/* particle.c * * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2007 by Janne Karhu. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/particle.c * \ingroup bke */ #include #include #include #include "MEM_guardedalloc.h" #include "DNA_curve_types.h" #include "DNA_group_types.h" #include "DNA_key_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_particle_types.h" #include "DNA_smoke_types.h" #include "DNA_scene_types.h" #include "BLI_blenlib.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BLI_kdtree.h" #include "BLI_rand.h" #include "BLI_threads.h" #include "BKE_anim.h" #include "BKE_animsys.h" #include "BKE_boids.h" #include "BKE_cloth.h" #include "BKE_effect.h" #include "BKE_global.h" #include "BKE_group.h" #include "BKE_main.h" #include "BKE_lattice.h" #include "BKE_displist.h" #include "BKE_particle.h" #include "BKE_object.h" #include "BKE_material.h" #include "BKE_key.h" #include "BKE_library.h" #include "BKE_depsgraph.h" #include "BKE_modifier.h" #include "BKE_mesh.h" #include "BKE_cdderivedmesh.h" #include "BKE_pointcache.h" #include "RE_render_ext.h" static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex); static void do_child_modifiers(ParticleSimulationData *sim, ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa, float *orco, float mat[4][4], ParticleKey *state, float t); /* few helpers for countall etc. */ int count_particles(ParticleSystem *psys){ ParticleSettings *part=psys->part; PARTICLE_P; int tot=0; LOOP_SHOWN_PARTICLES { if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0); else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0); else tot++; } return tot; } int count_particles_mod(ParticleSystem *psys, int totgr, int cur){ ParticleSettings *part=psys->part; PARTICLE_P; int tot=0; LOOP_SHOWN_PARTICLES { if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0); else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0); else if(p%totgr==cur) tot++; } return tot; } /* we allocate path cache memory in chunks instead of a big continguous * chunk, windows' memory allocater fails to find big blocks of memory often */ #define PATH_CACHE_BUF_SIZE 1024 static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int steps) { LinkData *buf; ParticleCacheKey **cache; int i, totkey, totbufkey; tot= MAX2(tot, 1); totkey = 0; cache = MEM_callocN(tot*sizeof(void*), "PathCacheArray"); while(totkey < tot) { totbufkey= MIN2(tot-totkey, PATH_CACHE_BUF_SIZE); buf= MEM_callocN(sizeof(LinkData), "PathCacheLinkData"); buf->data= MEM_callocN(sizeof(ParticleCacheKey)*totbufkey*steps, "ParticleCacheKey"); for(i=0; idata) + i*steps; totkey += totbufkey; BLI_addtail(bufs, buf); } return cache; } static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs) { LinkData *buf; if(cache) MEM_freeN(cache); for(buf= bufs->first; buf; buf=buf->next) MEM_freeN(buf->data); BLI_freelistN(bufs); } /************************************************/ /* Getting stuff */ /************************************************/ /* get object's active particle system safely */ ParticleSystem *psys_get_current(Object *ob) { ParticleSystem *psys; if(ob==NULL) return NULL; for(psys=ob->particlesystem.first; psys; psys=psys->next){ if(psys->flag & PSYS_CURRENT) return psys; } return NULL; } short psys_get_current_num(Object *ob) { ParticleSystem *psys; short i; if(ob==NULL) return 0; for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++) if(psys->flag & PSYS_CURRENT) return i; return i; } void psys_set_current_num(Object *ob, int index) { ParticleSystem *psys; short i; if(ob==NULL) return; for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++) { if(i == index) psys->flag |= PSYS_CURRENT; else psys->flag &= ~PSYS_CURRENT; } } Object *psys_find_object(Scene *scene, ParticleSystem *psys) { Base *base; ParticleSystem *tpsys; for(base = scene->base.first; base; base = base->next) { for(tpsys = base->object->particlesystem.first; psys; psys=psys->next) { if(tpsys == psys) return base->object; } } return NULL; } Object *psys_get_lattice(ParticleSimulationData *sim) { Object *lattice=NULL; if(psys_in_edit_mode(sim->scene, sim->psys)==0){ ModifierData *md = (ModifierData*)psys_get_modifier(sim->ob, sim->psys); for(; md; md=md->next){ if(md->type==eModifierType_Lattice){ LatticeModifierData *lmd = (LatticeModifierData *)md; lattice=lmd->object; break; } } if(lattice) init_latt_deform(lattice, NULL); } return lattice; } void psys_disable_all(Object *ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next) psys->flag |= PSYS_DISABLED; } void psys_enable_all(Object *ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next) psys->flag &= ~PSYS_DISABLED; } int psys_in_edit_mode(Scene *scene, ParticleSystem *psys) { return (scene->basact && (scene->basact->object->mode & OB_MODE_PARTICLE_EDIT) && psys==psys_get_current((scene->basact)->object) && (psys->edit || psys->pointcache->edit) && !psys->renderdata); } static void psys_create_frand(ParticleSystem *psys) { int i; float *rand = psys->frand = MEM_callocN(PSYS_FRAND_COUNT * sizeof(float), "particle randoms"); BLI_srandom(psys->seed); for(i=0; i<1024; i++, rand++) *rand = BLI_frand(); } int psys_check_enabled(Object *ob, ParticleSystem *psys) { ParticleSystemModifierData *psmd; if(psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE || !psys->part) return 0; psmd= psys_get_modifier(ob, psys); if(psys->renderdata || G.rendering) { if(!(psmd->modifier.mode & eModifierMode_Render)) return 0; } else if(!(psmd->modifier.mode & eModifierMode_Realtime)) return 0; /* perhaps not the perfect place, but we have to be sure the rands are there before usage */ if(!psys->frand) psys_create_frand(psys); else if(psys->recalc & PSYS_RECALC_RESET) { MEM_freeN(psys->frand); psys_create_frand(psys); } return 1; } int psys_check_edited(ParticleSystem *psys) { if(psys->part && psys->part->type==PART_HAIR) return (psys->flag & PSYS_EDITED || (psys->edit && psys->edit->edited)); else return (psys->pointcache->edit && psys->pointcache->edit->edited); } void psys_check_group_weights(ParticleSettings *part) { ParticleDupliWeight *dw, *tdw; GroupObject *go; int current = 0; if(part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first) { /* first remove all weights that don't have an object in the group */ dw = part->dupliweights.first; while(dw) { if(!object_in_group(dw->ob, part->dup_group)) { tdw = dw->next; BLI_freelinkN(&part->dupliweights, dw); dw = tdw; } else dw = dw->next; } /* then add objects in the group to new list */ go = part->dup_group->gobject.first; while(go) { dw = part->dupliweights.first; while(dw && dw->ob != go->ob) dw = dw->next; if(!dw) { dw = MEM_callocN(sizeof(ParticleDupliWeight), "ParticleDupliWeight"); dw->ob = go->ob; dw->count = 1; BLI_addtail(&part->dupliweights, dw); } go = go->next; } dw = part->dupliweights.first; for(; dw; dw=dw->next) { if(dw->flag & PART_DUPLIW_CURRENT) { current = 1; break; } } if(!current) { dw = part->dupliweights.first; if(dw) dw->flag |= PART_DUPLIW_CURRENT; } } else { BLI_freelistN(&part->dupliweights); } } int psys_uses_gravity(ParticleSimulationData *sim) { return sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY && sim->psys->part && sim->psys->part->effector_weights->global_gravity != 0.0f; } /************************************************/ /* Freeing stuff */ /************************************************/ static void fluid_free_settings(SPHFluidSettings *fluid) { if(fluid) MEM_freeN(fluid); } void psys_free_settings(ParticleSettings *part) { MTex *mtex; int a; BKE_free_animdata(&part->id); free_partdeflect(part->pd); free_partdeflect(part->pd2); if(part->effector_weights) MEM_freeN(part->effector_weights); BLI_freelistN(&part->dupliweights); boid_free_settings(part->boids); fluid_free_settings(part->fluid); for(a=0; amtex[a]; if(mtex && mtex->tex) mtex->tex->id.us--; if(mtex) MEM_freeN(mtex); } } void free_hair(Object *UNUSED(ob), ParticleSystem *psys, int dynamics) { PARTICLE_P; LOOP_PARTICLES { if(pa->hair) MEM_freeN(pa->hair); pa->hair = NULL; pa->totkey = 0; } psys->flag &= ~PSYS_HAIR_DONE; if(psys->clmd) { if(dynamics) { BKE_ptcache_free_list(&psys->ptcaches); psys->clmd->point_cache = psys->pointcache = NULL; psys->clmd->ptcaches.first = psys->clmd->ptcaches.last = NULL; modifier_free((ModifierData*)psys->clmd); psys->clmd = NULL; psys->pointcache = BKE_ptcache_add(&psys->ptcaches); } else { cloth_free_modifier(psys->clmd); } } if(psys->hair_in_dm) psys->hair_in_dm->release(psys->hair_in_dm); psys->hair_in_dm = NULL; if(psys->hair_out_dm) psys->hair_out_dm->release(psys->hair_out_dm); psys->hair_out_dm = NULL; } void free_keyed_keys(ParticleSystem *psys) { PARTICLE_P; if(psys->part->type == PART_HAIR) return; if(psys->particles && psys->particles->keys) { MEM_freeN(psys->particles->keys); LOOP_PARTICLES { if(pa->keys) { pa->keys= NULL; pa->totkey= 0; } } } } static void free_child_path_cache(ParticleSystem *psys) { psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs); psys->childcache = NULL; psys->totchildcache = 0; } void psys_free_path_cache(ParticleSystem *psys, PTCacheEdit *edit) { if(edit) { psys_free_path_cache_buffers(edit->pathcache, &edit->pathcachebufs); edit->pathcache= NULL; edit->totcached= 0; } if(psys) { psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs); psys->pathcache= NULL; psys->totcached= 0; free_child_path_cache(psys); } } void psys_free_children(ParticleSystem *psys) { if(psys->child) { MEM_freeN(psys->child); psys->child= NULL; psys->totchild=0; } free_child_path_cache(psys); } void psys_free_particles(ParticleSystem *psys) { PARTICLE_P; if(psys->particles) { if(psys->part->type==PART_HAIR) { LOOP_PARTICLES { if(pa->hair) MEM_freeN(pa->hair); } } if(psys->particles->keys) MEM_freeN(psys->particles->keys); if(psys->particles->boid) MEM_freeN(psys->particles->boid); MEM_freeN(psys->particles); psys->particles= NULL; psys->totpart= 0; } } void psys_free_pdd(ParticleSystem *psys) { if(psys->pdd) { if(psys->pdd->cdata) MEM_freeN(psys->pdd->cdata); psys->pdd->cdata = NULL; if(psys->pdd->vdata) MEM_freeN(psys->pdd->vdata); psys->pdd->vdata = NULL; if(psys->pdd->ndata) MEM_freeN(psys->pdd->ndata); psys->pdd->ndata = NULL; if(psys->pdd->vedata) MEM_freeN(psys->pdd->vedata); psys->pdd->vedata = NULL; psys->pdd->totpoint = 0; psys->pdd->tot_vec_size = 0; } } /* free everything */ void psys_free(Object *ob, ParticleSystem * psys) { if(psys){ int nr = 0; ParticleSystem * tpsys; psys_free_path_cache(psys, NULL); free_hair(ob, psys, 1); psys_free_particles(psys); if(psys->edit && psys->free_edit) psys->free_edit(psys->edit); if(psys->child){ MEM_freeN(psys->child); psys->child = NULL; psys->totchild = 0; } // check if we are last non-visible particle system for(tpsys=ob->particlesystem.first; tpsys; tpsys=tpsys->next){ if(tpsys->part) { if(ELEM(tpsys->part->ren_as,PART_DRAW_OB,PART_DRAW_GR)) { nr++; break; } } } // clear do-not-draw-flag if(!nr) ob->transflag &= ~OB_DUPLIPARTS; if(psys->part){ psys->part->id.us--; psys->part=NULL; } BKE_ptcache_free_list(&psys->ptcaches); psys->pointcache = NULL; BLI_freelistN(&psys->targets); BLI_bvhtree_free(psys->bvhtree); BLI_kdtree_free(psys->tree); if(psys->fluid_springs) MEM_freeN(psys->fluid_springs); pdEndEffectors(&psys->effectors); if(psys->frand) MEM_freeN(psys->frand); if(psys->pdd) { psys_free_pdd(psys); MEM_freeN(psys->pdd); } MEM_freeN(psys); } } /************************************************/ /* Rendering */ /************************************************/ /* these functions move away particle data and bring it back after * rendering, to make different render settings possible without * removing the previous data. this should be solved properly once */ typedef struct ParticleRenderElem { int curchild, totchild, reduce; float lambda, t, scalemin, scalemax; } ParticleRenderElem; typedef struct ParticleRenderData { ChildParticle *child; ParticleCacheKey **pathcache; ParticleCacheKey **childcache; ListBase pathcachebufs, childcachebufs; int totchild, totcached, totchildcache; DerivedMesh *dm; int totdmvert, totdmedge, totdmface; float mat[4][4]; float viewmat[4][4], winmat[4][4]; int winx, winy; int dosimplify; int timeoffset; ParticleRenderElem *elems; int *origindex; } ParticleRenderData; static float psys_render_viewport_falloff(double rate, float dist, float width) { return pow(rate, dist/width); } static float psys_render_projected_area(ParticleSystem *psys, float *center, float area, double vprate, float *viewport) { ParticleRenderData *data= psys->renderdata; float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius; /* transform to view space */ VECCOPY(co, center); co[3]= 1.0f; mul_m4_v4(data->viewmat, co); /* compute two vectors orthogonal to view vector */ normalize_v3_v3(view, co); ortho_basis_v3v3_v3( ortho1, ortho2,view); /* compute on screen minification */ w= co[2]*data->winmat[2][3] + data->winmat[3][3]; dx= data->winx*ortho2[0]*data->winmat[0][0]; dy= data->winy*ortho2[1]*data->winmat[1][1]; w= sqrt(dx*dx + dy*dy)/w; /* w squared because we are working with area */ area= area*w*w; /* viewport of the screen test */ /* project point on screen */ mul_m4_v4(data->winmat, co); if(co[3] != 0.0f) { co[0]= 0.5f*data->winx*(1.0f + co[0]/co[3]); co[1]= 0.5f*data->winy*(1.0f + co[1]/co[3]); } /* screen space radius */ radius= sqrt(area/(float)M_PI); /* make smaller using fallof once over screen edge */ *viewport= 1.0f; if(co[0]+radius < 0.0f) *viewport *= psys_render_viewport_falloff(vprate, -(co[0]+radius), data->winx); else if(co[0]-radius > data->winx) *viewport *= psys_render_viewport_falloff(vprate, (co[0]-radius) - data->winx, data->winx); if(co[1]+radius < 0.0f) *viewport *= psys_render_viewport_falloff(vprate, -(co[1]+radius), data->winy); else if(co[1]-radius > data->winy) *viewport *= psys_render_viewport_falloff(vprate, (co[1]-radius) - data->winy, data->winy); return area; } void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[][4], float winmat[][4], int winx, int winy, int timeoffset) { ParticleRenderData*data; ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys); if(!G.rendering) return; if(psys->renderdata) return; data= MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData"); data->child= psys->child; data->totchild= psys->totchild; data->pathcache= psys->pathcache; data->pathcachebufs.first = psys->pathcachebufs.first; data->pathcachebufs.last = psys->pathcachebufs.last; data->totcached= psys->totcached; data->childcache= psys->childcache; data->childcachebufs.first = psys->childcachebufs.first; data->childcachebufs.last = psys->childcachebufs.last; data->totchildcache= psys->totchildcache; if(psmd->dm) data->dm= CDDM_copy(psmd->dm); data->totdmvert= psmd->totdmvert; data->totdmedge= psmd->totdmedge; data->totdmface= psmd->totdmface; psys->child= NULL; psys->pathcache= NULL; psys->childcache= NULL; psys->totchild= psys->totcached= psys->totchildcache= 0; psys->pathcachebufs.first = psys->pathcachebufs.last = NULL; psys->childcachebufs.first = psys->childcachebufs.last = NULL; copy_m4_m4(data->winmat, winmat); mul_m4_m4m4(data->viewmat, ob->obmat, viewmat); mul_m4_m4m4(data->mat, data->viewmat, winmat); data->winx= winx; data->winy= winy; data->timeoffset= timeoffset; psys->renderdata= data; /* Hair can and has to be recalculated if everything isn't displayed. */ if(psys->part->disp != 100 && psys->part->type == PART_HAIR) psys->recalc |= PSYS_RECALC_RESET; } void psys_render_restore(Object *ob, ParticleSystem *psys) { ParticleRenderData*data; ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys); data= psys->renderdata; if(!data) return; if(data->elems) MEM_freeN(data->elems); if(psmd->dm) { psmd->dm->needsFree= 1; psmd->dm->release(psmd->dm); } psys_free_path_cache(psys, NULL); if(psys->child){ MEM_freeN(psys->child); psys->child= 0; psys->totchild= 0; } psys->child= data->child; psys->totchild= data->totchild; psys->pathcache= data->pathcache; psys->pathcachebufs.first = data->pathcachebufs.first; psys->pathcachebufs.last = data->pathcachebufs.last; psys->totcached= data->totcached; psys->childcache= data->childcache; psys->childcachebufs.first = data->childcachebufs.first; psys->childcachebufs.last = data->childcachebufs.last; psys->totchildcache= data->totchildcache; psmd->dm= data->dm; psmd->totdmvert= data->totdmvert; psmd->totdmedge= data->totdmedge; psmd->totdmface= data->totdmface; psmd->flag &= ~eParticleSystemFlag_psys_updated; if(psmd->dm) psys_calc_dmcache(ob, psmd->dm, psys); MEM_freeN(data); psys->renderdata= NULL; } int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot) { DerivedMesh *dm= ctx->dm; Mesh *me= (Mesh*)(ctx->sim.ob->data); MFace *mf, *mface; MVert *mvert; ParticleRenderData *data; ParticleRenderElem *elems, *elem; ParticleSettings *part= ctx->sim.psys->part; float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp; float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport; double vprate; int *origindex, *facetotvert; int a, b, totorigface, totface, newtot, skipped; if(part->ren_as!=PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND)) return tot; if(!ctx->sim.psys->renderdata) return tot; data= ctx->sim.psys->renderdata; if(data->timeoffset) return 0; if(!(part->simplify_flag & PART_SIMPLIFY_ENABLE)) return tot; mvert= dm->getVertArray(dm); mface= dm->getFaceArray(dm); origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX); totface= dm->getNumFaces(dm); totorigface= me->totface; if(totface == 0 || totorigface == 0) return tot; facearea= MEM_callocN(sizeof(float)*totorigface, "SimplifyFaceArea"); facecenter= MEM_callocN(sizeof(float[3])*totorigface, "SimplifyFaceCenter"); facetotvert= MEM_callocN(sizeof(int)*totorigface, "SimplifyFaceArea"); elems= MEM_callocN(sizeof(ParticleRenderElem)*totorigface, "SimplifyFaceElem"); if(data->elems) MEM_freeN(data->elems); data->dosimplify= 1; data->elems= elems; data->origindex= origindex; /* compute number of children per original face */ for(a=0; aindex[a]]: ctx->index[a]; if(b != -1) elems[b].totchild++; } /* compute areas and centers of original faces */ for(mf=mface, a=0; av1].co); VECCOPY(co2, mvert[mf->v2].co); VECCOPY(co3, mvert[mf->v3].co); VECADD(facecenter[b], facecenter[b], co1); VECADD(facecenter[b], facecenter[b], co2); VECADD(facecenter[b], facecenter[b], co3); if(mf->v4) { VECCOPY(co4, mvert[mf->v4].co); VECADD(facecenter[b], facecenter[b], co4); facearea[b] += area_quad_v3(co1, co2, co3, co4); facetotvert[b] += 4; } else { facearea[b] += area_tri_v3(co1, co2, co3); facetotvert[b] += 3; } } } for(a=0; a 0) mul_v3_fl(facecenter[a], 1.0f/facetotvert[a]); /* for conversion from BU area / pixel area to reference screen size */ mesh_get_texspace(me, 0, 0, size); fac= ((size[0] + size[1] + size[2])/3.0f)/part->simplify_refsize; fac= fac*fac; powrate= log(0.5f)/log(part->simplify_rate*0.5f); if(part->simplify_flag & PART_SIMPLIFY_VIEWPORT) vprate= pow(1.0f - part->simplify_viewport, 5.0); else vprate= 1.0; /* set simplification parameters per original face */ for(a=0, elem=elems; asim.psys, facecenter[a], facearea[a], vprate, &viewport); arearatio= fac*area/facearea[a]; if((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) { /* lambda is percentage of elements to keep */ lambda= (arearatio < 1.0f)? powf(arearatio, powrate): 1.0f; lambda *= viewport; lambda= MAX2(lambda, 1.0f/elem->totchild); /* compute transition region */ t= part->simplify_transition; elem->t= (lambda-t < 0.0f)? lambda: (lambda+t > 1.0f)? 1.0f-lambda: t; elem->reduce= 1; /* scale at end and beginning of the transition region */ elem->scalemax= (lambda+t < 1.0f)? 1.0f/lambda: 1.0f/(1.0f - elem->t*elem->t/t); elem->scalemin= (lambda+t < 1.0f)? 0.0f: elem->scalemax*(1.0f-elem->t/t); elem->scalemin= sqrt(elem->scalemin); elem->scalemax= sqrt(elem->scalemax); /* clamp scaling */ scaleclamp= MIN2(elem->totchild, 10.0f); elem->scalemin= MIN2(scaleclamp, elem->scalemin); elem->scalemax= MIN2(scaleclamp, elem->scalemax); /* extend lambda to include transition */ lambda= lambda + elem->t; if(lambda > 1.0f) lambda= 1.0f; } else { lambda= arearatio; elem->scalemax= 1.0f; //sqrt(lambda); elem->scalemin= 1.0f; //sqrt(lambda); elem->reduce= 0; } elem->lambda= lambda; elem->scalemin= sqrt(elem->scalemin); elem->scalemax= sqrt(elem->scalemax); elem->curchild= 0; } MEM_freeN(facearea); MEM_freeN(facecenter); MEM_freeN(facetotvert); /* move indices and set random number skipping */ ctx->skip= MEM_callocN(sizeof(int)*tot, "SimplificationSkip"); skipped= 0; for(a=0, newtot=0; aindex[a]]: ctx->index[a]; if(b != -1) { if(elems[b].curchild++ < ceil(elems[b].lambda*elems[b].totchild)) { ctx->index[newtot]= ctx->index[a]; ctx->skip[newtot]= skipped; skipped= 0; newtot++; } else skipped++; } else skipped++; } for(a=0, elem=elems; acurchild= 0; return newtot; } int psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params) { ParticleRenderData *data; ParticleRenderElem *elem; float x, w, scale, alpha, lambda, t, scalemin, scalemax; int b; if(!