else if (pind->cache) { get_pointcache_keys_for_time(NULL, pind->cache, &pind->pm, p, real_t, keys + 1, keys + 2); } else { hair_to_particle(keys + 1, pind->hkey[0]); hair_to_particle(keys + 2, pind->hkey[1]); } /* set secondary interpolation keys for hair */ if (!pind->keyed && !pind->cache && !point_vel) { if (point) { if (pind->ekey[0] != point->keys) edit_to_particle(keys, pind->ekey[0] - 1); else edit_to_particle(keys, pind->ekey[0]); } else if (pind->dm) { if (pind->hkey[0] != pa->hair) mvert_to_particle(keys, pind->mvert[0] - 1, pind->hkey[0] - 1); else mvert_to_particle(keys, pind->mvert[0], pind->hkey[0]); } else { if (pind->hkey[0] != pa->hair) hair_to_particle(keys, pind->hkey[0] - 1); else hair_to_particle(keys, pind->hkey[0]); } if (point) { if (pind->ekey[1] != point->keys + point->totkey - 1) edit_to_particle(keys + 3, pind->ekey[1] + 1); else edit_to_particle(keys + 3, pind->ekey[1]); } else if (pind->dm) { if (pind->hkey[1] != pa->hair + pa->totkey - 1) mvert_to_particle(keys + 3, pind->mvert[1] + 1, pind->hkey[1] + 1); else mvert_to_particle(keys + 3, pind->mvert[1], pind->hkey[1]); } else { if (pind->hkey[1] != pa->hair + pa->totkey - 1) hair_to_particle(keys + 3, pind->hkey[1] + 1); else hair_to_particle(keys + 3, pind->hkey[1]); } } dfra = keys[2].time - keys[1].time; keytime = (real_t - keys[1].time) / dfra; /* convert velocity to timestep size */ if (pind->keyed || pind->cache || point_vel) { invdt = dfra * 0.04f * (psys ? psys->part->timetweak : 1.f); mul_v3_fl(keys[1].vel, invdt); mul_v3_fl(keys[2].vel, invdt); interp_qt_qtqt(result->rot, keys[1].rot, keys[2].rot, keytime); } /* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0, 1]->[k2, k3] (k1 & k4 used for cardinal & bspline interpolation)*/ psys_interpolate_particle((pind->keyed || pind->cache || point_vel) ? -1 /* signal for cubic interpolation */ : (pind->bspline ? KEY_BSPLINE : KEY_CARDINAL), keys, keytime, result, 1); /* the velocity needs to be converted back from cubic interpolation */ if (pind->keyed || pind->cache || point_vel) mul_v3_fl(result->vel, 1.f / invdt); } static void interpolate_pathcache(ParticleCacheKey *first, float t, ParticleCacheKey *result) { int i = 0; ParticleCacheKey *cur = first; /* scale the requested time to fit the entire path even if the path is cut early */ t *= (first + first->steps)->time; while (i < first->steps && cur->time < t) cur++; if (cur->time == t) *result = *cur; else { float dt = (t - (cur - 1)->time) / (cur->time - (cur - 1)->time); interp_v3_v3v3(result->co, (cur - 1)->co, cur->co, dt); interp_v3_v3v3(result->vel, (cur - 1)->vel, cur->vel, dt); interp_qt_qtqt(result->rot, (cur - 1)->rot, cur->rot, dt); result->time = t; } /* first is actual base rotation, others are incremental from first */ if (cur == first || cur - 1 == first) copy_qt_qt(result->rot, first->rot); else mul_qt_qtqt(result->rot, first->rot, result->rot); } /************************************************/ /* Particles on a dm */ /************************************************/ /* interpolate a location on a face based on face coordinates */ void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3], float w[4], float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3], float ornor[3]) { float *v1 = 0, *v2 = 0, *v3 = 0, *v4 = 0; float e1[3], e2[3], s1, s2, t1, t2; float *uv1, *uv2, *uv3, *uv4; float n1[3], n2[3], n3[3], n4[3]; float tuv[4][2]; float *o1, *o2, *o3, *o4; v1 = mvert[mface->v1].co; v2 = mvert[mface->v2].co; v3 = mvert[mface->v3].co; normal_short_to_float_v3(n1, mvert[mface->v1].no); normal_short_to_float_v3(n2, mvert[mface->v2].no); normal_short_to_float_v3(n3, mvert[mface->v3].no); if (mface->v4) { v4 = mvert[mface->v4].co; normal_short_to_float_v3(n4, mvert[mface->v4].no); interp_v3_v3v3v3v3(vec, v1, v2, v3, v4, w); if (nor) { if (mface->flag & ME_SMOOTH) interp_v3_v3v3v3v3(nor, n1, n2, n3, n4, w); else normal_quad_v3(nor, v1, v2, v3, v4); } } else { interp_v3_v3v3v3(vec, v1, v2, v3, w); if (nor) { if (mface->flag & ME_SMOOTH) interp_v3_v3v3v3(nor, n1, n2, n3, w); else normal_tri_v3(nor, v1, v2, v3); } } /* calculate tangent vectors */ if (utan && vtan) { if (tface) { uv1 = tface->uv[0]; uv2 = tface->uv[1]; uv3 = tface->uv[2]; uv4 = tface->uv[3]; } else { uv1 = tuv[0]; uv2 = tuv[1]; uv3 = tuv[2]; uv4 = tuv[3]; map_to_sphere(uv1, uv1 + 1, v1[0], v1[1], v1[2]); map_to_sphere(uv2, uv2 + 1, v2[0], v2[1], v2[2]); map_to_sphere(uv3, uv3 + 1, v3[0], v3[1], v3[2]); if (v4) map_to_sphere(uv4, uv4 + 1, v4[0], v4[1], v4[2]); } if (v4) { s1 = uv3[0] - uv1[0]; s2 = uv4[0] - uv1[0]; t1 = uv3[1] - uv1[1]; t2 = uv4[1] - uv1[1]; sub_v3_v3v3(e1, v3, v1); sub_v3_v3v3(e2, v4, v1); } else { s1 = uv2[0] - uv1[0]; s2 = uv3[0] - uv1[0]; t1 = uv2[1] - uv1[1]; t2 = uv3[1] - uv1[1]; sub_v3_v3v3(e1, v2, v1); sub_v3_v3v3(e2, v3, v1); } vtan[0] = (s1 * e2[0] - s2 * e1[0]); vtan[1] = (s1 * e2[1] - s2 * e1[1]); vtan[2] = (s1 * e2[2] - s2 * e1[2]); utan[0] = (t1 * e2[0] - t2 * e1[0]); utan[1] = (t1 * e2[1] - t2 * e1[1]); utan[2] = (t1 * e2[2] - t2 * e1[2]); } if (orco) { if (orcodata) { o1 = orcodata[mface->v1]; o2 = orcodata[mface->v2]; o3 = orcodata[mface->v3]; if (mface->v4) { o4 = orcodata[mface->v4]; interp_v3_v3v3v3v3(orco, o1, o2, o3, o4, w); if (ornor) normal_quad_v3(ornor, o1, o2, o3, o4); } else { interp_v3_v3v3v3(orco, o1, o2, o3, w); if (ornor) normal_tri_v3(ornor, o1, o2, o3); } } else { copy_v3_v3(orco, vec); if (ornor && nor) copy_v3_v3(ornor, nor); } } } void psys_interpolate_uvs(const MTFace *tface, int quad, const float w[4], float uvco[2]) { float v10 = tface->uv[0][0]; float v11 = tface->uv[0][1]; float v20 = tface->uv[1][0]; float v21 = tface->uv[1][1]; float v30 = tface->uv[2][0]; float v31 = tface->uv[2][1]; float v40, v41; if (quad) { v40 = tface->uv[3][0]; v41 = tface->uv[3][1]; uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30 + w[3] * v40; uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31 + w[3] * v41; } else { uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30; uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31; } } void psys_interpolate_mcol(const MCol *mcol, int quad, const float w[4], MCol *mc) { char *cp, *cp1, *cp2, *cp3, *cp4; cp = (char *)mc; cp1 = (char *)&mcol[0]; cp2 = (char *)&mcol[1]; cp3 = (char *)&mcol[2]; if (quad) { cp4 = (char *)&mcol[3]; cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0] + w[3] * cp4[0]); cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1] + w[3] * cp4[1]); cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2] + w[3] * cp4[2]); cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3] + w[3] * cp4[3]); } else { cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0]); cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1]); cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2]); cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3]); } } static float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, const float fw[4], const float *values) { if (values == 0 || index == -1) return 0.0; switch (from) { case PART_FROM_VERT: return values[index]; case PART_FROM_FACE: case PART_FROM_VOLUME: { MFace *mf = dm->getTessFaceData(dm, index, CD_MFACE); return interpolate_particle_value(values[mf->v1], values[mf->v2], values[mf->v3], values[mf->v4], fw, mf->v4); } } return 0.0f; } /* conversion of pa->fw to origspace layer coordinates */ static void psys_w_to_origspace(const float w[4], float uv[2]) { uv[0] = w[1] + w[2]; uv[1] = w[2] + w[3]; } /* conversion of pa->fw to weights in face from origspace */ static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, const float w[4], float neww[4]) { float v[4][3], co[3]; v[0][0] = osface->uv[0][0]; v[0][1] = osface->uv[0][1]; v[0][2] = 0.0f; v[1][0] = osface->uv[1][0]; v[1][1] = osface->uv[1][1]; v[1][2] = 0.0f; v[2][0] = osface->uv[2][0]; v[2][1] = osface->uv[2][1]; v[2][2] = 0.0f; psys_w_to_origspace(w, co); co[2] = 0.0f; if (quad) { v[3][0] = osface->uv[3][0]; v[3][1] = osface->uv[3][1]; v[3][2] = 0.0f; interp_weights_poly_v3(neww, v, 4, co); } else { interp_weights_poly_v3(neww, v, 3, co); neww[3] = 0.0f; } } /* find the derived mesh face for a particle, set the mf passed. this is slow * and can be optimized but only for many lookups. returns the face index. */ int psys_particle_dm_face_lookup(Object *ob, DerivedMesh *dm, int index, const float fw[4], struct LinkNode *node) { Mesh *me = (Mesh *)ob->data; MPoly *mpoly; OrigSpaceFace *osface; int quad, findex, totface; float uv[2], (*faceuv)[2]; /* double lookup */ const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX); const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX); if (index_mf_to_mpoly == NULL) { index_mp_to_orig = NULL; } mpoly = dm->getPolyArray(dm); osface = dm->getTessFaceDataArray(dm, CD_ORIGSPACE); totface = dm->getNumTessFaces(dm); if (osface == NULL || index_mf_to_mpoly == NULL) { /* Assume we don't need osface data */ if (index < totface) { //printf("\tNO CD_ORIGSPACE, assuming not needed\n"); return index; } else { printf("\tNO CD_ORIGSPACE, error out of range\n"); return DMCACHE_NOTFOUND; } } else if (index >= me->totpoly) return DMCACHE_NOTFOUND; /* index not in the original mesh */ psys_w_to_origspace(fw, uv); if (node) { /* we have a linked list of faces that we use, faster! */ for (; node; node = node->next) { findex = GET_INT_FROM_POINTER(node->link); faceuv = osface[findex].uv; quad = (mpoly[findex].totloop == 4); /* check that this intersects - Its possible this misses :/ - * could also check its not between */ if (quad) { if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) return findex; } else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) return findex; } } else { /* if we have no node, try every face */ for (findex = 0; findex < totface; findex++) { const int findex_orig = DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, findex); if (findex_orig == index) { faceuv = osface[findex].uv; quad = (mpoly[findex].totloop == 4); /* check that this intersects - Its possible this misses :/ - * could also check its not between */ if (quad) { if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) return findex; } else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) return findex; } } } return DMCACHE_NOTFOUND; } static int psys_map_index_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, const float fw[4], float UNUSED(foffset), int *mapindex, float mapfw[4]) { if (index < 0) return 0; if (dm->deformedOnly || index_dmcache == DMCACHE_ISCHILD) { /* for meshes that are either only deformed or for child particles, the * index and fw do not require any mapping, so we can directly use it */ if (from == PART_FROM_VERT) { if (index >= dm->getNumVerts(dm)) return 0; *mapindex = index; } else { /* FROM_FACE/FROM_VOLUME */ if (index >= dm->getNumTessFaces(dm)) return 0; *mapindex = index; copy_v4_v4(mapfw, fw); } } else { /* for other meshes that have been modified, we try to map the particle * to their new location, which means a different index, and for faces * also a new face interpolation weights */ if (from == PART_FROM_VERT) { if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache > dm->getNumVerts(dm)) return 0; *mapindex = index_dmcache; } else { /* FROM_FACE/FROM_VOLUME */ /* find a face on the derived mesh that uses this face */ MFace *mface; OrigSpaceFace *osface; int i; i = index_dmcache; if (i == DMCACHE_NOTFOUND || i >= dm->getNumTessFaces(dm)) return 0; *mapindex = i; /* modify the original weights to become * weights for the derived mesh face */ osface = dm->getTessFaceDataArray(dm, CD_ORIGSPACE); mface = dm->getTessFaceData(dm, i, CD_MFACE); if (osface == NULL) mapfw[0] = mapfw[1] = mapfw[2] = mapfw[3] = 0.0f; else psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw); } } return 1; } /* interprets particle data to get a point on a mesh in object space */ void psys_particle_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, const float fw[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3], float ornor[3]) { float tmpnor[3], mapfw[4]; float (*orcodata)[3]; int mapindex; if (!psys_map_index_on_dm(dm, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) { if (vec) { vec[0] = vec[1] = vec[2] = 0.0; } if (nor) { nor[0] = nor[1] = 0.0; nor[2] = 1.0; } if (orco) { orco[0] = orco[1] = orco[2] = 0.0; } if (ornor) { ornor[0] = ornor[1] = 0.0; ornor[2] = 1.0; } if (utan) { utan[0] = utan[1] = utan[2] = 0.0; } if (vtan) { vtan[0] = vtan[1] = vtan[2] = 0.0; } return; } orcodata = dm->getVertDataArray(dm, CD_ORCO); if (from == PART_FROM_VERT) { dm->getVertCo(dm, mapindex, vec); if (nor) { dm->getVertNo(dm, mapindex, nor); normalize_v3(nor); } if (orco) copy_v3_v3(orco, orcodata[mapindex]); if (ornor) { dm->getVertNo(dm, mapindex, ornor); normalize_v3(ornor); } if (utan && vtan) { utan[0] = utan[1] = utan[2] = 0.0f; vtan[0] = vtan[1] = vtan[2] = 0.0f; } } else { /* PART_FROM_FACE / PART_FROM_VOLUME */ MFace *mface; MTFace *mtface; MVert *mvert; mface = dm->getTessFaceData(dm, mapindex, CD_MFACE); mvert = dm->getVertDataArray(dm, CD_MVERT); mtface = CustomData_get_layer(&dm->faceData, CD_MTFACE); if (mtface) mtface += mapindex; if (from == PART_FROM_VOLUME) { psys_interpolate_face(mvert, mface, mtface, orcodata, mapfw, vec, tmpnor, utan, vtan, orco, ornor); if (nor) copy_v3_v3(nor, tmpnor); normalize_v3(tmpnor); /* XXX Why not normalize tmpnor before copying it into nor??? -- mont29 */ mul_v3_fl(tmpnor, -foffset); add_v3_v3(vec, tmpnor); } else psys_interpolate_face(mvert, mface, mtface, orcodata, mapfw, vec, nor, utan, vtan, orco, ornor); } } float psys_particle_value_from_verts(DerivedMesh *dm, short from, ParticleData *pa, float *values) { float mapfw[4]; int mapindex; if (!psys_map_index_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw)) return 0.0f; return psys_interpolate_value_from_verts(dm, from, mapindex, mapfw, values); } ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys) { ModifierData *md; ParticleSystemModifierData *psmd; for (md = ob->modifiers.first; md; md = md->next) { if (md->type == eModifierType_ParticleSystem) { psmd = (ParticleSystemModifierData *) md; if (psmd->psys == psys) { return psmd; } } } return NULL; } /************************************************/ /* Particles on a shape */ /************************************************/ /* ready for future use */ static void psys_particle_on_shape(int UNUSED(distr), int UNUSED(index), float *UNUSED(fuv), float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3], float ornor[3]) { /* TODO */ float zerovec[3] = {0.0f, 0.0f, 0.0f}; if (vec) { copy_v3_v3(vec, zerovec); } if (nor) { copy_v3_v3(nor, zerovec); } if (utan) { copy_v3_v3(utan, zerovec); } if (vtan) { copy_v3_v3(vtan, zerovec); } if (orco) { copy_v3_v3(orco, zerovec); } if (ornor) { copy_v3_v3(ornor, zerovec); } } /************************************************/ /* Particles on emitter */ /************************************************/ void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache, float fuv[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3], float ornor[3]) { if (psmd) { if (psmd->psys->part->distr == PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT) { if (vec) copy_v3_v3(vec, fuv); if (orco) copy_v3_v3(orco, fuv); return; } /* we cant use the num_dmcache */ psys_particle_on_dm(psmd->dm, from, index, index_dmcache, fuv, foffset, vec, nor, utan, vtan, orco, ornor); } else psys_particle_on_shape(from, index, fuv, vec, nor, utan, vtan, orco, ornor); } /************************************************/ /* Path Cache */ /************************************************/ static void do_kink(ParticleKey *state, ParticleKey *par, float *par_rot, float time, float freq, float shape, float amplitude, float flat, short type, short axis, float obmat[4][4], int smooth_start) { float kink[3] = {1.f, 0.f, 0.f}, par_vec[3], q1[4] = {1.f, 0.f, 0.f, 0.f}; float t, dt = 1.f, result[3]; if (par == NULL || type == PART_KINK_NO) return; CLAMP(time, 0.f, 1.f); if (shape != 0.0f && type != PART_KINK_BRAID) { if (shape < 0.0f) time = (float)pow(time, 1.f + shape); else time = (float)pow(time, 1.f / (1.f - shape)); } t = time * freq * (float)M_PI; if (smooth_start) { dt = fabs(t); /* smooth the beginning of kink */ CLAMP(dt, 0.f, (float)M_PI); dt = sin(dt / 2.f); } if (type != PART_KINK_RADIAL) { float temp[3]; kink[axis] = 1.f; if (obmat) mul_mat3_m4_v3(obmat, kink); if (par_rot) mul_qt_v3(par_rot, kink); /* make sure kink is normal to strand */ project_v3_v3v3(temp, kink, par->vel); sub_v3_v3(kink, temp); normalize_v3(kink); } copy_v3_v3(result, state->co); sub_v3_v3v3(par_vec, par->co, state->co); switch (type) { case PART_KINK_CURL: { negate_v3(par_vec); if (flat > 0.f) { float proj[3]; project_v3_v3v3(proj, par_vec, par->vel); madd_v3_v3fl(par_vec, proj, -flat); project_v3_v3v3(proj, par_vec, kink); madd_v3_v3fl(par_vec, proj, -flat); } axis_angle_to_quat(q1, kink, (float)M_PI / 2.f); mul_qt_v3(q1, par_vec); madd_v3_v3fl(par_vec, kink, amplitude); /* rotate kink vector around strand tangent */ if (t != 0.f) { axis_angle_to_quat(q1, par->vel, t); mul_qt_v3(q1, par_vec); } add_v3_v3v3(result, par->co, par_vec); break; } case PART_KINK_RADIAL: { if (flat > 0.f) { float proj[3]; /* flatten along strand */ project_v3_v3v3(proj, par_vec, par->vel); madd_v3_v3fl(result, proj, flat); } madd_v3_v3fl(result, par_vec, -amplitude * (float)sin(t)); break; } case PART_KINK_WAVE: { madd_v3_v3fl(result, kink, amplitude * (float)sin(t)); if (flat > 0.f) { float proj[3]; /* flatten along wave */ project_v3_v3v3(proj, par_vec, kink); madd_v3_v3fl(result, proj, flat); /* flatten along strand */ project_v3_v3v3(proj, par_vec, par->vel); madd_v3_v3fl(result, proj, flat); } break; } case PART_KINK_BRAID: { float y_vec[3] = {0.f, 1.f, 0.f}; float z_vec[3] = {0.f, 0.f, 1.f}; float vec_one[3], state_co[3]; float inp_y, inp_z, length; if (par_rot) { mul_qt_v3(par_rot, y_vec); mul_qt_v3(par_rot, z_vec); } negate_v3(par_vec); normalize_v3_v3(vec_one, par_vec); inp_y = dot_v3v3(y_vec, vec_one); inp_z = dot_v3v3(z_vec, vec_one); if (inp_y > 0.5f) { copy_v3_v3(state_co, y_vec); mul_v3_fl(y_vec, amplitude * (float)cos(t)); mul_v3_fl(z_vec, amplitude / 2.f * (float)sin(2.f * t)); } else if (inp_z > 0.0f) { mul_v3_v3fl(state_co, z_vec, (float)sin((float)M_PI / 3.f)); madd_v3_v3fl(state_co, y_vec, -0.5f); mul_v3_fl(y_vec, -amplitude * (float)cos(t + (float)M_PI / 3.f)); mul_v3_fl(z_vec, amplitude / 2.f * (float)cos(2.f * t + (float)M_PI / 6.f)); } else { mul_v3_v3fl(state_co, z_vec, -(float)sin((float)M_PI / 3.f)); madd_v3_v3fl(state_co, y_vec, -0.5f); mul_v3_fl(y_vec, amplitude * (float)-sin(t + (float)M_PI / 6.f)); mul_v3_fl(z_vec, amplitude / 2.f * (float)-sin(2.f * t + (float)M_PI / 3.f)); } mul_v3_fl(state_co, amplitude); add_v3_v3(state_co, par->co); sub_v3_v3v3(par_vec, state->co, state_co); length = normalize_v3(par_vec); mul_v3_fl(par_vec, MIN2(length, amplitude / 2.f)); add_v3_v3v3(state_co, par->co, y_vec); add_v3_v3(state_co, z_vec); add_v3_v3(state_co, par_vec); shape = 2.f * (float)M_PI * (1.f + shape); if (t < shape) { shape = t / shape; shape = (float)sqrt((double)shape); interp_v3_v3v3(result, result, state_co, shape); } else { copy_v3_v3(result, state_co); } break; } } /* blend the start of the kink */ if (dt < 1.f) interp_v3_v3v3(state->co, state->co, result, dt); else copy_v3_v3(state->co, result); } static float do_clump(ParticleKey *state, ParticleKey *par, float time, float clumpfac, float clumppow, float pa_clump) { float clump = 0.f; if (par && clumpfac != 0.0f) { float cpow; if (clumppow < 0.0f) cpow = 1.0f + clumppow; else cpow = 1.0f + 9.0f * clumppow; if (clumpfac < 0.0f) /* clump roots instead of tips */ clump = -clumpfac * pa_clump * (float)pow(1.0 - (double)time, (double)cpow); else clump = clumpfac * pa_clump * (float)pow((double)time, (double)cpow); interp_v3_v3v3(state->co, state->co, par->co, clump); } return clump; } void precalc_guides(ParticleSimulationData *sim, ListBase *effectors) { EffectedPoint point; ParticleKey state; EffectorData efd; EffectorCache *eff; ParticleSystem *psys = sim->psys; EffectorWeights *weights = sim->psys->part->effector_weights; GuideEffectorData *data; PARTICLE_P; if (!effectors) return; LOOP_PARTICLES { psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, state.co, 0, 0, 0, 0, 0); mul_m4_v3(sim->ob->obmat, state.co); mul_mat3_m4_v3(sim->ob->obmat, state.vel); pd_point_from_particle(sim, pa, &state, &point); for (eff = effectors->first; eff; eff = eff->next) { if (eff->pd->forcefield != PFIELD_GUIDE) continue; if (!eff->guide_data) eff->guide_data = MEM_callocN(sizeof(GuideEffectorData) * psys->totpart, "GuideEffectorData"); data = eff->guide_data + p; sub_v3_v3v3(efd.vec_to_point, state.co, eff->guide_loc); copy_v3_v3(efd.nor, eff->guide_dir); efd.distance = len_v3(efd.vec_to_point); copy_v3_v3(data->vec_to_point, efd.vec_to_point); data->strength = effector_falloff(eff, &efd, &point, weights); } } } int do_guides(ListBase *effectors, ParticleKey *state, int index, float time) { EffectorCache *eff; PartDeflect *pd; Curve *cu; ParticleKey key, par; GuideEffectorData *data; float effect[3] = {0.0f, 0.0f, 0.0f}, veffect[3] = {0.0f, 0.0f, 0.0f}; float guidevec[4], guidedir[3], rot2[4], temp[3]; float guidetime, radius, weight, angle, totstrength = 0.0f; float vec_to_point[3]; if (effectors) for (eff = effectors->first; eff; eff = eff->next) { pd = eff->pd; if (pd->forcefield != PFIELD_GUIDE) continue; data = eff->guide_data + index; if (data->strength <= 0.0f) continue; guidetime = time / (1.0f - pd->free_end); if (guidetime > 1.0f) continue; cu = (Curve *)eff->ob->data; if (pd->flag & PFIELD_GUIDE_PATH_ADD) { if (where_on_path(eff->ob, data->strength * guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0) return 0; } else { if (where_on_path(eff->ob, guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0) return 0; } mul_m4_v3(eff->ob->obmat, guidevec); mul_mat3_m4_v3(eff->ob->obmat, guidedir); normalize_v3(guidedir); copy_v3_v3(vec_to_point, data->vec_to_point); if (guidetime != 0.0f) { /* curve direction */ cross_v3_v3v3(temp, eff->guide_dir, guidedir); angle = dot_v3v3(eff->guide_dir, guidedir) / (len_v3(eff->guide_dir)); angle = saacos(angle); axis_angle_to_quat(rot2, temp, angle); mul_qt_v3(rot2, vec_to_point); /* curve tilt */ axis_angle_to_quat(rot2, guidedir, guidevec[3] - eff->guide_loc[3]); mul_qt_v3(rot2, vec_to_point); } /* curve taper */ if (cu->taperobj) mul_v3_fl(vec_to_point, BKE_displist_calc_taper(eff->scene, cu->taperobj, (int)(data->strength * guidetime * 100.0f), 100)); else { /* curve size*/ if (cu->flag & CU_PATH_RADIUS) { mul_v3_fl(vec_to_point, radius); } } par.co[0] = par.co[1] = par.co[2] = 0.0f; copy_v3_v3(key.co, vec_to_point); do_kink(&key, &par, 0, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, 0.f, pd->kink, pd->kink_axis, 0, 0); do_clump(&key, &par, guidetime, pd->clump_fac, pd->clump_pow, 1.0f); copy_v3_v3(vec_to_point, key.co); add_v3_v3(vec_to_point, guidevec); //sub_v3_v3v3(pa_loc, pa_loc, pa_zero); madd_v3_v3fl(effect, vec_to_point, data->strength); madd_v3_v3fl(veffect, guidedir, data->strength); totstrength += data->strength; if (pd->flag & PFIELD_GUIDE_PATH_WEIGHT) totstrength *= weight; } if (totstrength != 0.0f) { if (totstrength > 1.0f) mul_v3_fl(effect, 1.0f / totstrength); CLAMP(totstrength, 0.0f, 1.0f); //add_v3_v3(effect, pa_zero); interp_v3_v3v3(state->co, state->co, effect, totstrength); normalize_v3(veffect); mul_v3_fl(veffect, len_v3(state->vel)); copy_v3_v3(state->vel, veffect); return 1; } return 0; } static void do_rough(float *loc, float mat[4][4], float t, float fac, float size, float thres, ParticleKey *state) { float rough[3]; float rco[3]; if (thres != 0.0f) if ((float)fabs((float)(-1.5f + loc[0] + loc[1] + loc[2])) < 1.5f * thres) return; copy_v3_v3(rco, loc); mul_v3_fl(rco, t); rough[0] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2, 0, 2); rough[1] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2, 0, 2); rough[2] = -1.0f + 2.0f * BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2, 0, 2); madd_v3_v3fl(state->co, mat[0], fac * rough[0]); madd_v3_v3fl(state->co, mat[1], fac * rough[1]); madd_v3_v3fl(state->co, mat[2], fac * rough[2]); } static void do_rough_end(float *loc, float mat[4][4], float t, float fac, float shape, ParticleKey *state) { float rough[2]; float roughfac; roughfac = fac * (float)pow((double)t, shape); copy_v2_v2(rough, loc); rough[0] = -1.0f + 2.0f * rough[0]; rough[1] = -1.0f + 2.0f * rough[1]; mul_v2_fl(rough, roughfac); madd_v3_v3fl(state->co, mat[0], rough[0]); madd_v3_v3fl(state->co, mat[1], rough[1]); } static void do_path_effectors(ParticleSimulationData *sim, int i, ParticleCacheKey *ca, int k, int steps, float *UNUSED(rootco), float effector, float UNUSED(dfra), float UNUSED(cfra), float *length, float *vec) { float force[3] = {0.0f, 0.0f, 0.0f}; ParticleKey eff_key; EffectedPoint epoint; /* Don't apply effectors for dynamic hair, otherwise the effectors don't get applied twice. */ if (sim->psys->flag & PSYS_HAIR_DYNAMICS) return; copy_v3_v3(eff_key.co, (ca - 1)->co); copy_v3_v3(eff_key.vel, (ca - 1)->vel); copy_qt_qt(eff_key.rot, (ca - 1)->rot); pd_point_from_particle(sim, sim->psys->particles + i, &eff_key, &epoint); pdDoEffectors(sim->psys->effectors, sim->colliders, sim->psys->part->effector_weights, &epoint, force, NULL); mul_v3_fl(force, effector * powf((float)k / (float)steps, 100.0f * sim->psys->part->eff_hair) / (float)steps); add_v3_v3(force, vec); normalize_v3(force); if (k < steps) sub_v3_v3v3(vec, (ca + 1)->co, ca->co); madd_v3_v3v3fl(ca->co, (ca - 1)->co, force, *length); if (k < steps) *length = len_v3(vec); } static int check_path_length(int k, ParticleCacheKey *keys, ParticleCacheKey *state, float max_length, float *cur_length, float length, float *dvec) { if (*cur_length + length > max_length) { mul_v3_fl(dvec, (max_length - *cur_length) / length); add_v3_v3v3(state->co, (state - 1)->co, dvec); keys->steps = k; /* something over the maximum step value */ return k = 100000; } else { *cur_length += length; return k; } } static void offset_child(ChildParticle *cpa, ParticleKey *par, float *par_rot, ParticleKey *child, float flat, float radius) { copy_v3_v3(child->co, cpa->fuv); mul_v3_fl(child->co, radius); child->co[0] *= flat; copy_v3_v3(child->vel, par->vel); if (par_rot) { mul_qt_v3(par_rot, child->co); copy_qt_qt(child->rot, par_rot); } else unit_qt(child->rot); add_v3_v3(child->co, par->co); } float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup) { float *vg = 0; if (vgroup < 0) { /* hair dynamics pinning vgroup */ } else if (psys->vgroup[vgroup]) { MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT); if (dvert) { int totvert = dm->getNumVerts(dm), i; vg = MEM_callocN(sizeof(float) * totvert, "vg_cache"); if (psys->vg_neg & (1 << vgroup)) { for (i = 0; i < totvert; i++) vg[i] = 1.0f - defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1); } else { for (i = 0; i < totvert; i++) vg[i] = defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1); } } } return vg; } void psys_find_parents(ParticleSimulationData *sim) { ParticleSettings *part = sim->psys->part; KDTree *tree; ChildParticle *cpa; int p, totparent, totchild = sim->psys->totchild; float co[3], orco[3]; int from = PART_FROM_FACE; totparent = (int)(totchild * part->parents * 0.3f); if ((sim->psys->renderdata || G.is_rendering) && part->child_nbr && part->ren_child_nbr) totparent *= (float)part->child_nbr / (float)part->ren_child_nbr; tree = BLI_kdtree_new(totparent); for (p = 0, cpa = sim->psys->child; p < totparent; p++, cpa++) { psys_particle_on_emitter(sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco, 0); BLI_kdtree_insert(tree, p, orco, NULL); } BLI_kdtree_balance(tree); for (; p < totchild; p++, cpa++) { psys_particle_on_emitter(sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco, 0); cpa->parent = BLI_kdtree_find_nearest(tree, orco, NULL, NULL); } BLI_kdtree_free(tree); } static void get_strand_normal(Material *ma, const float surfnor[3], float surfdist, float nor[3]) { float cross[3], nstrand[3], vnor[3], blend; if (!((ma->mode & MA_STR_SURFDIFF) || (ma->strand_surfnor > 0.0f))) return; if (ma->mode & MA_STR_SURFDIFF) { cross_v3_v3v3(cross, surfnor, nor); cross_v3_v3v3(nstrand, nor, cross); blend = dot_v3v3(nstrand, surfnor); CLAMP(blend, 0.0f, 1.0f); interp_v3_v3v3(vnor, nstrand, surfnor, blend); normalize_v3(vnor); } else { copy_v3_v3(vnor, nor); } if (ma->strand_surfnor > 0.0f) { if (ma->strand_surfnor > surfdist) { blend = (ma->strand_surfnor - surfdist) / ma->strand_surfnor; interp_v3_v3v3(vnor, vnor, surfnor, blend); normalize_v3(vnor); } } copy_v3_v3(nor, vnor); } static int psys_threads_init_path(ParticleThread *threads, Scene *scene, float cfra, int editupdate) { ParticleThreadContext *ctx = threads[0].ctx; /* Object *ob = ctx->sim.ob; */ ParticleSystem *psys = ctx->sim.psys; ParticleSettings *part = psys->part; /* ParticleEditSettings *pset = &scene->toolsettings->particle; */ int totparent = 0, between = 0; int steps = (int)pow(2.0, (double)part->draw_step); int totchild = psys->totchild; int i, seed, totthread = threads[0].tot; /*---start figuring out what is actually wanted---*/ if (psys_in_edit_mode(scene, psys)) { ParticleEditSettings *pset = &scene->toolsettings->particle; if (psys->renderdata == 0 && (psys->edit == NULL || pset->flag & PE_DRAW_PART) == 0) totchild = 0; steps = (int)pow(2.0, (double)pset->draw_step); } if (totchild && part->childtype == PART_CHILD_FACES) { totparent = (int)(totchild * part->parents * 0.3f); if ((psys->renderdata || G.is_rendering) && part->child_nbr && part->ren_child_nbr) totparent *= (float)part->child_nbr / (float)part->ren_child_nbr; /* part->parents could still be 0 so we can't test with totparent */ between = 1; } if (psys->renderdata) steps = (int)pow(2.0, (double)part->ren_step); else { totchild = (int)((float)totchild * (float)part->disp / 100.0f); totparent = MIN2(totparent, totchild); } if (totchild == 0) return 0; /* init random number generator */ seed = 31415926 + ctx->sim.psys->seed; if (ctx->editupdate || totchild < 10000) totthread = 1; for (i = 0; i < totthread; i++) { threads[i].rng_path = BLI_rng_new(seed); threads[i].tot = totthread; } /* fill context values */ ctx->between = between; ctx->steps = steps; ctx->totchild = totchild; ctx->totparent = totparent; ctx->parent_pass = 0; ctx->cfra = cfra; ctx->editupdate = editupdate; psys->lattice_deform_data = psys_create_lattice_deform_data(&ctx->sim); /* cache all relevant vertex groups if they exist */ ctx->vg_length = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_LENGTH); ctx->vg_clump = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_CLUMP); ctx->vg_kink = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_KINK); ctx->vg_rough1 = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGH1); ctx->vg_rough2 = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGH2); ctx->vg_roughe = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGHE); if (psys->part->flag & PART_CHILD_EFFECT) ctx->vg_effector = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_EFFECTOR); /* set correct ipo timing */ #if 0 // XXX old animation system if (part->flag & PART_ABS_TIME && part->ipo) { calc_ipo(part->ipo, cfra); execute_ipo((ID *)part, part->ipo); } #endif // XXX old animation system return 1; } /* note: this function must be thread safe, except for branching! */ static void psys_thread_create_path(ParticleThread *thread, struct ChildParticle *cpa, ParticleCacheKey *child_keys, int i) { ParticleThreadContext *ctx = thread->ctx; Object *ob = ctx->sim.ob; ParticleSystem *psys = ctx->sim.psys; ParticleSettings *part = psys->part; ParticleCacheKey **cache = psys->childcache; ParticleCacheKey **pcache = psys_in_edit_mode(ctx->sim.scene, psys) ? psys->edit->pathcache : psys->pathcache; ParticleCacheKey *child, *par = NULL, *key[4]; ParticleTexture ptex; float *cpa_fuv = 0, *par_rot = 0, rot[4]; float orco[3], ornor[3], hairmat[4][4], t, dvec[3], off1[4][3], off2[4][3]; float length, max_length = 1.0f, cur_length = 0.0f; float eff_length, eff_vec[3], weight[4]; int k, cpa_num; short cpa_from; if (!pcache) return; if (ctx->between) { ParticleData *pa = psys->particles + cpa->pa[0]; int w, needupdate; float foffset, wsum = 0.f; float co[3]; float p_min = part->parting_min; float p_max = part->parting_max; /* Virtual parents don't work nicely with parting. */ float p_fac = part->parents > 0.f ? 0.f : part->parting_fac; if (ctx->editupdate) { needupdate = 0; w = 0; while (w < 4 && cpa->pa[w] >= 0) { if (psys->edit->points[cpa->pa[w]].flag & PEP_EDIT_RECALC) { needupdate = 1; break; } w++; } if (!needupdate) return; else memset(child_keys, 0, sizeof(*child_keys) * (ctx->steps + 1)); } /* get parent paths */ for (w = 0; w < 4; w++) { if (cpa->pa[w] >= 0) { key[w] = pcache[cpa->pa[w]]; weight[w] = cpa->w[w]; } else { key[w] = pcache[0]; weight[w] = 0.f; } } /* modify weights to create parting */ if (p_fac > 0.f) { for (w = 0; w < 4; w++) { if (w && weight[w] > 0.f) { float d; if (part->flag & PART_CHILD_LONG_HAIR) { /* For long hair use tip distance/root distance as parting factor instead of root to tip angle. */ float d1 = len_v3v3(key[0]->co, key[w]->co); float d2 = len_v3v3((key[0] + key[0]->steps - 1)->co, (key[w] + key[w]->steps - 1)->co); d = d1 > 0.f ? d2 / d1 - 1.f : 10000.f; } else { float v1[3], v2[3]; sub_v3_v3v3(v1, (key[0] + key[0]->steps - 1)->co, key[0]->co); sub_v3_v3v3(v2, (key[w] + key[w]->steps - 1)->co, key[w]->co); normalize_v3(v1); normalize_v3(v2); d = RAD2DEGF(saacos(dot_v3v3(v1, v2))); } if (p_max > p_min) d = (d - p_min) / (p_max - p_min); else d = (d - p_min) <= 0.f ? 