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE))) return 0; data= psys->renderdata; if(!data->dosimplify) return 0; b= (data->origindex)? data->origindex[cpa->num]: cpa->num; if(b == -1) return 0; elem= &data->elems[b]; lambda= elem->lambda; t= elem->t; scalemin= elem->scalemin; scalemax= elem->scalemax; if(!elem->reduce) { scale= scalemin; alpha= 1.0f; } else { x= (elem->curchild+0.5f)/elem->totchild; if(x < lambda-t) { scale= scalemax; alpha= 1.0f; } else if(x >= lambda+t) { scale= scalemin; alpha= 0.0f; } else { w= (lambda+t - x)/(2.0f*t); scale= scalemin + (scalemax - scalemin)*w; alpha= w; } } params[0]= scale; params[1]= alpha; elem->curchild++; return 1; } /************************************************/ /* Interpolation */ /************************************************/ static float interpolate_particle_value(float v1, float v2, float v3, float v4, float *w, int four) { float value; value= w[0]*v1 + w[1]*v2 + w[2]*v3; if(four) value += w[3]*v4; CLAMP(value, 0.f, 1.f); return value; } void psys_interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result, int velocity) { float t[4]; if(type<0) { interp_cubic_v3( result->co, result->vel,keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt); } else { key_curve_position_weights(dt, t, type); interp_v3_v3v3v3v3(result->co, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); if(velocity){ float temp[3]; if(dt>0.999f){ key_curve_position_weights(dt-0.001f, t, type); interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); VECSUB(result->vel, result->co, temp); } else{ key_curve_position_weights(dt+0.001f, t, type); interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); VECSUB(result->vel, temp, result->co); } } } } typedef struct ParticleInterpolationData { HairKey *hkey[2]; DerivedMesh *dm; MVert *mvert[2]; int keyed; ParticleKey *kkey[2]; PointCache *cache; PTCacheMem *pm; PTCacheEditPoint *epoint; PTCacheEditKey *ekey[2]; float birthtime, dietime; int bspline; } ParticleInterpolationData; /* Assumes pointcache->mem_cache exists, so for disk cached particles call psys_make_temp_pointcache() before use */ /* It uses ParticleInterpolationData->pm to store the current memory cache frame so it's thread safe. */ static void get_pointcache_keys_for_time(Object *UNUSED(ob), PointCache *cache, PTCacheMem **cur, int index, float t, ParticleKey *key1, ParticleKey *key2) { static PTCacheMem *pm = NULL; int index1, index2; if(index < 0) { /* initialize */ *cur = cache->mem_cache.first; if(*cur) *cur = (*cur)->next; } else { if(*cur) { while(*cur && (*cur)->next && (float)(*cur)->frame < t) *cur = (*cur)->next; pm = *cur; index2 = BKE_ptcache_mem_index_find(pm, index); index1 = BKE_ptcache_mem_index_find(pm->prev, index); BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame); if(index1 < 0) copy_particle_key(key1, key2, 1); else BKE_ptcache_make_particle_key(key1, index1, pm->prev->data, (float)pm->prev->frame); } else if(cache->mem_cache.first) { pm = cache->mem_cache.first; index2 = BKE_ptcache_mem_index_find(pm, index); BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame); copy_particle_key(key1, key2, 1); } } } static int get_pointcache_times_for_particle(PointCache *cache, int index, float *start, float *end) { PTCacheMem *pm; int ret = 0; for(pm=cache->mem_cache.first; pm; pm=pm->next) { if(BKE_ptcache_mem_index_find(pm, index) >= 0) { *start = pm->frame; ret++; break; } } for(pm=cache->mem_cache.last; pm; pm=pm->prev) { if(BKE_ptcache_mem_index_find(pm, index) >= 0) { *end = pm->frame; ret++; break; } } return ret == 2; } float psys_get_dietime_from_cache(PointCache *cache, int index) { PTCacheMem *pm; int dietime = 10000000; /* some max value so that we can default to pa->time+lifetime */ for(pm=cache->mem_cache.last; pm; pm=pm->prev) { if(BKE_ptcache_mem_index_find(pm, index) >= 0) return (float)pm->frame; } return (float)dietime; } static void init_particle_interpolation(Object *ob, ParticleSystem *psys, ParticleData *pa, ParticleInterpolationData *pind) { if(pind->epoint) { PTCacheEditPoint *point = pind->epoint; pind->ekey[0] = point->keys; pind->ekey[1] = point->totkey > 1 ? point->keys + 1 : NULL; pind->birthtime = *(point->keys->time); pind->dietime = *((point->keys + point->totkey - 1)->time); } else if(pind->keyed) { ParticleKey *key = pa->keys; pind->kkey[0] = key; pind->kkey[1] = pa->totkey > 1 ? key + 1 : NULL; pind->birthtime = key->time; pind->dietime = (key + pa->totkey - 1)->time; } else if(pind->cache) { float start=0.0f, end=0.0f; get_pointcache_keys_for_time(ob, pind->cache, &pind->pm, -1, 0.0f, NULL, NULL); pind->birthtime = pa ? pa->time : pind->cache->startframe; pind->dietime = pa ? pa->dietime : pind->cache->endframe; if(get_pointcache_times_for_particle(pind->cache, pa - psys->particles, &start, &end)) { pind->birthtime = MAX2(pind->birthtime, start); pind->dietime = MIN2(pind->dietime, end); } } else { HairKey *key = pa->hair; pind->hkey[0] = key; pind->hkey[1] = key + 1; pind->birthtime = key->time; pind->dietime = (key + pa->totkey - 1)->time; if(pind->dm) { pind->mvert[0] = CDDM_get_vert(pind->dm, pa->hair_index); pind->mvert[1] = pind->mvert[0] + 1; } } } static void edit_to_particle(ParticleKey *key, PTCacheEditKey *ekey) { VECCOPY(key->co, ekey->co); if(ekey->vel) { VECCOPY(key->vel, ekey->vel); } key->time = *(ekey->time); } static void hair_to_particle(ParticleKey *key, HairKey *hkey) { VECCOPY(key->co, hkey->co); key->time = hkey->time; } static void mvert_to_particle(ParticleKey *key, MVert *mvert, HairKey *hkey) { VECCOPY(key->co, mvert->co); key->time = hkey->time; } static void do_particle_interpolation(ParticleSystem *psys, int p, ParticleData *pa, float t, ParticleInterpolationData *pind, ParticleKey *result) { PTCacheEditPoint *point = pind->epoint; ParticleKey keys[4]; int point_vel = (point && point->keys->vel); float real_t, dfra, keytime, invdt = 1.f; /* billboards wont fill in all of these, so start cleared */ memset(keys, 0, sizeof(keys)); /* interpret timing and find keys */ if(point) { if(result->time < 0.0f) real_t = -result->time; else real_t = *(pind->ekey[0]->time) + t * (*(pind->ekey[0][point->totkey-1].time) - *(pind->ekey[0]->time)); while(*(pind->ekey[1]->time) < real_t) pind->ekey[1]++; pind->ekey[0] = pind->ekey[1] - 1; } else if(pind->keyed) { /* we have only one key, so let's use that */ if(pind->kkey[1]==NULL) { copy_particle_key(result, pind->kkey[0], 1); return; } if(result->time < 0.0f) real_t = -result->time; else real_t = pind->kkey[0]->time + t * (pind->kkey[0][pa->totkey-1].time - pind->kkey[0]->time); if(psys->part->phystype==PART_PHYS_KEYED && psys->flag & PSYS_KEYED_TIMING) { ParticleTarget *pt = psys->targets.first; pt=pt->next; while(pt && pa->time + pt->time < real_t) pt= pt->next; if(pt) { pt=pt->prev; if(pa->time + pt->time + pt->duration > real_t) real_t = pa->time + pt->time; } else real_t = pa->time + ((ParticleTarget*)psys->targets.last)->time; } CLAMP(real_t, pa->time, pa->dietime); while(pind->kkey[1]->time < real_t) pind->kkey[1]++; pind->kkey[0] = pind->kkey[1] - 1; } else if(pind->cache) { if(result->time < 0.0f) /* flag for time in frames */ real_t = -result->time; else real_t = pa->time + t * (pa->dietime - pa->time); } else { if(result->time < 0.0f) real_t = -result->time; else real_t = pind->hkey[0]->time + t * (pind->hkey[0][pa->totkey-1].time - pind->hkey[0]->time); while(pind->hkey[1]->time < real_t) { pind->hkey[1]++; pind->mvert[1]++; } pind->hkey[0] = pind->hkey[1] - 1; } /* set actual interpolation keys */ if(point) { edit_to_particle(keys + 1, pind->ekey[0]); edit_to_particle(keys + 2, pind->ekey[1]); } else if(pind->dm) { pind->mvert[0] = pind->mvert[1] - 1; mvert_to_particle(keys + 1, pind->mvert[0], pind->hkey[0]); mvert_to_particle(keys + 2, pind->mvert[1], pind->hkey[1]); } else if(pind->keyed) { memcpy(keys + 1, pind->kkey[0], sizeof(ParticleKey)); memcpy(keys + 2, pind->kkey[1], sizeof(ParticleKey)); } else if(pind->cache) { get_pointcache_keys_for_time(NULL, pind->cache, &pind->pm, p, real_t, keys+1, keys+2); } else { hair_to_particle(keys + 1, pind->hkey[0]); hair_to_particle(keys + 2, pind->hkey[1]); } /* set secondary interpolation keys for hair */ if(!pind->keyed && !pind->cache && !point_vel) { if(point) { if(pind->ekey[0] != point->keys) edit_to_particle(keys, pind->ekey[0] - 1); else edit_to_particle(keys, pind->ekey[0]); } else if(pind->dm) { if(pind->hkey[0] != pa->hair) mvert_to_particle(keys, pind->mvert[0] - 1, pind->hkey[0] - 1); else mvert_to_particle(keys, pind->mvert[0], pind->hkey[0]); } else { if(pind->hkey[0] != pa->hair) hair_to_particle(keys, pind->hkey[0] - 1); else hair_to_particle(keys, pind->hkey[0]); } if(point) { if(pind->ekey[1] != point->keys + point->totkey - 1) edit_to_particle(keys + 3, pind->ekey[1] + 1); else edit_to_particle(keys + 3, pind->ekey[1]); } else if(pind->dm) { if(pind->hkey[1] != pa->hair + pa->totkey - 1) mvert_to_particle(keys + 3, pind->mvert[1] + 1, pind->hkey[1] + 1); else mvert_to_particle(keys + 3, pind->mvert[1], pind->hkey[1]); } else { if(pind->hkey[1] != pa->hair + pa->totkey - 1) hair_to_particle(keys + 3, pind->hkey[1] + 1); else hair_to_particle(keys + 3, pind->hkey[1]); } } dfra = keys[2].time - keys[1].time; keytime = (real_t - keys[1].time) / dfra; /* convert velocity to timestep size */ if(pind->keyed || pind->cache || point_vel){ invdt = dfra * 0.04f * (psys ? psys->part->timetweak : 1.f); mul_v3_fl(keys[1].vel, invdt); mul_v3_fl(keys[2].vel, invdt); interp_qt_qtqt(result->rot,keys[1].rot,keys[2].rot,keytime); } /* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0,1]->[k2,k3] (k1 & k4 used for cardinal & bspline interpolation)*/ psys_interpolate_particle((pind->keyed || pind->cache || point_vel) ? -1 /* signal for cubic interpolation */ : (pind->bspline ? KEY_BSPLINE : KEY_CARDINAL) ,keys, keytime, result, 1); /* the velocity needs to be converted back from cubic interpolation */ if(pind->keyed || pind->cache || point_vel) mul_v3_fl(result->vel, 1.f/invdt); } /************************************************/ /* Particles on a dm */ /************************************************/ /* interpolate a location on a face based on face coordinates */ void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3], float *w, float *vec, float *nor, float *utan, float *vtan, float *orco,float *ornor){ float *v1=0, *v2=0, *v3=0, *v4=0; float e1[3],e2[3],s1,s2,t1,t2; float *uv1, *uv2, *uv3, *uv4; float n1[3], n2[3], n3[3], n4[3]; float tuv[4][2]; float *o1, *o2, *o3, *o4; v1= mvert[mface->v1].co; v2= mvert[mface->v2].co; v3= mvert[mface->v3].co; normal_short_to_float_v3(n1, mvert[mface->v1].no); normal_short_to_float_v3(n2, mvert[mface->v2].no); normal_short_to_float_v3(n3, mvert[mface->v3].no); if(mface->v4) { v4= mvert[mface->v4].co; normal_short_to_float_v3(n4, mvert[mface->v4].no); interp_v3_v3v3v3v3(vec, v1, v2, v3, v4, w); if(nor){ if(mface->flag & ME_SMOOTH) interp_v3_v3v3v3v3(nor, n1, n2, n3, n4, w); else normal_quad_v3(nor,v1,v2,v3,v4); } } else { interp_v3_v3v3v3(vec, v1, v2, v3, w); if(nor){ if(mface->flag & ME_SMOOTH) interp_v3_v3v3v3(nor, n1, n2, n3, w); else normal_tri_v3(nor,v1,v2,v3); } } /* calculate tangent vectors */ if(utan && vtan){ if(tface){ uv1= tface->uv[0]; uv2= tface->uv[1]; uv3= tface->uv[2]; uv4= tface->uv[3]; } else{ uv1= tuv[0]; uv2= tuv[1]; uv3= tuv[2]; uv4= tuv[3]; map_to_sphere( uv1, uv1+1,v1[0], v1[1], v1[2]); map_to_sphere( uv2, uv2+1,v2[0], v2[1], v2[2]); map_to_sphere( uv3, uv3+1,v3[0], v3[1], v3[2]); if(v4) map_to_sphere( uv4, uv4+1,v4[0], v4[1], v4[2]); } if(v4){ s1= uv3[0] - uv1[0]; s2= uv4[0] - uv1[0]; t1= uv3[1] - uv1[1]; t2= uv4[1] - uv1[1]; sub_v3_v3v3(e1, v3, v1); sub_v3_v3v3(e2, v4, v1); } else{ s1= uv2[0] - uv1[0]; s2= uv3[0] - uv1[0]; t1= uv2[1] - uv1[1]; t2= uv3[1] - uv1[1]; sub_v3_v3v3(e1, v2, v1); sub_v3_v3v3(e2, v3, v1); } vtan[0] = (s1*e2[0] - s2*e1[0]); vtan[1] = (s1*e2[1] - s2*e1[1]); vtan[2] = (s1*e2[2] - s2*e1[2]); utan[0] = (t1*e2[0] - t2*e1[0]); utan[1] = (t1*e2[1] - t2*e1[1]); utan[2] = (t1*e2[2] - t2*e1[2]); } if(orco) { if(orcodata) { o1= orcodata[mface->v1]; o2= orcodata[mface->v2]; o3= orcodata[mface->v3]; if(mface->v4) { o4= orcodata[mface->v4]; interp_v3_v3v3v3v3(orco, o1, o2, o3, o4, w); if(ornor) normal_quad_v3( ornor,o1, o2, o3, o4); } else { interp_v3_v3v3v3(orco, o1, o2, o3, w); if(ornor) normal_tri_v3( ornor,o1, o2, o3); } } else { VECCOPY(orco, vec); if(ornor && nor) VECCOPY(ornor, nor); } } } void psys_interpolate_uvs(MTFace *tface, int quad, float *w, float *uvco) { float v10= tface->uv[0][0]; float v11= tface->uv[0][1]; float v20= tface->uv[1][0]; float v21= tface->uv[1][1]; float v30= tface->uv[2][0]; float v31= tface->uv[2][1]; float v40,v41; if(quad) { v40= tface->uv[3][0]; v41= tface->uv[3][1]; uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30 + w[3]*v40; uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31 + w[3]*v41; } else { uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30; uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31; } } void psys_interpolate_mcol(MCol *mcol, int quad, float *w, MCol *mc) { char *cp, *cp1, *cp2, *cp3, *cp4; cp= (char *)mc; cp1= (char *)&mcol[0]; cp2= (char *)&mcol[1]; cp3= (char *)&mcol[2]; if(quad) { cp4= (char *)&mcol[3]; cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0] + w[3]*cp4[0]); cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1] + w[3]*cp4[1]); cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2] + w[3]*cp4[2]); cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3] + w[3]*cp4[3]); } else { cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0]); cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1]); cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2]); cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3]); } } static float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, float *fw, float *values) { if(values==0 || index==-1) return 0.0; switch(from){ case PART_FROM_VERT: return values[index]; case PART_FROM_FACE: case PART_FROM_VOLUME: { MFace *mf=dm->getFaceData(dm,index,CD_MFACE); return interpolate_particle_value(values[mf->v1],values[mf->v2],values[mf->v3],values[mf->v4],fw,mf->v4); } } return 0.0; } /* conversion of pa->fw to origspace layer coordinates */ static void psys_w_to_origspace(float *w, float *uv) { uv[0]= w[1] + w[2]; uv[1]= w[2] + w[3]; } /* conversion of pa->fw to weights in face from origspace */ static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, float *w, float *neww) { float v[4][3], co[3]; v[0][0]= osface->uv[0][0]; v[0][1]= osface->uv[0][1]; v[0][2]= 0.0f; v[1][0]= osface->uv[1][0]; v[1][1]= osface->uv[1][1]; v[1][2]= 0.0f; v[2][0]= osface->uv[2][0]; v[2][1]= osface->uv[2][1]; v[2][2]= 0.0f; psys_w_to_origspace(w, co); co[2]= 0.0f; if(quad) { v[3][0]= osface->uv[3][0]; v[3][1]= osface->uv[3][1]; v[3][2]= 0.0f; interp_weights_poly_v3( neww,v, 4, co); } else { interp_weights_poly_v3( neww,v, 3, co); neww[3]= 0.0f; } } /* find the derived mesh face for a particle, set the mf passed. this is slow * and can be optimized but only for many lookups. returns the face index. */ int psys_particle_dm_face_lookup(Object *ob, DerivedMesh *dm, int index, float *fw, struct LinkNode *node) { Mesh *me= (Mesh*)ob->data; MFace *mface; OrigSpaceFace *osface; int *origindex; int quad, findex, totface; float uv[2], (*faceuv)[2]; mface = dm->getFaceDataArray(dm, CD_MFACE); origindex = dm->getFaceDataArray(dm, CD_ORIGINDEX); osface = dm->getFaceDataArray(dm, CD_ORIGSPACE); totface = dm->getNumFaces(dm); if(osface==NULL || origindex==NULL) { /* Assume we dont need osface data */ if (index = me->totface) return DMCACHE_NOTFOUND; /* index not in the original mesh */ psys_w_to_origspace(fw, uv); if(node) { /* we have a linked list of faces that we use, faster! */ for(;node; node=node->next) { findex= GET_INT_FROM_POINTER(node->link); faceuv= osface[findex].uv; quad= mface[findex].v4; /* check that this intersects - Its possible this misses :/ - * could also check its not between */ if(quad) { if(isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) return findex; } else if(isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) return findex; } } else { /* if we have no node, try every face */ for(findex=0; findexdeformedOnly || index_dmcache == DMCACHE_ISCHILD) { /* for meshes that are either only defined or for child particles, the * index and fw do not require any mapping, so we can directly use it */ if(from == PART_FROM_VERT) { if(index >= dm->getNumVerts(dm)) return 0; *mapindex = index; } else { /* FROM_FACE/FROM_VOLUME */ if(index >= dm->getNumFaces(dm)) return 0; *mapindex = index; QUATCOPY(mapfw, fw); } } else { /* for other meshes that have been modified, we try to map the particle * to their new location, which means a different index, and for faces * also a new face interpolation weights */ if(from == PART_FROM_VERT) { if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache > dm->getNumVerts(dm)) return 0; *mapindex = index_dmcache; } else { /* FROM_FACE/FROM_VOLUME */ /* find a face on the derived mesh that uses this face */ MFace *mface; OrigSpaceFace *osface; int i; i = index_dmcache; if(i== DMCACHE_NOTFOUND || i >= dm->getNumFaces(dm)) return 0; *mapindex = i; /* modify the original weights to become * weights for the derived mesh face */ osface= dm->getFaceDataArray(dm, CD_ORIGSPACE); mface= dm->getFaceData(dm, i, CD_MFACE); if(osface == NULL) mapfw[0]= mapfw[1]= mapfw[2]= mapfw[3]= 0.0f; else psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw); } } return 1; } /* interprets particle data to get a point on a mesh in object space */ void psys_particle_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, float *fw, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor) { float tmpnor[3], mapfw[4]; float (*orcodata)[3]; int mapindex; if(!psys_map_index_on_dm(dm, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) { if(vec) { vec[0]=vec[1]=vec[2]=0.0; } if(nor) { nor[0]=nor[1]=0.0; nor[2]=1.0; } if(orco) { orco[0]=orco[1]=orco[2]=0.0; } if(ornor) { ornor[0]=ornor[1]=0.0; ornor[2]=1.0; } if(utan) { utan[0]=utan[1]=utan[2]=0.0; } if(vtan) { vtan[0]=vtan[1]=vtan[2]=0.0; } return; } orcodata= dm->getVertDataArray(dm, CD_ORCO); if(from == PART_FROM_VERT) { dm->getVertCo(dm,mapindex,vec); if(nor) { dm->getVertNo(dm,mapindex,nor); normalize_v3(nor); } if(orco) VECCOPY(orco, orcodata[mapindex]) if(ornor) { dm->getVertNo(dm,mapindex,nor); normalize_v3(nor); } if(utan && vtan) { utan[0]= utan[1]= utan[2]= 0.0f; vtan[0]= vtan[1]= vtan[2]= 0.0f; } } else { /* PART_FROM_FACE / PART_FROM_VOLUME */ MFace *mface; MTFace *mtface; MVert *mvert; mface=dm->getFaceData(dm,mapindex,CD_MFACE); mvert=dm->getVertDataArray(dm,CD_MVERT); mtface=CustomData_get_layer(&dm->faceData,CD_MTFACE); if(mtface) mtface += mapindex; if(from==PART_FROM_VOLUME) { psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,tmpnor,utan,vtan,orco,ornor); if(nor) VECCOPY(nor,tmpnor); normalize_v3(tmpnor); mul_v3_fl(tmpnor,-foffset); VECADD(vec,vec,tmpnor); } else psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,nor,utan,vtan,orco,ornor); } } float psys_particle_value_from_verts(DerivedMesh *dm, short from, ParticleData *pa, float *values) { float mapfw[4]; int mapindex; if(!psys_map_index_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw)) return 0.0f; return psys_interpolate_value_from_verts(dm, from, mapindex, mapfw, values); } ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys) { ModifierData *md; ParticleSystemModifierData *psmd; for(md=ob->modifiers.first; md; md=md->next){ if(md->type==eModifierType_ParticleSystem){ psmd= (ParticleSystemModifierData*) md; if(psmd->psys==psys){ return psmd; } } } return NULL; } /************************************************/ /* Particles on a shape */ /************************************************/ /* ready for future use */ static void psys_particle_on_shape(int UNUSED(distr), int UNUSED(index), float *UNUSED(fuv), float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor) { /* TODO */ float zerovec[3]={0.0f,0.0f,0.0f}; if(vec){ VECCOPY(vec,zerovec); } if(nor){ VECCOPY(nor,zerovec); } if(utan){ VECCOPY(utan,zerovec); } if(vtan){ VECCOPY(vtan,zerovec); } if(orco){ VECCOPY(orco,zerovec); } if(ornor){ VECCOPY(ornor,zerovec); } } /************************************************/ /* Particles on emitter */ /************************************************/ void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache, float *fuv, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor){ if(psmd){ if(psmd->psys->part->distr==PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT){ if(vec) copy_v3_v3(vec,fuv); if(orco) copy_v3_v3(orco, fuv); return; } /* we cant use the num_dmcache */ psys_particle_on_dm(psmd->dm,from,index,index_dmcache,fuv,foffset,vec,nor,utan,vtan,orco,ornor); } else psys_particle_on_shape(from,index,fuv,vec,nor,utan,vtan,orco,ornor); } /************************************************/ /* Path Cache */ /************************************************/ static float vert_weight(MDeformVert *dvert, int group) { MDeformWeight *dw; int i; if(dvert) { dw= dvert->dw; for(i= dvert->totweight; i>0; i--, dw++) { if(dw->def_nr == group) return dw->weight; if(i==1) break; /*otherwise dw will point to somewhere it shouldn't*/ } } return 0.0; } static void do_kink(ParticleKey *state, ParticleKey *par, float *par_rot, float time, float freq, float shape, float amplitude, float flat, short type, short axis, float obmat[][4], int smooth_start) { float kink[3]={1.f,0.f,0.f}, par_vec[3], q1[4]={1.f,0.f,0.f,0.f}; float t, dt=1.f, result[3]; if(par == NULL || type == PART_KINK_NO) return; CLAMP(time, 0.f, 1.f); if(shape!=0.0f && type!=PART_KINK_BRAID) { if(shape<0.0f) time= (float)pow(time, 1.f+shape); else time= (float)pow(time, 1.f/(1.f-shape)); } t = time * freq *(float)M_PI; if(smooth_start) { dt = fabs(t); /* smooth the beginning of kink */ CLAMP(dt, 0.f, (float)M_PI); dt = sin(dt/2.f); } if(type != PART_KINK_RADIAL) { float temp[3]; kink[axis]=1.f; if(obmat) mul_mat3_m4_v3(obmat, kink); if(par_rot) mul_qt_v3(par_rot, kink); /* make sure kink is normal to strand */ project_v3_v3v3(temp, kink, par->vel); sub_v3_v3(kink, temp); normalize_v3(kink); } copy_v3_v3(result, state->co); sub_v3_v3v3(par_vec, par->co, state->co); switch(type) { case PART_KINK_CURL: { mul_v3_fl(par_vec, -1.f); if(flat > 0.f) { float proj[3]; project_v3_v3v3(proj, par_vec, par->vel); madd_v3_v3fl(par_vec, proj, -flat); project_v3_v3v3(proj, par_vec, kink); madd_v3_v3fl(par_vec, proj, -flat); } axis_angle_to_quat(q1, kink, (float)M_PI/2.f); mul_qt_v3(q1, par_vec); madd_v3_v3fl(par_vec, kink, amplitude); /* rotate kink vector around strand tangent */ if(t!