0.f : 1.f; CLAMP(d, 0.f, 1.f); if (d > 0.f) weight[w] *= (1.f - d); } wsum += weight[w]; } for (w = 0; w < 4; w++) weight[w] /= wsum; interp_v4_v4v4(weight, cpa->w, weight, p_fac); } /* get the original coordinates (orco) for texture usage */ cpa_num = cpa->num; foffset = cpa->foffset; cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter(ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, ornor, 0, 0, orco, 0); mul_m4_v3(ob->obmat, co); for (w = 0; w < 4; w++) sub_v3_v3v3(off1[w], co, key[w]->co); psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat); } else { ParticleData *pa = psys->particles + cpa->parent; float co[3]; if (ctx->editupdate) { if (!(psys->edit->points[cpa->parent].flag & PEP_EDIT_RECALC)) return; memset(child_keys, 0, sizeof(*child_keys) * (ctx->steps + 1)); } /* get the parent path */ key[0] = pcache[cpa->parent]; /* get the original coordinates (orco) for texture usage */ cpa_from = part->from; cpa_num = pa->num; cpa_fuv = pa->fuv; psys_particle_on_emitter(ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, ornor, 0, 0, orco, 0); psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat); } child_keys->steps = ctx->steps; /* get different child parameters from textures & vgroups */ get_child_modifier_parameters(part, ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex); if (ptex.exist < PSYS_FRAND(i + 24)) { child_keys->steps = -1; return; } /* create the child path */ for (k = 0, child = child_keys; k <= ctx->steps; k++, child++) { if (ctx->between) { int w = 0; zero_v3(child->co); zero_v3(child->vel); unit_qt(child->rot); for (w = 0; w < 4; w++) { copy_v3_v3(off2[w], off1[w]); if (part->flag & PART_CHILD_LONG_HAIR) { /* Use parent rotation (in addition to emission location) to determine child offset. */ if (k) mul_qt_v3((key[w] + k)->rot, off2[w]); /* Fade the effect of rotation for even lengths in the end */ project_v3_v3v3(dvec, off2[w], (key[w] + k)->vel); madd_v3_v3fl(off2[w], dvec, -(float)k / (float)ctx->steps); } add_v3_v3(off2[w], (key[w] + k)->co); } /* child position is the weighted sum of parent positions */ interp_v3_v3v3v3v3(child->co, off2[0], off2[1], off2[2], off2[3], weight); interp_v3_v3v3v3v3(child->vel, (key[0] + k)->vel, (key[1] + k)->vel, (key[2] + k)->vel, (key[3] + k)->vel, weight); copy_qt_qt(child->rot, (key[0] + k)->rot); } else { if (k) { mul_qt_qtqt(rot, (key[0] + k)->rot, key[0]->rot); par_rot = rot; } else { par_rot = key[0]->rot; } /* offset the child from the parent position */ offset_child(cpa, (ParticleKey *)(key[0] + k), par_rot, (ParticleKey *)child, part->childflat, part->childrad); } child->time = (float)k / (float)ctx->steps; } /* apply effectors */ if (part->flag & PART_CHILD_EFFECT) { for (k = 0, child = child_keys; k <= ctx->steps; k++, child++) { if (k) { do_path_effectors(&ctx->sim, cpa->pa[0], child, k, ctx->steps, child_keys->co, ptex.effector, 0.0f, ctx->cfra, &eff_length, eff_vec); } else { sub_v3_v3v3(eff_vec, (child + 1)->co, child->co); eff_length = len_v3(eff_vec); } } } for (k = 0, child = child_keys; k <= ctx->steps; k++, child++) { t = (float)k / (float)ctx->steps; if (ctx->totparent) /* this is now threadsafe, virtual parents are calculated before rest of children */ par = (i >= ctx->totparent) ? cache[cpa->parent] : NULL; else if (cpa->parent >= 0) par = pcache[cpa->parent]; if (par) { if (k) { mul_qt_qtqt(rot, (par + k)->rot, par->rot); par_rot = rot; } else { par_rot = par->rot; } par += k; } /* apply different deformations to the child path */ do_child_modifiers(&ctx->sim, &ptex, (ParticleKey *)par, par_rot, cpa, orco, hairmat, (ParticleKey *)child, t); /* we have to correct velocity because of kink & clump */ if (k > 1) { sub_v3_v3v3((child - 1)->vel, child->co, (child - 2)->co); mul_v3_fl((child - 1)->vel, 0.5); if (ctx->ma && (part->draw_col == PART_DRAW_COL_MAT)) get_strand_normal(ctx->ma, ornor, cur_length, (child - 1)->vel); } if (k == ctx->steps) sub_v3_v3v3(child->vel, child->co, (child - 1)->co); /* check if path needs to be cut before actual end of data points */ if (k) { sub_v3_v3v3(dvec, child->co, (child - 1)->co); length = 1.0f / (float)ctx->steps; k = check_path_length(k, child_keys, child, max_length, &cur_length, length, dvec); } else { /* initialize length calculation */ max_length = ptex.length; cur_length = 0.0f; } if (ctx->ma && (part->draw_col == PART_DRAW_COL_MAT)) { copy_v3_v3(child->col, &ctx->ma->r); get_strand_normal(ctx->ma, ornor, cur_length, child->vel); } } /* Hide virtual parents */ if (i < ctx->totparent) child_keys->steps = -1; } static void *exec_child_path_cache(void *data) { ParticleThread *thread = (ParticleThread *)data; ParticleThreadContext *ctx = thread->ctx; ParticleSystem *psys = ctx->sim.psys; ParticleCacheKey **cache = psys->childcache; ChildParticle *cpa; int i, totchild = ctx->totchild, first = 0; if (thread->tot > 1) { first = ctx->parent_pass ? 0 : ctx->totparent; totchild = ctx->parent_pass ? ctx->totparent : ctx->totchild; } cpa = psys->child + first + thread->num; for (i = first + thread->num; i < totchild; i += thread->tot, cpa += thread->tot) psys_thread_create_path(thread, cpa, cache[i], i); return 0; } void psys_cache_child_paths(ParticleSimulationData *sim, float cfra, int editupdate) { ParticleThread *pthreads; ParticleThreadContext *ctx; ListBase threads; int i, totchild, totparent, totthread; if (sim->psys->flag & PSYS_GLOBAL_HAIR) return; pthreads = psys_threads_create(sim); if (!psys_threads_init_path(pthreads, sim->scene, cfra, editupdate)) { psys_threads_free(pthreads); return; } ctx = pthreads[0].ctx; totchild = ctx->totchild; totparent = ctx->totparent; if (editupdate && sim->psys->childcache && totchild == sim->psys->totchildcache) { ; /* just overwrite the existing cache */ } else { /* clear out old and create new empty path cache */ free_child_path_cache(sim->psys); sim->psys->childcache = psys_alloc_path_cache_buffers(&sim->psys->childcachebufs, totchild, ctx->steps + 1); sim->psys->totchildcache = totchild; } totthread = pthreads[0].tot; if (totthread > 1) { /* make virtual child parents thread safe by calculating them first */ if (totparent) { BLI_init_threads(&threads, exec_child_path_cache, totthread); for (i = 0; i < totthread; i++) { pthreads[i].ctx->parent_pass = 1; BLI_insert_thread(&threads, &pthreads[i]); } BLI_end_threads(&threads); for (i = 0; i < totthread; i++) pthreads[i].ctx->parent_pass = 0; } BLI_init_threads(&threads, exec_child_path_cache, totthread); for (i = 0; i < totthread; i++) BLI_insert_thread(&threads, &pthreads[i]); BLI_end_threads(&threads); } else exec_child_path_cache(&pthreads[0]); psys_threads_free(pthreads); } /* figure out incremental rotations along path starting from unit quat */ static void cache_key_incremental_rotation(ParticleCacheKey *key0, ParticleCacheKey *key1, ParticleCacheKey *key2, float *prev_tangent, int i) { float cosangle, angle, tangent[3], normal[3], q[4]; switch (i) { case 0: /* start from second key */ break; case 1: /* calculate initial tangent for incremental rotations */ sub_v3_v3v3(prev_tangent, key0->co, key1->co); normalize_v3(prev_tangent); unit_qt(key1->rot); break; default: sub_v3_v3v3(tangent, key0->co, key1->co); normalize_v3(tangent); cosangle = dot_v3v3(tangent, prev_tangent); /* note we do the comparison on cosangle instead of * angle, since floating point accuracy makes it give * different results across platforms */ if (cosangle > 0.999999f) { copy_v4_v4(key1->rot, key2->rot); } else { angle = saacos(cosangle); cross_v3_v3v3(normal, prev_tangent, tangent); axis_angle_to_quat(q, normal, angle); mul_qt_qtqt(key1->rot, q, key2->rot); } copy_v3_v3(prev_tangent, tangent); } } /** * Calculates paths ready for drawing/rendering * - Useful for making use of opengl vertex arrays for super fast strand drawing. * - Makes child strands possible and creates them too into the cache. * - Cached path data is also used to determine cut position for the editmode tool. */ void psys_cache_paths(ParticleSimulationData *sim, float cfra) { PARTICLE_PSMD; ParticleEditSettings *pset = &sim->scene->toolsettings->particle; ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleCacheKey *ca, **cache; DerivedMesh *hair_dm = (psys->part->type == PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) ? psys->hair_out_dm : NULL; ParticleKey result; Material *ma; ParticleInterpolationData pind; ParticleTexture ptex; PARTICLE_P; float birthtime = 0.0, dietime = 0.0; float t, time = 0.0, dfra = 1.0 /* , frs_sec = sim->scene->r.frs_sec*/ /*UNUSED*/; float col[4] = {0.5f, 0.5f, 0.5f, 1.0f}; float prev_tangent[3] = {0.0f, 0.0f, 0.0f}, hairmat[4][4]; float rotmat[3][3]; int k; int steps = (int)pow(2.0, (double)(psys->renderdata ? part->ren_step : part->draw_step)); int totpart = psys->totpart; float length, vec[3]; float *vg_effector = NULL; float *vg_length = NULL, pa_length = 1.0f; int keyed, baked; /* we don't have anything valid to create paths from so let's quit here */ if ((psys->flag & PSYS_HAIR_DONE || psys->flag & PSYS_KEYED || psys->pointcache) == 0) return; if (psys_in_edit_mode(sim->scene, psys)) if (psys->renderdata == 0 && (psys->edit == NULL || pset->flag & PE_DRAW_PART) == 0) return; keyed = psys->flag & PSYS_KEYED; baked = psys->pointcache->mem_cache.first && psys->part->type != PART_HAIR; /* clear out old and create new empty path cache */ psys_free_path_cache(psys, psys->edit); cache = psys->pathcache = psys_alloc_path_cache_buffers(&psys->pathcachebufs, totpart, steps + 1); psys->lattice_deform_data = psys_create_lattice_deform_data(sim); ma = give_current_material(sim->ob, psys->part->omat); if (ma && (psys->part->draw_col == PART_DRAW_COL_MAT)) copy_v3_v3(col, &ma->r); if ((psys->flag & PSYS_GLOBAL_HAIR) == 0) { if ((psys->part->flag & PART_CHILD_EFFECT) == 0) vg_effector = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_EFFECTOR); if (!psys->totchild) vg_length = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_LENGTH); } /* ensure we have tessfaces to be used for mapping */ if (part->from != PART_FROM_VERT) { DM_ensure_tessface(psmd->dm); } /*---first main loop: create all actual particles' paths---*/ LOOP_SHOWN_PARTICLES { if (!psys->totchild) { psys_get_texture(sim, pa, &ptex, PAMAP_LENGTH, 0.f); pa_length = ptex.length * (1.0f - part->randlength * PSYS_FRAND(psys->seed + p)); if (vg_length) pa_length *= psys_particle_value_from_verts(psmd->dm, part->from, pa, vg_length); } pind.keyed = keyed; pind.cache = baked ? psys->pointcache : NULL; pind.epoint = NULL; pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE); pind.dm = hair_dm; memset(cache[p], 0, sizeof(*cache[p]) * (steps + 1)); cache[p]->steps = steps; /*--get the first data points--*/ init_particle_interpolation(sim->ob, sim->psys, pa, &pind); /* hairmat is needed for for non-hair particle too so we get proper rotations */ psys_mat_hair_to_global(sim->ob, psmd->dm, psys->part->from, pa, hairmat); copy_v3_v3(rotmat[0], hairmat[2]); copy_v3_v3(rotmat[1], hairmat[1]); copy_v3_v3(rotmat[2], hairmat[0]); if (part->draw & PART_ABS_PATH_TIME) { birthtime = MAX2(pind.birthtime, part->path_start); dietime = MIN2(pind.dietime, part->path_end); } else { float tb = pind.birthtime; birthtime = tb + part->path_start * (pind.dietime - tb); dietime = tb + part->path_end * (pind.dietime - tb); } if (birthtime >= dietime) { cache[p]->steps = -1; continue; } dietime = birthtime + pa_length * (dietime - birthtime); /*--interpolate actual path from data points--*/ for (k = 0, ca = cache[p]; k <= steps; k++, ca++) { time = (float)k / (float)steps; t = birthtime + time * (dietime - birthtime); result.time = -t; do_particle_interpolation(psys, p, pa, t, &pind, &result); copy_v3_v3(ca->co, result.co); /* dynamic hair is in object space */ /* keyed and baked are already in global space */ if (hair_dm) mul_m4_v3(sim->ob->obmat, ca->co); else if (!keyed && !baked && !(psys->flag & PSYS_GLOBAL_HAIR)) mul_m4_v3(hairmat, ca->co); copy_v3_v3(ca->col, col); } /*--modify paths and calculate rotation & velocity--*/ if (!(psys->flag & PSYS_GLOBAL_HAIR)) { /* apply effectors */ if ((psys->part->flag & PART_CHILD_EFFECT) == 0) { float effector = 1.0f; if (vg_effector) effector *= psys_particle_value_from_verts(psmd->dm, psys->part->from, pa, vg_effector); sub_v3_v3v3(vec, (cache[p] + 1)->co, cache[p]->co); length = len_v3(vec); for (k = 1, ca = cache[p] + 1; k <= steps; k++, ca++) do_path_effectors(sim, p, ca, k, steps, cache[p]->co, effector, dfra, cfra, &length, vec); } /* apply guide curves to path data */ if (sim->psys->effectors && (psys->part->flag & PART_CHILD_EFFECT) == 0) { for (k = 0, ca = cache[p]; k <= steps; k++, ca++) /* ca is safe to cast, since only co and vel are used */ do_guides(sim->psys->effectors, (ParticleKey *)ca, p, (float)k / (float)steps); } /* lattices have to be calculated separately to avoid mixups between effector calculations */ if (psys->lattice_deform_data) { for (k = 0, ca = cache[p]; k <= steps; k++, ca++) calc_latt_deform(psys->lattice_deform_data, ca->co, 1.0f); } } /* finally do rotation & velocity */ for (k = 1, ca = cache[p] + 1; k <= steps; k++, ca++) { cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k); if (k == steps) copy_qt_qt(ca->rot, (ca - 1)->rot); /* set velocity */ sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co); if (k == 1) copy_v3_v3((ca - 1)->vel, ca->vel); ca->time = (float)k / (float)steps; } /* First rotation is based on emitting face orientation. * This is way better than having flipping rotations resulting * from using a global axis as a rotation pole (vec_to_quat()). * It's not an ideal solution though since it disregards the * initial tangent, but taking that in to account will allow * the possibility of flipping again. -jahka */ mat3_to_quat_is_ok(cache[p]->rot, rotmat); } psys->totcached = totpart; if (psys->lattice_deform_data) { end_latt_deform(psys->lattice_deform_data); psys->lattice_deform_data = NULL; } if (vg_effector) MEM_freeN(vg_effector); if (vg_length) MEM_freeN(vg_length); } void psys_cache_edit_paths(Scene *scene, Object *ob, PTCacheEdit *edit, float cfra) { ParticleCacheKey *ca, **cache = edit->pathcache; ParticleEditSettings *pset = &scene->toolsettings->particle; PTCacheEditPoint *point = NULL; PTCacheEditKey *ekey = NULL; ParticleSystem *psys = edit->psys; ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys); ParticleData *pa = psys ? psys->particles : NULL; ParticleInterpolationData pind; ParticleKey result; float birthtime = 0.0f, dietime = 0.0f; float t, time = 0.0f, keytime = 0.0f /*, frs_sec */; float hairmat[4][4], rotmat[3][3], prev_tangent[3] = {0.0f, 0.0f, 0.0f}; int k, i; int steps = (int)pow(2.0, (double)pset->draw_step); int totpart = edit->totpoint, recalc_set = 0; float sel_col[3]; float nosel_col[3]; steps = MAX2(steps, 4); if (!cache || edit->totpoint != edit->totcached) { /* clear out old and create new empty path cache */ psys_free_path_cache(edit->psys, edit); cache = edit->pathcache = psys_alloc_path_cache_buffers(&edit->pathcachebufs, totpart, steps + 1); /* set flag for update (child particles check this too) */ for (i = 0, point = edit->points; i < totpart; i++, point++) point->flag |= PEP_EDIT_RECALC; recalc_set = 1; } /* frs_sec = (psys || edit->pid.flag & PTCACHE_VEL_PER_SEC) ? 25.0f : 1.0f; */ /* UNUSED */ if (pset->brushtype == PE_BRUSH_WEIGHT) { ; /* use weight painting colors now... */ } else { sel_col[0] = (float)edit->sel_col[0] / 255.0f; sel_col[1] = (float)edit->sel_col[1] / 255.0f; sel_col[2] = (float)edit->sel_col[2] / 255.0f; nosel_col[0] = (float)edit->nosel_col[0] / 255.0f; nosel_col[1] = (float)edit->nosel_col[1] / 255.0f; nosel_col[2] = (float)edit->nosel_col[2] / 255.0f; } /*---first main loop: create all actual particles' paths---*/ for (i = 0, point = edit->points; i < totpart; i++, pa += pa ? 1 : 0, point++) { if (edit->totcached && !(point->flag & PEP_EDIT_RECALC)) continue; if (point->totkey == 0) continue; ekey = point->keys; pind.keyed = 0; pind.cache = NULL; pind.epoint = point; pind.bspline = psys ? (psys->part->flag & PART_HAIR_BSPLINE) : 0; pind.dm = NULL; /* should init_particle_interpolation set this ? */ if (pset->brushtype == PE_BRUSH_WEIGHT) { pind.hkey[0] = NULL; /* pa != NULL since the weight brush is only available for hair */ pind.hkey[1] = pa->hair; } memset(cache[i], 0, sizeof(*cache[i]) * (steps + 1)); cache[i]->steps = steps; /*--get the first data points--*/ init_particle_interpolation(ob, psys, pa, &pind); if (psys) { psys_mat_hair_to_global(ob, psmd->dm, psys->part->from, pa, hairmat); copy_v3_v3(rotmat[0], hairmat[2]); copy_v3_v3(rotmat[1], hairmat[1]); copy_v3_v3(rotmat[2], hairmat[0]); } birthtime = pind.birthtime; dietime = pind.dietime; if (birthtime >= dietime) { cache[i]->steps = -1; continue; } /*--interpolate actual path from data points--*/ for (k = 0, ca = cache[i]; k <= steps; k++, ca++) { time = (float)k / (float)steps; t = birthtime + time * (dietime - birthtime); result.time = -t; do_particle_interpolation(psys, i, pa, t, &pind, &result); copy_v3_v3(ca->co, result.co); /* non-hair points are already in global space */ if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) { mul_m4_v3(hairmat, ca->co); if (k) { cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k); if (k == steps) copy_qt_qt(ca->rot, (ca - 1)->rot); /* set velocity */ sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co); if (k == 1) copy_v3_v3((ca - 1)->vel, ca->vel); } } else { ca->vel[0] = ca->vel[1] = 0.0f; ca->vel[2] = 1.0f; } /* selection coloring in edit mode */ if (pset->brushtype == PE_BRUSH_WEIGHT) { float t2; if (k == 0) { weight_to_rgb(ca->col, pind.hkey[1]->weight); } else { float w1[3], w2[3]; keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); weight_to_rgb(w1, pind.hkey[0]->weight); weight_to_rgb(w2, pind.hkey[1]->weight); interp_v3_v3v3(ca->col, w1, w2, keytime); } /* at the moment this is only used for weight painting. * will need to move out of this check if its used elsewhere. */ t2 = birthtime + ((float)k / (float)steps) * (dietime - birthtime); while (pind.hkey[1]->time < t2) pind.hkey[1]++; pind.hkey[0] = pind.hkey[1] - 1; } else { if ((ekey + (pind.ekey[0] - point->keys))->flag & PEK_SELECT) { if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) { copy_v3_v3(ca->col, sel_col); } else { keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); interp_v3_v3v3(ca->col, sel_col, nosel_col, keytime); } } else { if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) { keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); interp_v3_v3v3(ca->col, nosel_col, sel_col, keytime); } else { copy_v3_v3(ca->col, nosel_col); } } } ca->time = t; } if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) { /* First rotation is based on emitting face orientation. * This is way better than having flipping rotations resulting * from using a global axis as a rotation pole (vec_to_quat()). * It's not an ideal solution though since it disregards the * initial tangent, but taking that in to account will allow * the possibility of flipping again. -jahka */ mat3_to_quat_is_ok(cache[i]->rot, rotmat); } } edit->totcached = totpart; if (psys) { ParticleSimulationData sim = {0}; sim.scene = scene; sim.ob = ob; sim.psys = psys; sim.psmd = psys_get_modifier(ob, psys); psys_cache_child_paths(&sim, cfra, 1); } /* clear recalc flag if set here */ if (recalc_set) { for (i = 0, point = edit->points; i < totpart; i++, point++) point->flag &= ~PEP_EDIT_RECALC; } } /************************************************/ /* Particle Key handling */ /************************************************/ void copy_particle_key(ParticleKey *to, ParticleKey *from, int time) { if (time) { memcpy(to, from, sizeof(ParticleKey)); } else { float to_time = to->time; memcpy(to, from, sizeof(ParticleKey)); to->time = to_time; } } void psys_get_from_key(ParticleKey *key, float loc[3], float vel[3], float rot[4], float *time) { if (loc) copy_v3_v3(loc, key->co); if (vel) copy_v3_v3(vel, key->vel); if (rot) copy_qt_qt(rot, key->rot); if (time) *time = key->time; } /*-------changing particle keys from space to another-------*/ #if 0 static void key_from_object(Object *ob, ParticleKey *key) { float q[4]; add_v3_v3(key->vel, key->co); mul_m4_v3(ob->obmat, key->co); mul_m4_v3(ob->obmat, key->vel); mat4_to_quat(q, ob->obmat); sub_v3_v3v3(key->vel, key->vel, key->co); mul_qt_qtqt(key->rot, q, key->rot); } #endif static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[4][4]) { float det, w1, w2, d1[2], d2[2]; memset(mat, 0, sizeof(float) * 4 * 4); mat[3][3] = 1.0f; /* first axis is the normal */ normal_tri_v3(mat[2], v1, v2, v3); /* second axis along (1, 0) in uv space */ if (uv) { d1[0] = uv[1][0] - uv[0][0]; d1[1] = uv[1][1] - uv[0][1]; d2[0] = uv[2][0] - uv[0][0]; d2[1] = uv[2][1] - uv[0][1]; det = d2[0] * d1[1] - d2[1] * d1[0]; if (det != 0.0f) { det = 1.0f / det; w1 = -d2[1] * det; w2 = d1[1] * det; mat[1][0] = w1 * (v2[0] - v1[0]) + w2 * (v3[0] - v1[0]); mat[1][1] = w1 * (v2[1] - v1[1]) + w2 * (v3[1] - v1[1]); mat[1][2] = w1 * (v2[2] - v1[2]) + w2 * (v3[2] - v1[2]); normalize_v3(mat[1]); } else mat[1][0] = mat[1][1] = mat[1][2] = 0.0f; } else { sub_v3_v3v3(mat[1], v2, v1); normalize_v3(mat[1]); } /* third as a cross product */ cross_v3_v3v3(mat[0], mat[1], mat[2]); } static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[4][4], int orco) { float v[3][3]; MFace *mface; OrigSpaceFace *osface; float (*orcodata)[3]; int i = (ELEM(pa->num_dmcache, DMCACHE_ISCHILD, DMCACHE_NOTFOUND)) ? pa->num : pa->num_dmcache; if (i == -1 || i >= dm->getNumTessFaces(dm)) { unit_m4(mat); return; } mface = dm->getTessFaceData(dm, i, CD_MFACE); osface = dm->getTessFaceData(dm, i, CD_ORIGSPACE); if (orco && (orcodata = dm->getVertDataArray(dm, CD_ORCO))) { copy_v3_v3(v[0], orcodata[mface->v1]); copy_v3_v3(v[1], orcodata[mface->v2]); copy_v3_v3(v[2], orcodata[mface->v3]); /* ugly hack to use non-transformed orcos, since only those * give symmetric results for mirroring in particle mode */ if (DM_get_vert_data_layer(dm, CD_ORIGINDEX)) BKE_mesh_orco_verts_transform(ob->data, v, 3, 1); } else { dm->getVertCo(dm, mface->v1, v[0]); dm->getVertCo(dm, mface->v2, v[1]); dm->getVertCo(dm, mface->v3, v[2]); } triatomat(v[0], v[1], v[2], (osface) ? osface->uv : NULL, mat); } void