=0.f) { axis_angle_to_quat(q1, par->vel, t); mul_qt_v3(q1, par_vec); } add_v3_v3v3(result, par->co, par_vec); break; } case PART_KINK_RADIAL: { if(flat > 0.f) { float proj[3]; /* flatten along strand */ project_v3_v3v3(proj, par_vec, par->vel); madd_v3_v3fl(result, proj, flat); } madd_v3_v3fl(result, par_vec, -amplitude*(float)sin(t)); break; } case PART_KINK_WAVE: { madd_v3_v3fl(result, kink, amplitude*(float)sin(t)); if(flat > 0.f) { float proj[3]; /* flatten along wave */ project_v3_v3v3(proj, par_vec, kink); madd_v3_v3fl(result, proj, flat); /* flatten along strand */ project_v3_v3v3(proj, par_vec, par->vel); madd_v3_v3fl(result, proj, flat); } break; } case PART_KINK_BRAID: { float y_vec[3]={0.f,1.f,0.f}; float z_vec[3]={0.f,0.f,1.f}; float vec_one[3], state_co[3]; float inp_y, inp_z, length; if(par_rot) { mul_qt_v3(par_rot, y_vec); mul_qt_v3(par_rot, z_vec); } mul_v3_fl(par_vec, -1.f); normalize_v3_v3(vec_one, par_vec); inp_y=dot_v3v3(y_vec, vec_one); inp_z=dot_v3v3(z_vec, vec_one); if(inp_y > 0.5f){ copy_v3_v3(state_co, y_vec); mul_v3_fl(y_vec, amplitude*(float)cos(t)); mul_v3_fl(z_vec, amplitude/2.f*(float)sin(2.f*t)); } else if(inp_z > 0.0f){ mul_v3_v3fl(state_co, z_vec, (float)sin((float)M_PI/3.f)); VECADDFAC(state_co,state_co,y_vec,-0.5f); mul_v3_fl(y_vec, -amplitude * (float)cos(t + (float)M_PI/3.f)); mul_v3_fl(z_vec, amplitude/2.f * (float)cos(2.f*t + (float)M_PI/6.f)); } else{ mul_v3_v3fl(state_co, z_vec, -(float)sin((float)M_PI/3.f)); madd_v3_v3fl(state_co, y_vec, -0.5f); mul_v3_fl(y_vec, amplitude * (float)-sin(t + (float)M_PI/6.f)); mul_v3_fl(z_vec, amplitude/2.f * (float)-sin(2.f*t + (float)M_PI/3.f)); } mul_v3_fl(state_co, amplitude); add_v3_v3(state_co, par->co); sub_v3_v3v3(par_vec, state->co, state_co); length = normalize_v3(par_vec); mul_v3_fl(par_vec, MIN2(length, amplitude/2.f)); add_v3_v3v3(state_co, par->co, y_vec); add_v3_v3(state_co, z_vec); add_v3_v3(state_co, par_vec); shape = 2.f*(float)M_PI * (1.f+shape); if(tco, state->co, result, dt); else copy_v3_v3(state->co, result); } static float do_clump(ParticleKey *state, ParticleKey *par, float time, float clumpfac, float clumppow, float pa_clump) { float clump = 0.f; if(par && clumpfac!=0.0f){ float cpow; if(clumppow < 0.0f) cpow=1.0f+clumppow; else cpow=1.0f+9.0f*clumppow; if(clumpfac < 0.0f) /* clump roots instead of tips */ clump = -clumpfac*pa_clump*(float)pow(1.0-(double)time,(double)cpow); else clump = clumpfac*pa_clump*(float)pow((double)time,(double)cpow); interp_v3_v3v3(state->co,state->co,par->co,clump); } return clump; } void precalc_guides(ParticleSimulationData *sim, ListBase *effectors) { EffectedPoint point; ParticleKey state; EffectorData efd; EffectorCache *eff; ParticleSystem *psys = sim->psys; EffectorWeights *weights = sim->psys->part->effector_weights; GuideEffectorData *data; PARTICLE_P; if(!effectors) return; LOOP_PARTICLES { psys_particle_on_emitter(sim->psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,state.co,0,0,0,0,0); mul_m4_v3(sim->ob->obmat, state.co); mul_mat3_m4_v3(sim->ob->obmat, state.vel); pd_point_from_particle(sim, pa, &state, &point); for(eff = effectors->first; eff; eff=eff->next) { if(eff->pd->forcefield != PFIELD_GUIDE) continue; if(!eff->guide_data) eff->guide_data = MEM_callocN(sizeof(GuideEffectorData)*psys->totpart, "GuideEffectorData"); data = eff->guide_data + p; VECSUB(efd.vec_to_point, state.co, eff->guide_loc); VECCOPY(efd.nor, eff->guide_dir); efd.distance = len_v3(efd.vec_to_point); VECCOPY(data->vec_to_point, efd.vec_to_point); data->strength = effector_falloff(eff, &efd, &point, weights); } } } int do_guides(ListBase *effectors, ParticleKey *state, int index, float time) { EffectorCache *eff; PartDeflect *pd; Curve *cu; ParticleKey key, par; GuideEffectorData *data; float effect[3] = {0.0f, 0.0f, 0.0f}, veffect[3] = {0.0f, 0.0f, 0.0f}; float guidevec[4], guidedir[3], rot2[4], temp[3]; float guidetime, radius, weight, angle, totstrength = 0.0f; float vec_to_point[3]; if(effectors) for(eff = effectors->first; eff; eff=eff->next) { pd = eff->pd; if(pd->forcefield != PFIELD_GUIDE) continue; data = eff->guide_data + index; if(data->strength <= 0.0f) continue; guidetime = time / (1.0f - pd->free_end); if(guidetime>1.0f) continue; cu = (Curve*)eff->ob->data; if(pd->flag & PFIELD_GUIDE_PATH_ADD) { if(where_on_path(eff->ob, data->strength * guidetime, guidevec, guidedir, NULL, &radius, &weight)==0) return 0; } else { if(where_on_path(eff->ob, guidetime, guidevec, guidedir, NULL, &radius, &weight)==0) return 0; } mul_m4_v3(eff->ob->obmat, guidevec); mul_mat3_m4_v3(eff->ob->obmat, guidedir); normalize_v3(guidedir); VECCOPY(vec_to_point, data->vec_to_point); if(guidetime != 0.0f) { /* curve direction */ cross_v3_v3v3(temp, eff->guide_dir, guidedir); angle = dot_v3v3(eff->guide_dir, guidedir)/(len_v3(eff->guide_dir)); angle = saacos(angle); axis_angle_to_quat( rot2,temp, angle); mul_qt_v3(rot2, vec_to_point); /* curve tilt */ axis_angle_to_quat( rot2,guidedir, guidevec[3] - eff->guide_loc[3]); mul_qt_v3(rot2, vec_to_point); } /* curve taper */ if(cu->taperobj) mul_v3_fl(vec_to_point, calc_taper(eff->scene, cu->taperobj, (int)(data->strength*guidetime*100.0f), 100)); else{ /* curve size*/ if(cu->flag & CU_PATH_RADIUS) { mul_v3_fl(vec_to_point, radius); } } par.co[0] = par.co[1] = par.co[2] = 0.0f; VECCOPY(key.co, vec_to_point); do_kink(&key, &par, 0, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, 0.f, pd->kink, pd->kink_axis, 0, 0); do_clump(&key, &par, guidetime, pd->clump_fac, pd->clump_pow, 1.0f); VECCOPY(vec_to_point, key.co); VECADD(vec_to_point, vec_to_point, guidevec); //VECSUB(pa_loc,pa_loc,pa_zero); VECADDFAC(effect, effect, vec_to_point, data->strength); VECADDFAC(veffect, veffect, guidedir, data->strength); totstrength += data->strength; if(pd->flag & PFIELD_GUIDE_PATH_WEIGHT) totstrength *= weight; } if(totstrength != 0.0f){ if(totstrength > 1.0f) mul_v3_fl(effect, 1.0f / totstrength); CLAMP(totstrength, 0.0f, 1.0f); //VECADD(effect,effect,pa_zero); interp_v3_v3v3(state->co, state->co, effect, totstrength); normalize_v3(veffect); mul_v3_fl(veffect, len_v3(state->vel)); VECCOPY(state->vel, veffect); return 1; } return 0; } static void do_rough(float *loc, float mat[4][4], float t, float fac, float size, float thres, ParticleKey *state) { float rough[3]; float rco[3]; if(thres != 0.0f) if((float)fabs((float)(-1.5f+loc[0]+loc[1]+loc[2]))<1.5f*thres) return; VECCOPY(rco,loc); mul_v3_fl(rco,t); rough[0]=-1.0f+2.0f*BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2,0,2); rough[1]=-1.0f+2.0f*BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2,0,2); rough[2]=-1.0f+2.0f*BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2,0,2); VECADDFAC(state->co,state->co,mat[0],fac*rough[0]); VECADDFAC(state->co,state->co,mat[1],fac*rough[1]); VECADDFAC(state->co,state->co,mat[2],fac*rough[2]); } static void do_rough_end(float *loc, float mat[4][4], float t, float fac, float shape, ParticleKey *state) { float rough[2]; float roughfac; roughfac=fac*(float)pow((double)t,shape); copy_v2_v2(rough,loc); rough[0]=-1.0f+2.0f*rough[0]; rough[1]=-1.0f+2.0f*rough[1]; mul_v2_fl(rough,roughfac); VECADDFAC(state->co,state->co,mat[0],rough[0]); VECADDFAC(state->co,state->co,mat[1],rough[1]); } static void do_path_effectors(ParticleSimulationData *sim, int i, ParticleCacheKey *ca, int k, int steps, float *UNUSED(rootco), float effector, float UNUSED(dfra), float UNUSED(cfra), float *length, float *vec) { float force[3] = {0.0f,0.0f,0.0f}; ParticleKey eff_key; EffectedPoint epoint; /* Don't apply effectors for dynamic hair, otherwise the effectors don't get applied twice. */ if(sim->psys->flag & PSYS_HAIR_DYNAMICS) return; VECCOPY(eff_key.co,(ca-1)->co); VECCOPY(eff_key.vel,(ca-1)->vel); QUATCOPY(eff_key.rot,(ca-1)->rot); pd_point_from_particle(sim, sim->psys->particles+i, &eff_key, &epoint); pdDoEffectors(sim->psys->effectors, sim->colliders, sim->psys->part->effector_weights, &epoint, force, NULL); mul_v3_fl(force, effector*powf((float)k / (float)steps, 100.0f * sim->psys->part->eff_hair) / (float)steps); add_v3_v3(force, vec); normalize_v3(force); if(k < steps) sub_v3_v3v3(vec, (ca+1)->co, ca->co); madd_v3_v3v3fl(ca->co, (ca-1)->co, force, *length); if(k < steps) *length = len_v3(vec); } static int check_path_length(int k, ParticleCacheKey *keys, ParticleCacheKey *state, float max_length, float *cur_length, float length, float *dvec) { if(*cur_length + length > max_length){ mul_v3_fl(dvec, (max_length - *cur_length) / length); VECADD(state->co, (state - 1)->co, dvec); keys->steps = k; /* something over the maximum step value */ return k=100000; } else { *cur_length+=length; return k; } } static void offset_child(ChildParticle *cpa, ParticleKey *par, float *par_rot, ParticleKey *child, float flat, float radius) { copy_v3_v3(child->co, cpa->fuv); mul_v3_fl(child->co, radius); child->co[0]*=flat; copy_v3_v3(child->vel, par->vel); if(par_rot) { mul_qt_v3(par_rot, child->co); copy_qt_qt(child->rot, par_rot); } else unit_qt(child->rot); add_v3_v3(child->co, par->co); } float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup) { float *vg=0; if(vgroup < 0) { /* hair dynamics pinning vgroup */ } else if(psys->vgroup[vgroup]){ MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT); if(dvert){ int totvert=dm->getNumVerts(dm), i; vg=MEM_callocN(sizeof(float)*totvert, "vg_cache"); if(psys->vg_neg&(1<vgroup[vgroup]-1); } else{ for(i=0; ivgroup[vgroup]-1); } } } return vg; } void psys_find_parents(ParticleSimulationData *sim) { ParticleSettings *part=sim->psys->part; KDTree *tree; ChildParticle *cpa; int p, totparent,totchild=sim->psys->totchild; float co[3], orco[3]; int from=PART_FROM_FACE; totparent=(int)(totchild*part->parents*0.3f); if(G.rendering && part->child_nbr && part->ren_child_nbr) totparent*=(float)part->child_nbr/(float)part->ren_child_nbr; tree=BLI_kdtree_new(totparent); for(p=0,cpa=sim->psys->child; ppsmd,from,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0); BLI_kdtree_insert(tree, p, orco, NULL); } BLI_kdtree_balance(tree); for(; ppsmd,from,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0); cpa->parent=BLI_kdtree_find_nearest(tree, orco, NULL, NULL); } BLI_kdtree_free(tree); } static void get_strand_normal(Material *ma, float *surfnor, float surfdist, float *nor) { float cross[3], nstrand[3], vnor[3], blend; if(!