psys_mat_hair_to_object(Object *UNUSED(ob), DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4]) { float vec[3]; /* can happen when called from a different object's modifier */ if (!dm) { unit_m4(hairmat); return; } psys_face_mat(0, dm, pa, hairmat, 0); psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0); copy_v3_v3(hairmat[3], vec); } void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4]) { float vec[3], orco[3]; psys_face_mat(ob, dm, pa, hairmat, 1); psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0); /* see psys_face_mat for why this function is called */ if (DM_get_vert_data_layer(dm, CD_ORIGINDEX)) BKE_mesh_orco_verts_transform(ob->data, &orco, 1, 1); copy_v3_v3(hairmat[3], orco); } void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float vec[3]) { float mat[4][4]; psys_face_mat(0, dm, pa, mat, 0); transpose_m4(mat); /* cheap inverse for rotation matrix */ mul_mat3_m4_v3(mat, vec); } void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4]) { float facemat[4][4]; psys_mat_hair_to_object(ob, dm, from, pa, facemat); mul_m4_m4m4(hairmat, ob->obmat, facemat); } /************************************************/ /* ParticleSettings handling */ /************************************************/ ModifierData *object_add_particle_system(Scene *scene, Object *ob, const char *name) { ParticleSystem *psys; ModifierData *md; ParticleSystemModifierData *psmd; if (!ob || ob->type != OB_MESH) return NULL; psys = ob->particlesystem.first; for (; psys; psys = psys->next) psys->flag &= ~PSYS_CURRENT; psys = MEM_callocN(sizeof(ParticleSystem), "particle_system"); psys->pointcache = BKE_ptcache_add(&psys->ptcaches); BLI_addtail(&ob->particlesystem, psys); psys->part = psys_new_settings(DATA_("ParticleSettings"), NULL); if (BLI_countlist(&ob->particlesystem) > 1) BLI_snprintf(psys->name, sizeof(psys->name), DATA_("ParticleSystem %i"), BLI_countlist(&ob->particlesystem)); else BLI_strncpy(psys->name, DATA_("ParticleSystem"), sizeof(psys->name)); md = modifier_new(eModifierType_ParticleSystem); if (name) BLI_strncpy_utf8(md->name, name, sizeof(md->name)); else BLI_snprintf(md->name, sizeof(md->name), DATA_("ParticleSystem %i"), BLI_countlist(&ob->particlesystem)); modifier_unique_name(&ob->modifiers, md); psmd = (ParticleSystemModifierData *) md; psmd->psys = psys; BLI_addtail(&ob->modifiers, md); psys->totpart = 0; psys->flag = PSYS_CURRENT; psys->cfra = BKE_scene_frame_get_from_ctime(scene, CFRA + 1); DAG_relations_tag_update(G.main); DAG_id_tag_update(&ob->id, OB_RECALC_DATA); return md; } void object_remove_particle_system(Scene *UNUSED(scene), Object *ob) { ParticleSystem *psys = psys_get_current(ob); ParticleSystemModifierData *psmd; ModifierData *md; if (!psys) return; /* clear all other appearances of this pointer (like on smoke flow modifier) */ if ((md = modifiers_findByType(ob, eModifierType_Smoke))) { SmokeModifierData *smd = (SmokeModifierData *)md; if ((smd->type == MOD_SMOKE_TYPE_FLOW) && smd->flow && smd->flow->psys) if (smd->flow->psys == psys) smd->flow->psys = NULL; } if ((md = modifiers_findByType(ob, eModifierType_DynamicPaint))) { DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)md; if (pmd->brush && pmd->brush->psys) if (pmd->brush->psys == psys) pmd->brush->psys = NULL; } /* clear modifier */ psmd = psys_get_modifier(ob, psys); BLI_remlink(&ob->modifiers, psmd); modifier_free((ModifierData *)psmd); /* clear particle system */ BLI_remlink(&ob->particlesystem, psys); psys_free(ob, psys); if (ob->particlesystem.first) ((ParticleSystem *) ob->particlesystem.first)->flag |= PSYS_CURRENT; else ob->mode &= ~OB_MODE_PARTICLE_EDIT; DAG_relations_tag_update(G.main); DAG_id_tag_update(&ob->id, OB_RECALC_DATA); } static void default_particle_settings(ParticleSettings *part) { part->type = PART_EMITTER; part->distr = PART_DISTR_JIT; part->draw_as = PART_DRAW_REND; part->ren_as = PART_DRAW_HALO; part->bb_uv_split = 1; part->bb_align = PART_BB_VIEW; part->bb_split_offset = PART_BB_OFF_LINEAR; part->flag = PART_EDISTR | PART_TRAND | PART_HIDE_ADVANCED_HAIR; part->sta = 1.0; part->end = 200.0; part->lifetime = 50.0; part->jitfac = 1.0; part->totpart = 1000; part->grid_res = 10; part->timetweak = 1.0; part->courant_target = 0.2; part->integrator = PART_INT_MIDPOINT; part->phystype = PART_PHYS_NEWTON; part->hair_step = 5; part->keys_step = 5; part->draw_step = 2; part->ren_step = 3; part->adapt_angle = 5; part->adapt_pix = 3; part->kink_axis = 2; part->kink_amp_clump = 1.f; part->reactevent = PART_EVENT_DEATH; part->disp = 100; part->from = PART_FROM_FACE; part->normfac = 1.0f; part->mass = 1.0; part->size = 0.05; part->childsize = 1.0; part->rotmode = PART_ROT_VEL; part->avemode = PART_AVE_VELOCITY; part->child_nbr = 10; part->ren_child_nbr = 100; part->childrad = 0.2f; part->childflat = 0.0f; part->clumppow = 0.0f; part->kink_amp = 0.2f; part->kink_freq = 2.0; part->rough1_size = 1.0; part->rough2_size = 1.0; part->rough_end_shape = 1.0; part->clength = 1.0f; part->clength_thres = 0.0f; part->draw = PART_DRAW_EMITTER; part->draw_line[0] = 0.5; part->path_start = 0.0f; part->path_end = 1.0f; part->bb_size[0] = part->bb_size[1] = 1.0f; part->keyed_loops = 1; part->color_vec_max = 1.f; part->draw_col = PART_DRAW_COL_MAT; part->simplify_refsize = 1920; part->simplify_rate = 1.0f; part->simplify_transition = 0.1f; part->simplify_viewport = 0.8; if (!part->effector_weights) part->effector_weights = BKE_add_effector_weights(NULL); part->omat = 1; part->use_modifier_stack = false; } ParticleSettings *psys_new_settings(const char *name, Main *main) { ParticleSettings *part; if (main == NULL) main = G.main; part = BKE_libblock_alloc(main, ID_PA, name); default_particle_settings(part); return part; } ParticleSettings *BKE_particlesettings_copy(ParticleSettings *part) { ParticleSettings *partn; int a; partn = BKE_libblock_copy(&part->id); partn->pd = MEM_dupallocN(part->pd); partn->pd2 = MEM_dupallocN(part->pd2); partn->effector_weights = MEM_dupallocN(part->effector_weights); partn->fluid = MEM_dupallocN(part->fluid); partn->boids = boid_copy_settings(part->boids); for (a = 0; a < MAX_MTEX; a++) { if (part->mtex[a]) { partn->mtex[a] = MEM_mallocN(sizeof(MTex), "psys_copy_tex"); memcpy(partn->mtex[a], part->mtex[a], sizeof(MTex)); id_us_plus((ID *)partn->mtex[a]->tex); } } BLI_duplicatelist(&partn->dupliweights, &part->dupliweights); return partn; } static void expand_local_particlesettings(ParticleSettings *part) { int i; id_lib_extern((ID *)part->dup_group); for (i = 0; i < MAX_MTEX; i++) { if (part->mtex[i]) id_lib_extern((ID *)part->mtex[i]->tex); } } void BKE_particlesettings_make_local(ParticleSettings *part) { Main *bmain = G.main; Object *ob; int is_local = FALSE, is_lib = FALSE; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if (part->id.lib == 0) return; if (part->id.us == 1) { id_clear_lib_data(bmain, &part->id); expand_local_particlesettings(part); return; } /* test objects */ for (ob = bmain->object.first; ob && ELEM(FALSE, is_lib, is_local); ob = ob->id.next) { ParticleSystem *psys = ob->particlesystem.first; for (; psys; psys = psys->next) { if (psys->part == part) { if (ob->id.lib) is_lib = TRUE; else is_local = TRUE; } } } if (is_local && is_lib == FALSE) { id_clear_lib_data(bmain, &part->id); expand_local_particlesettings(part); } else if (is_local && is_lib) { ParticleSettings *part_new = BKE_particlesettings_copy(part); part_new->id.us = 0; /* Remap paths of new ID using old library as base. */ BKE_id_lib_local_paths(bmain, part->id.lib, &part_new->id); /* do objects */ for (ob = bmain->object.first; ob; ob = ob->id.next) { ParticleSystem *psys; for (psys = ob->particlesystem.first; psys; psys = psys->next) { if (psys->part == part && ob->id.lib == 0) { psys->part = part_new; part_new->id.us++; part->id.us--; } } } } } /************************************************/ /* Textures */ /************************************************/ static int get_particle_uv(DerivedMesh *dm, ParticleData *pa, int face_index, const float fuv[4], char *name, float *texco) { MFace *mf; MTFace *tf; int i; tf = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, name); if (tf == NULL) tf = CustomData_get_layer(&dm->faceData, CD_MTFACE); if (tf == NULL) return 0; if (pa) { i = (pa->num_dmcache == DMCACHE_NOTFOUND) ? pa->num : pa->num_dmcache; if (i >= dm->getNumTessFaces(dm)) i = -1; } else i = face_index; if (i == -1) { texco[0] = 0.0f; texco[1] = 0.0f; texco[2] = 0.0f; } else { mf = dm->getTessFaceData(dm, i, CD_MFACE); psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco); texco[0] = texco[0] * 2.0f - 1.0f; texco[1] = texco[1] * 2.0f - 1.0f; texco[2] = 0.0f; } return 1; } #define SET_PARTICLE_TEXTURE(type, pvalue, texfac) \ if ((event & mtex->mapto) & type) { \ pvalue = texture_value_blend(def, pvalue, value, texfac, blend); \ } (void)0 #define CLAMP_PARTICLE_TEXTURE_POS(type, pvalue) \ if (event & type) { \ if (pvalue < 0.0f) \ pvalue = 1.0f + pvalue; \ CLAMP(pvalue, 0.0f, 1.0f); \ } (void)0 #define CLAMP_PARTICLE_TEXTURE_POSNEG(type, pvalue) \ if (event & type) { \ CLAMP(pvalue, -1.0f, 1.0f); \ } (void)0 static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, const float fw[4], float *orco, ParticleTexture *ptex, int event, float cfra) { MTex *mtex, **mtexp = part->mtex; int m; float value, rgba[4], texvec[3]; ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp = ptex->gravity = ptex->field = ptex->time = ptex->clump = ptex->kink = ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f; ptex->length = 1.0f - part->randlength * PSYS_FRAND(child_index + 26); ptex->length *= part->clength_thres < PSYS_FRAND(child_index + 27) ? part->clength : 1.0f; for (m = 0; m < MAX_MTEX; m++, mtexp++) { mtex = *mtexp; if (mtex && mtex->tex && mtex->mapto) { float def = mtex->def_var; short blend = mtex->blendtype; short texco = mtex->texco; if (ELEM(texco, TEXCO_UV, TEXCO_ORCO) && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID)) texco = TEXCO_GLOB; switch (texco) { case TEXCO_GLOB: copy_v3_v3(texvec, par->state.co); break; case TEXCO_OBJECT: copy_v3_v3(texvec, par->state.co); if (mtex->object) mul_m4_v3(mtex->object->imat, texvec); break; case TEXCO_UV: if (fw && get_particle_uv(dm, NULL, face_index, fw, mtex->uvname, texvec)) break; /* no break, failed to get uv's, so let's try orco's */ case TEXCO_ORCO: copy_v3_v3(texvec, orco); break; case TEXCO_PARTICLE: /* texture coordinates in range [-1, 1] */ texvec[0] = 2.f * (cfra - par->time) / (par->dietime - par->time) - 1.f; texvec[1] = 0.f; texvec[2] = 0.f; break; } externtex(mtex, texvec, &value, rgba, rgba + 1, rgba + 2, rgba + 3, 0, NULL); if ((event & mtex->mapto) & PAMAP_ROUGH) ptex->rough1 = ptex->rough2 = ptex->roughe = texture_value_blend(def, ptex->rough1, value, mtex->roughfac, blend); SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac); SET_PARTICLE_TEXTURE(PAMAP_CLUMP, ptex->clump, mtex->clumpfac); SET_PARTICLE_TEXTURE(PAMAP_KINK, ptex->kink, mtex->kinkfac); SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac); } } CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_CLUMP, ptex->clump); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_KINK, ptex->kink); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_ROUGH, ptex->rough1); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist); } void psys_get_texture(ParticleSimulationData *sim, ParticleData *pa, ParticleTexture *ptex, int event, float cfra) { ParticleSettings *part = sim->psys->part; MTex **mtexp = part->mtex; MTex *mtex; int m; float value, rgba[4], co[3], texvec[3]; int setvars = 0; /* initialize ptex */ ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp = ptex->gravity = ptex->field = ptex->length = ptex->clump = ptex->kink = ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f; ptex->time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart; for (m = 0; m < MAX_MTEX; m++, mtexp++) { mtex = *mtexp; if (mtex && mtex->tex && mtex->mapto) { float def = mtex->def_var; short blend = mtex->blendtype; short texco = mtex->texco; if (texco == TEXCO_UV && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID)) texco = TEXCO_GLOB; switch (texco) { case TEXCO_GLOB: copy_v3_v3(texvec, pa->state.co); break; case TEXCO_OBJECT: copy_v3_v3(texvec, pa->state.co); if (mtex->object) mul_m4_v3(mtex->object->imat, texvec); break; case TEXCO_UV: if (get_particle_uv(sim->psmd->dm, pa, 0, pa->fuv, mtex->uvname, texvec)) break; /* no break, failed to get uv's, so let's try orco's */ case TEXCO_ORCO: psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, 0, 0, 0, texvec, 0); break; case TEXCO_PARTICLE: /* texture coordinates in range [-1, 1] */ texvec[0] = 2.f * (cfra - pa->time) / (pa->dietime - pa->time) - 1.f; if (sim->psys->totpart > 0) texvec[1] = 2.f * (float)(pa - sim->psys->particles) / (float)sim->psys->totpart - 1.f; else texvec[1] = 0.0f; texvec[2] = 0.f; break; } externtex(mtex, texvec, &value, rgba, rgba + 1, rgba + 2, rgba + 3, 0, NULL); if ((event & mtex->mapto) & PAMAP_TIME) { /* the first time has to set the base value for time regardless of blend mode */ if ((setvars & MAP_PA_TIME) == 0) { int flip = (mtex->timefac < 0.0f); float timefac = fabsf(mtex->timefac); ptex->time *= 1.0f - timefac; ptex->time += timefac * ((flip) ? 1.0f - value : value); setvars |= MAP_PA_TIME; } else ptex->time = texture_value_blend(def, ptex->time, value, mtex->timefac, blend); } SET_PARTICLE_TEXTURE(PAMAP_LIFE, ptex->life, mtex->lifefac); SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac); SET_PARTICLE_TEXTURE(PAMAP_SIZE, ptex->size, mtex->sizefac); SET_PARTICLE_TEXTURE(PAMAP_IVEL, ptex->ivel, mtex->ivelfac); SET_PARTICLE_TEXTURE(PAMAP_FIELD, ptex->field, mtex->fieldfac); SET_PARTICLE_TEXTURE(PAMAP_GRAVITY, ptex->gravity, mtex->gravityfac); SET_PARTICLE_TEXTURE(PAMAP_DAMP, ptex->damp, mtex->dampfac); SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac); } } CLAMP_PARTICLE_TEXTURE_POS(PAMAP_TIME, ptex->time); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LIFE, ptex->life); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_SIZE, ptex->size); CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_IVEL, ptex->ivel); CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_FIELD, ptex->field); CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_GRAVITY, ptex->gravity); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DAMP, ptex->damp); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length); } /************************************************/ /* Particle State */ /************************************************/ float psys_get_timestep(ParticleSimulationData *sim) { return 0.04f * sim->psys->part->timetweak; } float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *birthtime, float *dietime) { ParticleSettings *part = psys->part; float time, life; if (part->childtype == PART_CHILD_FACES) { int w = 0; time = 0.0; while (w < 4 && cpa->pa[w] >= 0) { time += cpa->w[w] * (psys->particles + cpa->pa[w])->time; w++; } life = part->lifetime * (1.0f - part->randlife * PSYS_FRAND(cpa - psys->child + 25)); } else { ParticleData *pa = psys->particles + cpa->parent; time = pa->time; life = pa->lifetime; } if (birthtime) *birthtime = time; if (dietime) *dietime = time + life; return (cfra - time) / life; } float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float UNUSED(cfra), float *UNUSED(pa_time)) { ParticleSettings *part = psys->part; float size; // time XXX if (part->childtype == PART_CHILD_FACES) size = part->size; else size = psys->particles[cpa->parent].size; size *= part->childsize; if (part->childrandsize != 0.0f) size *= 1.0f - part->childrandsize * PSYS_FRAND(cpa - psys->child + 26); return size; } static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex) { ParticleSystem *psys = ctx->sim.psys; int i = cpa - psys->child; get_cpa_texture(ctx->dm, psys, part, psys->particles + cpa->pa[0], i, cpa_num, cpa_fuv, orco, ptex, PAMAP_DENS | PAMAP_CHILD, psys->cfra); if (ptex->exist < PSYS_FRAND(i + 24)) return; if (ctx->vg_length) ptex->length *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_length); if (ctx->vg_clump) ptex->clump *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_clump); if (ctx->vg_kink) ptex->kink *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_kink); if (ctx->vg_rough1) ptex->rough1 *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough1); if (ctx->vg_rough2) ptex->rough2 *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough2); if (ctx->vg_roughe) ptex->roughe *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_roughe); if (ctx->vg_effector) ptex->effector *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_effector); } static void do_child_modifiers(ParticleSimulationData *sim, ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa, float *orco, float mat[4][4], ParticleKey *state, float t) { ParticleSettings *part = sim->psys->part; int i = cpa - sim->psys->child; int guided = 0; float kink_freq = part->kink_freq; float rough1 = part->rough1; float rough2 = part->rough2; float rough_end = part->rough_end; if (ptex) { kink_freq *= ptex->kink; rough1 *= ptex->rough1; rough2 *= ptex->rough2; rough_end *= ptex->roughe; } if (part->flag & PART_CHILD_EFFECT) /* state is safe to cast, since only co and vel are used */ guided = do_guides(sim->psys->effectors, (ParticleKey *)state, cpa->parent, t); if (guided == 0) { float clump = do_clump(state, par, t, part->clumpfac, part->clumppow, ptex ? ptex->clump : 1.f); if (kink_freq != 0.f) { float kink_amp = part->kink_amp * (1.f - part->kink_amp_clump * clump); do_kink(state, par, par_rot, t, kink_freq, part->kink_shape, kink_amp, part->kink_flat, part->kink, part->kink_axis, sim->ob->obmat, sim->psys->part->childtype == PART_CHILD_FACES); } } if (rough1 > 0.f) do_rough(orco, mat, t, rough1, part->rough1_size, 0.0, state); if (rough2 > 0.f) do_rough(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough2, part->rough2_size, part->rough2_thres, state); if (rough_end > 0.f) do_rough_end(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough_end, part->rough_end_shape, state); } /* get's hair (or keyed) particles state at the "path time" specified in state->time */ void psys_get_particle_on_path(ParticleSimulationData *sim, int p, ParticleKey *state, int vel) { PARTICLE_PSMD; ParticleSystem *psys = sim->psys; ParticleSettings *part = sim->psys->part; Material *ma = give_current_material(sim->ob, part->omat); ParticleData *pa; ChildParticle *cpa; ParticleTexture ptex; ParticleKey *par = 0, keys[4], tstate; ParticleThreadContext ctx; /* fake thread context for child modifiers */ ParticleInterpolationData pind; float t; float co[3], orco[3]; float hairmat[4][4]; int totpart = psys->totpart; int totchild = psys->totchild; short between = 0, edit = 0; int keyed = part->phystype & PART_PHYS_KEYED && psys->flag & PSYS_KEYED; int cached = !keyed && part->type != PART_HAIR; float *cpa_fuv; int cpa_num; short cpa_from; /* initialize keys to zero */ memset(keys, 0, 4 * sizeof(ParticleKey)); t = state->time; CLAMP(t, 0.0f, 1.0f); if (p < totpart) { /* interpolate pathcache directly if it exist */ if (psys->pathcache) { ParticleCacheKey result; interpolate_pathcache(psys->pathcache[p], t, &result); copy_v3_v3(state->co, result.co); copy_v3_v3(state->vel, result.vel); copy_qt_qt(state->rot, result.rot); } /* otherwise interpolate with other means */ else { pa = psys->particles + p; pind.keyed = keyed; pind.cache = cached ? psys->pointcache : NULL; pind.epoint = NULL; pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE); /* pind.dm disabled in editmode means we don't get effectors taken into * account when subdividing for instance */ pind.dm = psys_in_edit_mode(sim->scene, psys) ? NULL : psys->hair_out_dm; init_particle_interpolation(sim->ob, psys, pa, &pind); do_particle_interpolation(psys, p, pa, t, &pind, state); if (pind.dm) { mul_m4_v3(sim->ob->obmat, state->co); mul_mat3_m4_v3(sim->ob->obmat, state->vel); } else if (!keyed && !cached && !(psys->flag & PSYS_GLOBAL_HAIR)) { if ((pa->flag & PARS_REKEY) == 0) { psys_mat_hair_to_global(sim->ob, sim->psmd->dm, part->from, pa, hairmat); mul_m4_v3(hairmat, state->co); mul_mat3_m4_v3(hairmat, state->vel); if (sim->psys->effectors && (part->flag & PART_CHILD_GUIDE) == 0) { do_guides(sim->psys->effectors, state, p, state->time); /* TODO: proper velocity handling */ } if (psys->lattice_deform_data && edit == 0) calc_latt_deform(psys->lattice_deform_data, state->co, 1.0f); } } } } else if (totchild) { //invert_m4_m4(imat, ob->obmat); /* interpolate childcache directly if it exists */ if (psys->childcache) { ParticleCacheKey result; interpolate_pathcache(psys->childcache[p - totpart], t, &result); copy_v3_v3(state->co, result.co); copy_v3_v3(state->vel, result.vel); copy_qt_qt(state->rot, result.rot); } else { cpa = psys->child + p - totpart; if (state->time < 0.0f) t = psys_get_child_time(psys, cpa, -state->time, NULL, NULL); if (totchild && part->childtype == PART_CHILD_FACES) { /* part->parents could still be 0 so we can't test with totparent */ between = 1; } if (between) { int w = 0; float foffset; /* get parent states */ while (w < 4 && cpa->pa[w] >= 0) { keys[w].time = state->time; psys_get_particle_on_path(sim, cpa->pa[w], keys + w, 1); w++; } /* get the original coordinates (orco) for texture usage */ cpa_num = cpa->num; foffset = cpa->foffset; cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter(psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, 0, 0, 0, orco, 0); /* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */ //copy_v3_v3(cpa_1st, co); //mul_m4_v3(ob->obmat, cpa_1st); pa = psys->particles + cpa->parent; if (part->type == PART_HAIR) psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat); else unit_m4(hairmat); pa = 0; } else { /* get the parent state */ keys->time = state->time; psys_get_particle_on_path(sim, cpa->parent, keys, 1); /* get the original coordinates (orco) for texture usage */ pa = psys->particles + cpa->parent; cpa_from = part->from; cpa_num = pa->num; cpa_fuv = pa->fuv; if (part->type == PART_HAIR) { psys_particle_on_emitter(psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, 0, 0, 0, orco, 0); psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat); } else { copy_v3_v3(orco, cpa->fuv); unit_m4(hairmat); } } /* correct child ipo timing */ #if 0 // XXX old animation system if ((part->flag & PART_ABS_TIME) == 