((ma->mode & MA_STR_SURFDIFF) || (ma->strand_surfnor > 0.0f))) return; if(ma->mode & MA_STR_SURFDIFF) { cross_v3_v3v3(cross, surfnor, nor); cross_v3_v3v3(nstrand, nor, cross); blend= INPR(nstrand, surfnor); CLAMP(blend, 0.0f, 1.0f); interp_v3_v3v3(vnor, nstrand, surfnor, blend); normalize_v3(vnor); } else VECCOPY(vnor, nor) if(ma->strand_surfnor > 0.0f) { if(ma->strand_surfnor > surfdist) { blend= (ma->strand_surfnor - surfdist)/ma->strand_surfnor; interp_v3_v3v3(vnor, vnor, surfnor, blend); normalize_v3(vnor); } } VECCOPY(nor, vnor); } static int psys_threads_init_path(ParticleThread *threads, Scene *scene, float cfra, int editupdate) { ParticleThreadContext *ctx= threads[0].ctx; /* Object *ob= ctx->sim.ob; */ ParticleSystem *psys= ctx->sim.psys; ParticleSettings *part = psys->part; /* ParticleEditSettings *pset = &scene->toolsettings->particle; */ int totparent=0, between=0; int steps = (int)pow(2.0, (double)part->draw_step); int totchild = psys->totchild; int i, seed, totthread= threads[0].tot; /*---start figuring out what is actually wanted---*/ if(psys_in_edit_mode(scene, psys)) { ParticleEditSettings *pset = &scene->toolsettings->particle; if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_DRAW_PART)==0) totchild=0; steps = (int)pow(2.0, (double)pset->draw_step); } if(totchild && part->childtype==PART_CHILD_FACES){ totparent=(int)(totchild*part->parents*0.3f); if(G.rendering && part->child_nbr && part->ren_child_nbr) totparent*=(float)part->child_nbr/(float)part->ren_child_nbr; /* part->parents could still be 0 so we can't test with totparent */ between=1; } if(psys->renderdata) steps=(int)pow(2.0,(double)part->ren_step); else{ totchild=(int)((float)totchild*(float)part->disp/100.0f); totparent=MIN2(totparent,totchild); } if(totchild==0) return 0; /* init random number generator */ seed= 31415926 + ctx->sim.psys->seed; if(ctx->editupdate || totchild < 10000) totthread= 1; for(i=0; ibetween= between; ctx->steps= steps; ctx->totchild= totchild; ctx->totparent= totparent; ctx->parent_pass= 0; ctx->cfra= cfra; ctx->editupdate= editupdate; psys->lattice = psys_get_lattice(&ctx->sim); /* cache all relevant vertex groups if they exist */ ctx->vg_length = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_LENGTH); ctx->vg_clump = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_CLUMP); ctx->vg_kink = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_KINK); ctx->vg_rough1 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH1); ctx->vg_rough2 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH2); ctx->vg_roughe = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGHE); if(psys->part->flag & PART_CHILD_EFFECT) ctx->vg_effector = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_EFFECTOR); /* set correct ipo timing */ #if 0 // XXX old animation system if(part->flag&PART_ABS_TIME && part->ipo){ calc_ipo(part->ipo, cfra); execute_ipo((ID *)part, part->ipo); } #endif // XXX old animation system return 1; } /* note: this function must be thread safe, except for branching! */ static void psys_thread_create_path(ParticleThread *thread, struct ChildParticle *cpa, ParticleCacheKey *child_keys, int i) { ParticleThreadContext *ctx= thread->ctx; Object *ob= ctx->sim.ob; ParticleSystem *psys = ctx->sim.psys; ParticleSettings *part = psys->part; ParticleCacheKey **cache= psys->childcache; ParticleCacheKey **pcache= psys_in_edit_mode(ctx->sim.scene, psys) ? psys->edit->pathcache : psys->pathcache; ParticleCacheKey *child, *par = NULL, *key[4]; ParticleTexture ptex; float *cpa_fuv=0, *par_rot=0, rot[4]; float orco[3], ornor[3], hairmat[4][4], t, dvec[3], off1[4][3], off2[4][3]; float length, max_length = 1.0f, cur_length = 0.0f; float eff_length, eff_vec[3], weight[4]; int k, cpa_num; short cpa_from; if(!pcache) return; if(ctx->between){ ParticleData *pa = psys->particles + cpa->pa[0]; int w, needupdate; float foffset, wsum=0.f; float co[3]; float p_min = part->parting_min; float p_max = part->parting_max; /* Virtual parents don't work nicely with parting. */ float p_fac = part->parents > 0.f ? 0.f : part->parting_fac; if(ctx->editupdate) { needupdate= 0; w= 0; while(w<4 && cpa->pa[w]>=0) { if(psys->edit->points[cpa->pa[w]].flag & PEP_EDIT_RECALC) { needupdate= 1; break; } w++; } if(!needupdate) return; else memset(child_keys, 0, sizeof(*child_keys)*(ctx->steps+1)); } /* get parent paths */ for(w=0; w<4; w++) { if(cpa->pa[w] >= 0) { key[w] = pcache[cpa->pa[w]]; weight[w] = cpa->w[w]; } else { key[w] = pcache[0]; weight[w] = 0.f; } } /* modify weights to create parting */ if(p_fac > 0.f) { for(w=0; w<4; w++) { if(w && weight[w] > 0.f) { float d; if(part->flag & PART_CHILD_LONG_HAIR) { /* For long hair use tip distance/root distance as parting factor instead of root to tip angle. */ float d1 = len_v3v3(key[0]->co, key[w]->co); float d2 = len_v3v3((key[0]+key[0]->steps-1)->co, (key[w]+key[w]->steps-1)->co); d = d1 > 0.f ? d2/d1 - 1.f : 10000.f; } else { float v1[3], v2[3]; sub_v3_v3v3(v1, (key[0]+key[0]->steps-1)->co, key[0]->co); sub_v3_v3v3(v2, (key[w]+key[w]->steps-1)->co, key[w]->co); normalize_v3(v1); normalize_v3(v2); d = saacos(dot_v3v3(v1, v2)) * 180.0f/(float)M_PI; } if(p_max > p_min) d = (d - p_min)/(p_max - p_min); else d = (d - p_min) <= 0.f ? 0.f : 1.f; CLAMP(d, 0.f, 1.f); if(d > 0.f) weight[w] *= (1.f - d); } wsum += weight[w]; } for(w=0; w<4; w++) weight[w] /= wsum; interp_v4_v4v4(weight, cpa->w, weight, p_fac); } /* get the original coordinates (orco) for texture usage */ cpa_num = cpa->num; foffset = cpa->foffset; cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter(ctx->sim.psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,ornor,0,0,orco,0); mul_m4_v3(ob->obmat, co); for(w=0; w<4; w++) sub_v3_v3v3(off1[w], co, key[w]->co); psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat); } else{ ParticleData *pa = psys->particles + cpa->parent; float co[3]; if(ctx->editupdate) { if(!(psys->edit->points[cpa->parent].flag & PEP_EDIT_RECALC)) return; memset(child_keys, 0, sizeof(*child_keys)*(ctx->steps+1)); } /* get the parent path */ key[0] = pcache[cpa->parent]; /* get the original coordinates (orco) for texture usage */ cpa_from = part->from; cpa_num = pa->num; cpa_fuv = pa->fuv; psys_particle_on_emitter(ctx->sim.psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,ornor,0,0,orco,0); psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat); } child_keys->steps = ctx->steps; /* get different child parameters from textures & vgroups */ get_child_modifier_parameters(part, ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex); if(ptex.exist < PSYS_FRAND(i + 24)) { child_keys->steps = -1; return; } /* create the child path */ for(k=0,child=child_keys; k<=ctx->steps; k++,child++){ if(ctx->between){ int w=0; zero_v3(child->co); zero_v3(child->vel); unit_qt(child->rot); for(w=0; w<4; w++) { copy_v3_v3(off2[w], off1[w]); if(part->flag & PART_CHILD_LONG_HAIR) { /* Use parent rotation (in addition to emission location) to determine child offset. */ if(k) mul_qt_v3((key[w]+k)->rot, off2[w]); /* Fade the effect of rotation for even lengths in the end */ project_v3_v3v3(dvec, off2[w], (key[w]+k)->vel); madd_v3_v3fl(off2[w], dvec, -(float)k/(float)ctx->steps); } add_v3_v3(off2[w], (key[w]+k)->co); } /* child position is the weighted sum of parent positions */ interp_v3_v3v3v3v3(child->co, off2[0], off2[1], off2[2], off2[3], weight); interp_v3_v3v3v3v3(child->vel, (key[0]+k)->vel, (key[1]+k)->vel, (key[2]+k)->vel, (key[3]+k)->vel, weight); copy_qt_qt(child->rot, (key[0]+k)->rot); } else{ if(k) { mul_qt_qtqt(rot, (key[0]+k)->rot, key[0]->rot); par_rot = rot; } else { par_rot = key[0]->rot; } /* offset the child from the parent position */ offset_child(cpa, (ParticleKey*)(key[0]+k), par_rot, (ParticleKey*)child, part->childflat, part->childrad); } } /* apply effectors */ if(part->flag & PART_CHILD_EFFECT) { for(k=0,child=child_keys; k<=ctx->steps; k++,child++) { if(k) { do_path_effectors(&ctx->sim, cpa->pa[0], child, k, ctx->steps, child_keys->co, ptex.effector, 0.0f, ctx->cfra, &eff_length, eff_vec); } else { sub_v3_v3v3(eff_vec, (child+1)->co, child->co); eff_length = len_v3(eff_vec); } } } for(k=0,child=child_keys; k<=ctx->steps; k++,child++){ t = (float)k/(float)ctx->steps; if(ctx->totparent) /* this is now threadsafe, virtual parents are calculated before rest of children */ par = (i >= ctx->totparent) ? cache[cpa->parent] : NULL; else if(cpa->parent >= 0) par = pcache[cpa->parent]; if(par) { if(k) { mul_qt_qtqt(rot, (par+k)->rot, par->rot); par_rot = rot; } else { par_rot = par->rot; } par += k; } /* apply different deformations to the child path */ do_child_modifiers(&ctx->sim, &ptex, (ParticleKey *)par, par_rot, cpa, orco, hairmat, (ParticleKey *)child, t); /* we have to correct velocity because of kink & clump */ if(k>1){ sub_v3_v3v3((child-1)->vel, child->co, (child-2)->co); mul_v3_fl((child-1)->vel, 0.5); if(ctx->ma && (part->draw_col == PART_DRAW_COL_MAT)) get_strand_normal(ctx->ma, ornor, cur_length, (child-1)->vel); } if(k == ctx->steps) sub_v3_v3v3(child->vel, child->co, (child-1)->co); /* check if path needs to be cut before actual end of data points */ if(k){ sub_v3_v3v3(dvec, child->co, (child-1)->co); length = 1.0f/(float)ctx->steps; k = check_path_length(k, child_keys, child, max_length, &cur_length, length, dvec); } else{ /* initialize length calculation */ max_length = ptex.length; cur_length = 0.0f; } if(ctx->ma && (part->draw_col == PART_DRAW_COL_MAT)) { VECCOPY(child->col, &ctx->ma->r) get_strand_normal(ctx->ma, ornor, cur_length, child->vel); } } /* Hide virtual parents */ if(i < ctx->totparent) child_keys->steps = -1; } static void *exec_child_path_cache(void *data) { ParticleThread *thread= (ParticleThread*)data; ParticleThreadContext *ctx= thread->ctx; ParticleSystem *psys= ctx->sim.psys; ParticleCacheKey **cache= psys->childcache; ChildParticle *cpa; int i, totchild= ctx->totchild, first= 0; if(thread->tot > 1){ first= ctx->parent_pass? 0 : ctx->totparent; totchild= ctx->parent_pass? ctx->totparent : ctx->totchild; } cpa= psys->child + first + thread->num; for(i=first+thread->num; itot, cpa+=thread->tot) psys_thread_create_path(thread, cpa, cache[i], i); return 0; } void psys_cache_child_paths(ParticleSimulationData *sim, float cfra, int editupdate) { ParticleThread *pthreads; ParticleThreadContext *ctx; ListBase threads; int i, totchild, totparent, totthread; if(sim->psys->flag & PSYS_GLOBAL_HAIR) return; pthreads= psys_threads_create(sim); if(!psys_threads_init_path(pthreads, sim->scene, cfra, editupdate)) { psys_threads_free(pthreads); return; } ctx= pthreads[0].ctx; totchild= ctx->totchild; totparent= ctx->totparent; if(editupdate && sim->psys->childcache && totchild == sim->psys->totchildcache) { ; /* just overwrite the existing cache */ } else { /* clear out old and create new empty path cache */ free_child_path_cache(sim->psys); sim->psys->childcache= psys_alloc_path_cache_buffers(&sim->psys->childcachebufs, totchild, ctx->steps+1); sim->psys->totchildcache = totchild; } totthread= pthreads[0].tot; if(totthread > 1) { /* make virtual child parents thread safe by calculating them first */ if(totparent) { BLI_init_threads(&threads, exec_child_path_cache, totthread); for(i=0; iparent_pass = 1; BLI_insert_thread(&threads, &pthreads[i]); } BLI_end_threads(&threads); for(i=0; iparent_pass = 0; } BLI_init_threads(&threads, exec_child_path_cache, totthread); for(i=0; ico, key1->co); normalize_v3(prev_tangent); unit_qt(key1->rot); break; default: sub_v3_v3v3(tangent, key0->co, key1->co); normalize_v3(tangent); cosangle= dot_v3v3(tangent, prev_tangent); /* note we do the comparison on cosangle instead of * angle, since floating point accuracy makes it give * different results across platforms */ if(cosangle > 0.999999f) { QUATCOPY(key1->rot, key2->rot); } else { angle= saacos(cosangle); cross_v3_v3v3(normal, prev_tangent, tangent); axis_angle_to_quat( q,normal, angle); mul_qt_qtqt(key1->rot, q, key2->rot); } copy_v3_v3(prev_tangent, tangent); } } /* Calculates paths ready for drawing/rendering. */ /* -Usefull for making use of opengl vertex arrays for super fast strand drawing. */ /* -Makes child strands possible and creates them too into the cache. */ /* -Cached path data is also used to determine cut position for the editmode tool. */ void psys_cache_paths(ParticleSimulationData *sim, float cfra) { PARTICLE_PSMD; ParticleEditSettings *pset = &sim->scene->toolsettings->particle; ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleCacheKey *ca, **cache; DerivedMesh *hair_dm = (psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) ? psys->hair_out_dm : NULL; ParticleKey result; Material *ma; ParticleInterpolationData pind; ParticleTexture ptex; PARTICLE_P; float birthtime = 0.0, dietime = 0.0; float t, time = 0.0, dfra = 1.0 /* , frs_sec = sim->scene->r.frs_sec*/ /*UNUSED*/; float col[4] = {0.5f, 0.5f, 0.5f, 1.0f}; float prev_tangent[3] = {0.0f, 0.0f, 0.0f}, hairmat[4][4]; float rotmat[3][3]; int k; int steps = (int)pow(2.0, (double)(psys->renderdata ? part->ren_step : part->draw_step)); int totpart = psys->totpart; float length, vec[3]; float *vg_effector= NULL; float *vg_length= NULL, pa_length=1.0f; int keyed, baked; /* we don't have anything valid to create paths from so let's quit here */ if((psys->flag & PSYS_HAIR_DONE || psys->flag & PSYS_KEYED || psys->pointcache)==0) return; if(psys_in_edit_mode(sim->scene, psys)) if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_DRAW_PART)==0) return; BLI_srandom(psys->seed); keyed = psys->flag & PSYS_KEYED; baked = psys->pointcache->mem_cache.first && psys->part->type != PART_HAIR; /* clear out old and create new empty path cache */ psys_free_path_cache(psys, psys->edit); cache= psys->pathcache= psys_alloc_path_cache_buffers(&psys->pathcachebufs, totpart, steps+1); psys->lattice = psys_get_lattice(sim); ma= give_current_material(sim->ob, psys->part->omat); if(ma && (psys->part->draw_col == PART_DRAW_COL_MAT)) VECCOPY(col, &ma->r) if((psys->flag & PSYS_GLOBAL_HAIR)==0) { if((psys->part->flag & PART_CHILD_EFFECT)==0) vg_effector = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_EFFECTOR); if(!psys->totchild) vg_length = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_LENGTH); } /*---first main loop: create all actual particles' paths---*/ LOOP_SHOWN_PARTICLES { if(!psys->totchild) { psys_get_texture(sim, pa, &ptex, PAMAP_LENGTH, 0.f); pa_length = ptex.length * (1.0f - part->randlength * PSYS_FRAND(psys->seed + p)); if(vg_length) pa_length *= psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_length); } pind.keyed = keyed; pind.cache = baked ? psys->pointcache : NULL; pind.epoint = NULL; pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE); pind.dm = hair_dm; memset(cache[p], 0, sizeof(*cache[p])*(steps+1)); cache[p]->steps = steps; /*--get the first data points--*/ init_particle_interpolation(sim->ob, sim->psys, pa, &pind); /* hairmat is needed for for non-hair particle too so we get proper rotations */ psys_mat_hair_to_global(sim->ob, psmd->dm, psys->part->from, pa, hairmat); VECCOPY(rotmat[0], hairmat[2]); VECCOPY(rotmat[1], hairmat[1]); VECCOPY(rotmat[2], hairmat[0]); if(part->draw & PART_ABS_PATH_TIME) { birthtime = MAX2(pind.birthtime, part->path_start); dietime = MIN2(pind.dietime, part->path_end); } else { float tb = pind.birthtime; birthtime = tb + part->path_start * (pind.dietime - tb); dietime = tb + part->path_end * (pind.dietime - tb); } if(birthtime >= dietime) { cache[p]->steps = -1; continue; } dietime = birthtime + pa_length * (dietime - birthtime); /*--interpolate actual path from data points--*/ for(k=0, ca=cache[p]; k<=steps; k++, ca++){ time = (float)k / (float)steps; t = birthtime + time * (dietime - birthtime); result.time = -t; do_particle_interpolation(psys, p, pa, t, &pind, &result); copy_v3_v3(ca->co, result.co); /* dynamic hair is in object space */ /* keyed and baked are already in global space */ if(hair_dm) mul_m4_v3(sim->ob->obmat, ca->co); else if(!keyed && !baked && !(psys->flag & PSYS_GLOBAL_HAIR)) mul_m4_v3(hairmat, ca->co); copy_v3_v3(ca->col, col); } /*--modify paths and calculate rotation & velocity--*/ if(!(psys->flag & PSYS_GLOBAL_HAIR)) { /* apply effectors */ if((psys->part->flag & PART_CHILD_EFFECT) == 0) { float effector= 1.0f; if(vg_effector) effector*= psys_particle_value_from_verts(psmd->dm,psys->part->from,pa,vg_effector); sub_v3_v3v3(vec,(cache[p]+1)->co,cache[p]->co); length = len_v3(vec); for(k=1, ca=cache[p]+1; k<=steps; k++, ca++) do_path_effectors(sim, p, ca, k, steps, cache[p]->co, effector, dfra, cfra, &length, vec); } /* apply guide curves to path data */ if(sim->psys->effectors && (psys->part->flag & PART_CHILD_EFFECT)==0) { for(k=0, ca=cache[p]; k<=steps; k++, ca++) /* ca is safe to cast, since only co and vel are used */ do_guides(sim->psys->effectors, (ParticleKey*)ca, p, (float)k/(float)steps); } /* lattices have to be calculated separately to avoid mixups between effector calculations */ if(psys->lattice) { for(k=0, ca=cache[p]; k<=steps; k++, ca++) calc_latt_deform(psys->lattice, ca->co, 1.0f); } } /* finally do rotation & velocity */ for(k=1, ca=cache[p]+1; k<=steps; k++, ca++) { cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k); if(k == steps) copy_qt_qt(ca->rot, (ca - 1)->rot); /* set velocity */ sub_v3_v3v3(ca->vel, ca->co, (ca-1)->co); if(k==1) copy_v3_v3((ca-1)->vel, ca->vel); } /* First rotation is based on emitting face orientation. * This is way better than having flipping rotations resulting * from using a global axis as a rotation pole (vec_to_quat()). * It's not an ideal solution though since it disregards the * initial tangent, but taking that in to account will allow * the possibility of flipping again. -jahka */ mat3_to_quat_is_ok(cache[p]->rot, rotmat); } psys->totcached = totpart; if(psys && psys->lattice){ end_latt_deform(psys->lattice); psys->lattice= NULL; } if(vg_effector) MEM_freeN(vg_effector); if(vg_length) MEM_freeN(vg_length); } void psys_cache_edit_paths(Scene *scene, Object *ob, PTCacheEdit *edit, float cfra) { ParticleCacheKey *ca, **cache= edit->pathcache; ParticleEditSettings *pset = &scene->toolsettings->particle; PTCacheEditPoint *point = NULL; PTCacheEditKey *ekey = NULL; ParticleSystem *psys = edit->psys; ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys); ParticleData *pa = psys ? psys->particles : NULL; ParticleInterpolationData pind; ParticleKey result; float birthtime = 0.0f, dietime = 0.0f; float t, time = 0.0f, keytime = 0.0f, frs_sec; float hairmat[4][4], rotmat[3][3], prev_tangent[3] = {0.0f, 0.0f, 0.0f}; int k, i; int steps = (int)pow(2.0, (double)pset->draw_step); int totpart = edit->totpoint, recalc_set=0; float sel_col[3]; float nosel_col[3]; steps = MAX2(steps, 4); if(!cache || edit->totpoint != edit->totcached) { /* clear out old and create new empty path cache */ psys_free_path_cache(edit->psys, edit); cache= edit->pathcache= psys_alloc_path_cache_buffers(&edit->pathcachebufs, totpart, steps+1); /* set flag for update (child particles check this too) */ for(i=0, point=edit->points; iflag |= PEP_EDIT_RECALC; recalc_set = 1; } frs_sec = (psys || edit->pid.flag & PTCACHE_VEL_PER_SEC) ? 25.0f : 1.0f; if(pset->brushtype == PE_BRUSH_WEIGHT) { ;/* use weight painting colors now... */ } else{ sel_col[0] = (float)edit->sel_col[0] / 255.0f; sel_col[1] = (float)edit->sel_col[1] / 255.0f; sel_col[2] = (float)edit->sel_col[2] / 255.0f; nosel_col[0] = (float)edit->nosel_col[0] / 255.0f; nosel_col[1] = (float)edit->nosel_col[1] / 255.0f; nosel_col[2] = (float)edit->nosel_col[2] / 255.0f; } /*---first main loop: create all actual particles' paths---*/ for(i=0, point=edit->points; itotcached && !(point->flag & PEP_EDIT_RECALC)) continue; ekey = point->keys; pind.keyed = 0; pind.cache = NULL; pind.epoint = point; pind.bspline = psys ? (psys->part->flag & PART_HAIR_BSPLINE) : 0; pind.dm = NULL; /* should init_particle_interpolation set this ? */ if(pset->brushtype==PE_BRUSH_WEIGHT){ pind.hkey[0] = NULL; /* pa != NULL since the weight brush is only available for hair */ pind.hkey[1] = pa->hair; } memset(cache[i], 0, sizeof(*cache[i])*(steps+1)); cache[i]->steps = steps; /*--get the first data points--*/ init_particle_interpolation(ob, psys, pa, &pind); if(psys) { psys_mat_hair_to_global(ob, psmd->dm, psys->part->from, pa, hairmat); copy_v3_v3(rotmat[0], hairmat[2]); copy_v3_v3(rotmat[1], hairmat[1]); copy_v3_v3(rotmat[2], hairmat[0]); } birthtime = pind.birthtime; dietime = pind.dietime; if(birthtime >= dietime) { cache[i]->steps = -1; continue; } /*--interpolate actual path from data points--*/ for(k=0, ca=cache[i]; k<=steps; k++, ca++){ time = (float)k / (float)steps; t = birthtime + time * (dietime - birthtime); result.time = -t; do_particle_interpolation(psys, i, pa, t, &pind, &result); copy_v3_v3(ca->co, result.co); /* non-hair points are already in global space */ if(psys && !(psys->flag & PSYS_GLOBAL_HAIR)) { mul_m4_v3(hairmat, ca->co); if(k) { cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k); if(k == steps) copy_qt_qt(ca->rot, (ca - 1)->rot); /* set velocity */ sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co); if(k==1) copy_v3_v3((ca - 1)->vel, ca->vel); } } else { ca->vel[0] = ca->vel[1] = 0.0f; ca->vel[1] = 1.0f; } /* selection coloring in edit mode */ if(pset->brushtype==PE_BRUSH_WEIGHT){ float t2; if(k==0) { weight_to_rgb(pind.hkey[1]->weight, ca->col, ca->col+1, ca->col+2); } else { float w1[3], w2[3]; keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); weight_to_rgb(pind.hkey[0]->weight, w1, w1+1, w1+2); weight_to_rgb(pind.hkey[1]->weight, w2, w2+1, w2+2); interp_v3_v3v3(ca->col, w1, w2, keytime); } /* at the moment this is only used for weight painting. * will need to move out of this check if its used elsewhere. */ t2 = birthtime + ((float)k/(float)steps) * (dietime - birthtime); while (pind.hkey[1]->time < t2) pind.hkey[1]++; pind.hkey[0] = pind.hkey[1] - 1; } else { if((ekey + (pind.ekey[0] - point->keys))->flag & PEK_SELECT){ if((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT){ VECCOPY(ca->col, sel_col); } else{ keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); interp_v3_v3v3(ca->col, sel_col, nosel_col, keytime); } } else{ if((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT){ keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); interp_v3_v3v3(ca->col, nosel_col, sel_col, keytime); } else{ VECCOPY(ca->col, nosel_col); } } } ca->time = t; } if(psys && !