0 && part->ipo) { calc_ipo(part->ipo, 100.0f * t); execute_ipo((ID *)part, part->ipo); } #endif // XXX old animation system /* get different child parameters from textures & vgroups */ memset(&ctx, 0, sizeof(ParticleThreadContext)); ctx.sim = *sim; ctx.dm = psmd->dm; ctx.ma = ma; /* TODO: assign vertex groups */ get_child_modifier_parameters(part, &ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex); if (between) { int w = 0; state->co[0] = state->co[1] = state->co[2] = 0.0f; state->vel[0] = state->vel[1] = state->vel[2] = 0.0f; /* child position is the weighted sum of parent positions */ while (w < 4 && cpa->pa[w] >= 0) { state->co[0] += cpa->w[w] * keys[w].co[0]; state->co[1] += cpa->w[w] * keys[w].co[1]; state->co[2] += cpa->w[w] * keys[w].co[2]; state->vel[0] += cpa->w[w] * keys[w].vel[0]; state->vel[1] += cpa->w[w] * keys[w].vel[1]; state->vel[2] += cpa->w[w] * keys[w].vel[2]; w++; } /* apply offset for correct positioning */ //add_v3_v3(state->co, cpa_1st); } else { /* offset the child from the parent position */ offset_child(cpa, keys, keys->rot, state, part->childflat, part->childrad); } par = keys; if (vel) copy_particle_key(&tstate, state, 1); /* apply different deformations to the child path */ do_child_modifiers(sim, &ptex, par, par->rot, cpa, orco, hairmat, state, t); /* try to estimate correct velocity */ if (vel) { ParticleKey tstate; float length = len_v3(state->vel); if (t >= 0.001f) { tstate.time = t - 0.001f; psys_get_particle_on_path(sim, p, &tstate, 0); sub_v3_v3v3(state->vel, state->co, tstate.co); normalize_v3(state->vel); } else { tstate.time = t + 0.001f; psys_get_particle_on_path(sim, p, &tstate, 0); sub_v3_v3v3(state->vel, tstate.co, state->co); normalize_v3(state->vel); } mul_v3_fl(state->vel, length); } } } } /* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */ int psys_get_particle_state(ParticleSimulationData *sim, int p, ParticleKey *state, int always) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleData *pa = NULL; ChildParticle *cpa = NULL; float cfra; int totpart = psys->totpart; float timestep = psys_get_timestep(sim); /* negative time means "use current time" */ cfra = state->time > 0 ? state->time : BKE_scene_frame_get(sim->scene); if (p >= totpart) { if (!psys->totchild) return 0; if (part->childtype == PART_CHILD_FACES) { if (!(psys->flag & PSYS_KEYED)) return 0; cpa = psys->child + p - totpart; state->time = psys_get_child_time(psys, cpa, cfra, NULL, NULL); if (!always) { if ((state->time < 0.0f && !(part->flag & PART_UNBORN)) || (state->time > 1.0f && !(part->flag & PART_DIED))) { return 0; } } state->time = (cfra - (part->sta + (part->end - part->sta) * PSYS_FRAND(p + 23))) / (part->lifetime * PSYS_FRAND(p + 24)); psys_get_particle_on_path(sim, p, state, 1); return 1; } else { cpa = sim->psys->child + p - totpart; pa = sim->psys->particles + cpa->parent; } } else { pa = sim->psys->particles + p; } if (pa) { if (!always) { if ((cfra < pa->time && (part->flag & PART_UNBORN) == 0) || (cfra >= pa->dietime && (part->flag & PART_DIED) == 0)) { return 0; } } cfra = MIN2(cfra, pa->dietime); } if (sim->psys->flag & PSYS_KEYED) { state->time = -cfra; psys_get_particle_on_path(sim, p, state, 1); return 1; } else { if (cpa) { float mat[4][4]; ParticleKey *key1; float t = (cfra - pa->time) / pa->lifetime; key1 = &pa->state; offset_child(cpa, key1, key1->rot, state, part->childflat, part->childrad); CLAMP(t, 0.0f, 1.0f); unit_m4(mat); do_child_modifiers(sim, NULL, key1, key1->rot, cpa, cpa->fuv, mat, state, t); if (psys->lattice_deform_data) calc_latt_deform(psys->lattice_deform_data, state->co, 1.0f); } else { if (pa->state.time == cfra || ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) copy_particle_key(state, &pa->state, 1); else if (pa->prev_state.time == cfra) copy_particle_key(state, &pa->prev_state, 1); else { float dfra, frs_sec = sim->scene->r.frs_sec; /* let's interpolate to try to be as accurate as possible */ if (pa->state.time + 2.f >= state->time && pa->prev_state.time - 2.f <= state->time) { if (pa->prev_state.time >= pa->state.time || pa->prev_state.time < 0.f) { /* prev_state is wrong so let's not use it, this can happen at frames 1, 0 or particle birth */ dfra = state->time - pa->state.time; copy_particle_key(state, &pa->state, 1); madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec); } else { ParticleKey keys[4]; float keytime; copy_particle_key(keys + 1, &pa->prev_state, 1); copy_particle_key(keys + 2, &pa->state, 1); dfra = keys[2].time - keys[1].time; keytime = (state->time - keys[1].time) / dfra; /* convert velocity to timestep size */ mul_v3_fl(keys[1].vel, dfra * timestep); mul_v3_fl(keys[2].vel, dfra * timestep); psys_interpolate_particle(-1, keys, keytime, state, 1); /* convert back to real velocity */ mul_v3_fl(state->vel, 1.f / (dfra * timestep)); interp_v3_v3v3(state->ave, keys[1].ave, keys[2].ave, keytime); interp_qt_qtqt(state->rot, keys[1].rot, keys[2].rot, keytime); } } else if (pa->state.time + 1.f >= state->time && pa->state.time - 1.f <= state->time) { /* linear interpolation using only pa->state */ dfra = state->time - pa->state.time; copy_particle_key(state, &pa->state, 1); madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec); } else { /* extrapolating over big ranges is not accurate so let's just give something close to reasonable back */ copy_particle_key(state, &pa->state, 0); } } if (sim->psys->lattice_deform_data) calc_latt_deform(sim->psys->lattice_deform_data, state->co, 1.0f); } return 1; } } void psys_get_dupli_texture(ParticleSystem *psys, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, float uv[2], float orco[3]) { MFace *mface; MTFace *mtface; float loc[3]; int num; uv[0] = uv[1] = 0.f; if (cpa) { if (part->childtype == PART_CHILD_FACES) { mtface = CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE); if (mtface) { mface = psmd->dm->getTessFaceData(psmd->dm, cpa->num, CD_MFACE); mtface += cpa->num; psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv); } psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, 0, 0, 0, orco, 0); return; } else { pa = psys->particles + cpa->pa[0]; } } if (part->from == PART_FROM_FACE) { mtface = CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE); num = pa->num_dmcache; if (num == DMCACHE_NOTFOUND) num = pa->num; if (num >= psmd->dm->getNumTessFaces(psmd->dm)) { /* happens when simplify is enabled * gives invalid coords but would crash otherwise */ num = DMCACHE_NOTFOUND; } if (mtface && !ELEM(num, DMCACHE_NOTFOUND, DMCACHE_ISCHILD)) { mface = psmd->dm->getTessFaceData(psmd->dm, num, CD_MFACE); mtface += num; psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv); } } psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, 0, 0, 0, orco, 0); } void psys_get_dupli_path_transform(ParticleSimulationData *sim, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[4][4], float *scale) { Object *ob = sim->ob; ParticleSystem *psys = sim->psys; ParticleSystemModifierData *psmd = sim->psmd; float loc[3], nor[3], vec[3], side[3], len; float xvec[3] = {-1.0, 0.0, 0.0}, nmat[3][3]; sub_v3_v3v3(vec, (cache + cache->steps)->co, cache->co); len = normalize_v3(vec); if (pa == NULL && psys->part->childflat != PART_CHILD_FACES) pa = psys->particles + cpa->pa[0]; if (pa) psys_particle_on_emitter(psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, nor, 0, 0, 0, 0); else psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, nor, 0, 0, 0, 0); if (psys->part->rotmode == PART_ROT_VEL) { copy_m3_m4(nmat, ob->imat); transpose_m3(nmat); mul_m3_v3(nmat, nor); normalize_v3(nor); /* make sure that we get a proper side vector */ if (fabs(dot_v3v3(nor, vec)) > 0.999999) { if (fabs(dot_v3v3(nor, xvec)) > 0.999999) { nor[0] = 0.0f; nor[1] = 1.0f; nor[2] = 0.0f; } else { nor[0] = 1.0f; nor[1] = 0.0f; nor[2] = 0.0f; } } cross_v3_v3v3(side, nor, vec); normalize_v3(side); /* rotate side vector around vec */ if (psys->part->phasefac != 0) { float q_phase[4]; float phasefac = psys->part->phasefac; if (psys->part->randphasefac != 0.0f) phasefac += psys->part->randphasefac * PSYS_FRAND((pa - psys->particles) + 20); axis_angle_to_quat(q_phase, vec, phasefac * (float)M_PI); mul_qt_v3(q_phase, side); } cross_v3_v3v3(nor, vec, side); unit_m4(mat); copy_v3_v3(mat[0], vec); copy_v3_v3(mat[1], side); copy_v3_v3(mat[2], nor); } else { quat_to_mat4(mat, pa->state.rot); } *scale = len; } void psys_make_billboard(ParticleBillboardData *bb, float xvec[3], float yvec[3], float zvec[3], float center[3]) { float onevec[3] = {0.0f, 0.0f, 0.0f}, tvec[3], tvec2[3]; xvec[0] = 1.0f; xvec[1] = 0.0f; xvec[2] = 0.0f; yvec[0] = 0.0f; yvec[1] = 1.0f; yvec[2] = 0.0f; /* can happen with bad pointcache or physics calculation * since this becomes geometry, nan's and inf's crash raytrace code. * better not allow this. */ if ((!finite(bb->vec[0])) || (!finite(bb->vec[1])) || (!finite(bb->vec[2])) || (!finite(bb->vel[0])) || (!finite(bb->vel[1])) || (!finite(bb->vel[2])) ) { zero_v3(bb->vec); zero_v3(bb->vel); zero_v3(xvec); zero_v3(yvec); zero_v3(zvec); zero_v3(center); return; } if (bb->align < PART_BB_VIEW) onevec[bb->align] = 1.0f; if (bb->lock && (bb->align == PART_BB_VIEW)) { normalize_v3_v3(xvec, bb->ob->obmat[0]); normalize_v3_v3(yvec, bb->ob->obmat[1]); normalize_v3_v3(zvec, bb->ob->obmat[2]); } else if (bb->align == PART_BB_VEL) { float temp[3]; normalize_v3_v3(temp, bb->vel); sub_v3_v3v3(zvec, bb->ob->obmat[3], bb->vec); if (bb->lock) { float fac = -dot_v3v3(zvec, temp); madd_v3_v3fl(zvec, temp, fac); } normalize_v3(zvec); cross_v3_v3v3(xvec, temp, zvec); normalize_v3(xvec); cross_v3_v3v3(yvec, zvec, xvec); } else { sub_v3_v3v3(zvec, bb->ob->obmat[3], bb->vec); if (bb->lock) zvec[bb->align] = 0.0f; normalize_v3(zvec); if (bb->align < PART_BB_VIEW) cross_v3_v3v3(xvec, onevec, zvec); else cross_v3_v3v3(xvec, bb->ob->obmat[1], zvec); normalize_v3(xvec); cross_v3_v3v3(yvec, zvec, xvec); } copy_v3_v3(tvec, xvec); copy_v3_v3(tvec2, yvec); mul_v3_fl(xvec, cos(bb->tilt * (float)M_PI)); mul_v3_fl(tvec2, sin(bb->tilt * (float)M_PI)); add_v3_v3(xvec, tvec2); mul_v3_fl(yvec, cos(bb->tilt * (float)M_PI)); mul_v3_fl(tvec, -sin(bb->tilt * (float)M_PI)); add_v3_v3(yvec, tvec); mul_v3_fl(xvec, bb->size[0]); mul_v3_fl(yvec, bb->size[1]); madd_v3_v3v3fl(center, bb->vec, xvec, bb->offset[0]); madd_v3_v3fl(center, yvec, bb->offset[1]); } void psys_apply_hair_lattice(Scene *scene, Object *ob, ParticleSystem *psys) { ParticleSimulationData sim = {0}; sim.scene = scene; sim.ob = ob; sim.psys = psys; sim.psmd = psys_get_modifier(ob, psys); psys->lattice_deform_data = psys_create_lattice_deform_data(&sim); if (psys->lattice_deform_data) { ParticleData *pa = psys->particles; HairKey *hkey; int p, h; float hairmat[4][4], imat[4][4]; for (p = 0; p < psys->totpart; p++, pa++) { psys_mat_hair_to_global(sim.ob, sim.psmd->dm, psys->part->from, pa, hairmat); invert_m4_m4(imat, hairmat); hkey = pa->hair; for (h = 0; h < pa->totkey; h++, hkey++) { mul_m4_v3(hairmat, hkey->co); calc_latt_deform(psys->lattice_deform_data, hkey->co, 1.0f); mul_m4_v3(imat, hkey->co); } } end_latt_deform(psys->lattice_deform_data); psys->lattice_deform_data = NULL; /* protect the applied shape */ psys->flag |= PSYS_EDITED; } }