(psys->flag & PSYS_GLOBAL_HAIR)) { /* First rotation is based on emitting face orientation. * This is way better than having flipping rotations resulting * from using a global axis as a rotation pole (vec_to_quat()). * It's not an ideal solution though since it disregards the * initial tangent, but taking that in to account will allow * the possibility of flipping again. -jahka */ mat3_to_quat_is_ok(cache[i]->rot, rotmat); } } edit->totcached = totpart; if(psys) { ParticleSimulationData sim= {0}; sim.scene= scene; sim.ob= ob; sim.psys= psys; sim.psmd= psys_get_modifier(ob, psys); psys_cache_child_paths(&sim, cfra, 1); } /* clear recalc flag if set here */ if(recalc_set) { for(i=0, point=edit->points; iflag &= ~PEP_EDIT_RECALC; } } /************************************************/ /* Particle Key handling */ /************************************************/ void copy_particle_key(ParticleKey *to, ParticleKey *from, int time){ if(time){ memcpy(to,from,sizeof(ParticleKey)); } else{ float to_time=to->time; memcpy(to,from,sizeof(ParticleKey)); to->time=to_time; } } void psys_get_from_key(ParticleKey *key, float *loc, float *vel, float *rot, float *time){ if(loc) VECCOPY(loc,key->co); if(vel) VECCOPY(vel,key->vel); if(rot) QUATCOPY(rot,key->rot); if(time) *time=key->time; } /*-------changing particle keys from space to another-------*/ #if 0 static void key_from_object(Object *ob, ParticleKey *key){ float q[4]; VECADD(key->vel,key->vel,key->co); mul_m4_v3(ob->obmat,key->co); mul_m4_v3(ob->obmat,key->vel); mat4_to_quat(q,ob->obmat); VECSUB(key->vel,key->vel,key->co); mul_qt_qtqt(key->rot,q,key->rot); } #endif static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[][4]) { float det, w1, w2, d1[2], d2[2]; memset(mat, 0, sizeof(float)*4*4); mat[3][3]= 1.0f; /* first axis is the normal */ normal_tri_v3( mat[2],v1, v2, v3); /* second axis along (1, 0) in uv space */ if(uv) { d1[0]= uv[1][0] - uv[0][0]; d1[1]= uv[1][1] - uv[0][1]; d2[0]= uv[2][0] - uv[0][0]; d2[1]= uv[2][1] - uv[0][1]; det = d2[0]*d1[1] - d2[1]*d1[0]; if(det != 0.0f) { det= 1.0f/det; w1= -d2[1]*det; w2= d1[1]*det; mat[1][0]= w1*(v2[0] - v1[0]) + w2*(v3[0] - v1[0]); mat[1][1]= w1*(v2[1] - v1[1]) + w2*(v3[1] - v1[1]); mat[1][2]= w1*(v2[2] - v1[2]) + w2*(v3[2] - v1[2]); normalize_v3(mat[1]); } else mat[1][0]= mat[1][1]= mat[1][2]= 0.0f; } else { sub_v3_v3v3(mat[1], v2, v1); normalize_v3(mat[1]); } /* third as a cross product */ cross_v3_v3v3(mat[0], mat[1], mat[2]); } static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[][4], int orco) { float v[3][3]; MFace *mface; OrigSpaceFace *osface; float (*orcodata)[3]; int i = pa->num_dmcache==DMCACHE_NOTFOUND ? pa->num : pa->num_dmcache; if (i==-1 || i >= dm->getNumFaces(dm)) { unit_m4(mat); return; } mface=dm->getFaceData(dm,i,CD_MFACE); osface=dm->getFaceData(dm,i,CD_ORIGSPACE); if(orco && (orcodata=dm->getVertDataArray(dm, CD_ORCO))) { VECCOPY(v[0], orcodata[mface->v1]); VECCOPY(v[1], orcodata[mface->v2]); VECCOPY(v[2], orcodata[mface->v3]); /* ugly hack to use non-transformed orcos, since only those * give symmetric results for mirroring in particle mode */ if(DM_get_vert_data_layer(dm, CD_ORIGINDEX)) transform_mesh_orco_verts(ob->data, v, 3, 1); } else { dm->getVertCo(dm,mface->v1,v[0]); dm->getVertCo(dm,mface->v2,v[1]); dm->getVertCo(dm,mface->v3,v[2]); } triatomat(v[0], v[1], v[2], (osface)? osface->uv: NULL, mat); } void psys_mat_hair_to_object(Object *UNUSED(ob), DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4]) { float vec[3]; psys_face_mat(0, dm, pa, hairmat, 0); psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0); VECCOPY(hairmat[3],vec); } void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4]) { float vec[3], orco[3]; psys_face_mat(ob, dm, pa, hairmat, 1); psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0); /* see psys_face_mat for why this function is called */ if(DM_get_vert_data_layer(dm, CD_ORIGINDEX)) transform_mesh_orco_verts(ob->data, &orco, 1, 1); VECCOPY(hairmat[3],orco); } void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float *vec) { float mat[4][4]; psys_face_mat(0, dm, pa, mat, 0); transpose_m4(mat); /* cheap inverse for rotation matrix */ mul_mat3_m4_v3(mat, vec); } void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4]) { float facemat[4][4]; psys_mat_hair_to_object(ob, dm, from, pa, facemat); mul_m4_m4m4(hairmat, facemat, ob->obmat); } /************************************************/ /* ParticleSettings handling */ /************************************************/ ModifierData *object_add_particle_system(Scene *scene, Object *ob, const char *name) { ParticleSystem *psys; ModifierData *md; ParticleSystemModifierData *psmd; if(!ob || ob->type != OB_MESH) return NULL; psys = ob->particlesystem.first; for(; psys; psys=psys->next) psys->flag &= ~PSYS_CURRENT; psys = MEM_callocN(sizeof(ParticleSystem), "particle_system"); psys->pointcache = BKE_ptcache_add(&psys->ptcaches); BLI_addtail(&ob->particlesystem, psys); psys->part = psys_new_settings("ParticleSettings", NULL); if(BLI_countlist(&ob->particlesystem)>1) sprintf(psys->name, "ParticleSystem %i", BLI_countlist(&ob->particlesystem)); else strcpy(psys->name, "ParticleSystem"); md= modifier_new(eModifierType_ParticleSystem); if(name) BLI_strncpy(md->name, name, sizeof(md->name)); else sprintf(md->name, "ParticleSystem %i", BLI_countlist(&ob->particlesystem)); modifier_unique_name(&ob->modifiers, md); psmd= (ParticleSystemModifierData*) md; psmd->psys=psys; BLI_addtail(&ob->modifiers, md); psys->totpart=0; psys->flag = PSYS_ENABLED|PSYS_CURRENT; psys->cfra=bsystem_time(scene,ob,scene->r.cfra+1,0.0); DAG_scene_sort(G.main, scene); DAG_id_tag_update(&ob->id, OB_RECALC_DATA); return md; } void object_remove_particle_system(Scene *scene, Object *ob) { ParticleSystem *psys = psys_get_current(ob); ParticleSystemModifierData *psmd; ModifierData *md; if(!psys) return; /* clear all other appearances of this pointer (like on smoke flow modifier) */ if((md = modifiers_findByType(ob, eModifierType_Smoke))) { SmokeModifierData *smd = (SmokeModifierData *)md; if((smd->type == MOD_SMOKE_TYPE_FLOW) && smd->flow && smd->flow->psys) if(smd->flow->psys == psys) smd->flow->psys = NULL; } /* clear modifier */ psmd= psys_get_modifier(ob, psys); BLI_remlink(&ob->modifiers, psmd); modifier_free((ModifierData *)psmd); /* clear particle system */ BLI_remlink(&ob->particlesystem, psys); psys_free(ob,psys); if(ob->particlesystem.first) ((ParticleSystem *) ob->particlesystem.first)->flag |= PSYS_CURRENT; else ob->mode &= ~OB_MODE_PARTICLE_EDIT; DAG_scene_sort(G.main, scene); DAG_id_tag_update(&ob->id, OB_RECALC_DATA); } static void default_particle_settings(ParticleSettings *part) { part->type= PART_EMITTER; part->distr= PART_DISTR_JIT; part->draw_as = PART_DRAW_REND; part->ren_as = PART_DRAW_HALO; part->bb_uv_split=1; part->bb_align=PART_BB_VIEW; part->bb_split_offset=PART_BB_OFF_LINEAR; part->flag=PART_EDISTR|PART_TRAND|PART_HIDE_ADVANCED_HAIR; part->sta= 1.0; part->end= 200.0; part->lifetime= 50.0; part->jitfac= 1.0; part->totpart= 1000; part->grid_res= 10; part->timetweak= 1.0; part->integrator= PART_INT_MIDPOINT; part->phystype= PART_PHYS_NEWTON; part->hair_step= 5; part->keys_step= 5; part->draw_step= 2; part->ren_step= 3; part->adapt_angle= 5; part->adapt_pix= 3; part->kink_axis= 2; part->kink_amp_clump= 1.f; part->reactevent= PART_EVENT_DEATH; part->disp=100; part->from= PART_FROM_FACE; part->normfac= 1.0f; part->mass=1.0; part->size=0.05; part->childsize=1.0; part->rotmode = PART_ROT_VEL; part->avemode = PART_AVE_SPIN; part->child_nbr=10; part->ren_child_nbr=100; part->childrad=0.2f; part->childflat=0.0f; part->clumppow=0.0f; part->kink_amp=0.2f; part->kink_freq=2.0; part->rough1_size=1.0; part->rough2_size=1.0; part->rough_end_shape=1.0; part->clength=1.0f; part->clength_thres=0.0f; part->draw= PART_DRAW_EMITTER; part->draw_line[0]=0.5; part->path_start = 0.0f; part->path_end = 1.0f; part->keyed_loops = 1; part->color_vec_max = 1.f; part->draw_col = PART_DRAW_COL_MAT; part->simplify_refsize= 1920; part->simplify_rate= 1.0f; part->simplify_transition= 0.1f; part->simplify_viewport= 0.8; if(!part->effector_weights) part->effector_weights = BKE_add_effector_weights(NULL); } ParticleSettings *psys_new_settings(const char *name, Main *main) { ParticleSettings *part; if(main==NULL) main = G.main; part= alloc_libblock(&main->particle, ID_PA, name); default_particle_settings(part); return part; } ParticleSettings *psys_copy_settings(ParticleSettings *part) { ParticleSettings *partn; int a; partn= copy_libblock(part); partn->pd= MEM_dupallocN(part->pd); partn->pd2= MEM_dupallocN(part->pd2); partn->effector_weights= MEM_dupallocN(part->effector_weights); partn->fluid= MEM_dupallocN(part->fluid); partn->boids = boid_copy_settings(part->boids); for(a=0; amtex[a]) { partn->mtex[a]= MEM_mallocN(sizeof(MTex), "psys_copy_tex"); memcpy(partn->mtex[a], part->mtex[a], sizeof(MTex)); id_us_plus((ID *)partn->mtex[a]->tex); } } BLI_duplicatelist(&partn->dupliweights, &part->dupliweights); return partn; } void make_local_particlesettings(ParticleSettings *part) { Object *ob; ParticleSettings *par; int local=0, lib=0; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if(part->id.lib==0) return; if(part->id.us==1) { part->id.lib= 0; part->id.flag= LIB_LOCAL; new_id(0, (ID *)part, 0); return; } /* test objects */ ob= G.main->object.first; while(ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next){ if(psys->part==part) { if(ob->id.lib) lib= 1; else local= 1; } } ob= ob->id.next; } if(local && lib==0) { part->id.lib= 0; part->id.flag= LIB_LOCAL; new_id(0, (ID *)part, 0); } else if(local && lib) { par= psys_copy_settings(part); par->id.us= 0; /* do objects */ ob= G.main->object.first; while(ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next){ if(psys->part==part && ob->id.lib==0) { psys->part= par; par->id.us++; part->id.us--; } } ob= ob->id.next; } } } /************************************************/ /* Textures */ /************************************************/ static int get_particle_uv(DerivedMesh *dm, ParticleData *pa, int face_index, float *fuv, char *name, float *texco) { MFace *mf; MTFace *tf; int i; tf= CustomData_get_layer_named(&dm->faceData, CD_MTFACE, name); if(tf == NULL) tf= CustomData_get_layer(&dm->faceData, CD_MTFACE); if(tf == NULL) return 0; if(pa) { i= (pa->num_dmcache==DMCACHE_NOTFOUND)? pa->num: pa->num_dmcache; if(i >= dm->getNumFaces(dm)) i = -1; } else i= face_index; if (i==-1) { texco[0]= 0.0f; texco[1]= 0.0f; texco[2]= 0.0f; } else { mf= dm->getFaceData(dm, i, CD_MFACE); psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco); texco[0]= texco[0]*2.0f - 1.0f; texco[1]= texco[1]*2.0f - 1.0f; texco[2]= 0.0f; } return 1; } #define SET_PARTICLE_TEXTURE(type, pvalue, texfac) if((event & mtex->mapto) & type) {pvalue = texture_value_blend(def, pvalue, value, texfac, blend);} #define CLAMP_PARTICLE_TEXTURE_POS(type, pvalue) if(event & type) { if(pvalue < 0.f) pvalue = 1.f+pvalue; CLAMP(pvalue, 0.0f, 1.0f); } #define CLAMP_PARTICLE_TEXTURE_POSNEG(type, pvalue) if(event & type) { CLAMP(pvalue, -1.0f, 1.0f); } static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, float *fw, float *orco, ParticleTexture *ptex, int event, float cfra) { MTex *mtex, **mtexp = part->mtex; int m; float value, rgba[4], texvec[3]; ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp = ptex->gravity = ptex->field = ptex->time = ptex->clump = ptex->kink = ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.f; ptex->length= 1.0f - part->randlength * PSYS_FRAND(child_index + 26); ptex->length*= part->clength_thres < PSYS_FRAND(child_index + 27) ? part->clength : 1.0f; for(m=0; mmapto){ float def=mtex->def_var; short blend=mtex->blendtype; short texco = mtex->texco; if(ELEM(texco, TEXCO_UV, TEXCO_ORCO) && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID)) texco = TEXCO_GLOB; switch(texco) { case TEXCO_GLOB: copy_v3_v3(texvec, par->state.co); break; case TEXCO_OBJECT: copy_v3_v3(texvec, par->state.co); if(mtex->object) mul_m4_v3(mtex->object->imat, texvec); break; case TEXCO_UV: if(fw && get_particle_uv(dm, NULL, face_index, fw, mtex->uvname, texvec)) break; /* no break, failed to get uv's, so let's try orco's */ case TEXCO_ORCO: copy_v3_v3(texvec, orco); break; case TEXCO_PARTICLE: /* texture coordinates in range [-1,1] */ texvec[0] = 2.f * (cfra - par->time)/(par->dietime-par->time) - 1.f; texvec[1] = 0.f; texvec[2] = 0.f; break; } externtex(mtex, texvec, &value, rgba, rgba+1, rgba+2, rgba+3, 0); if((event & mtex->mapto) & PAMAP_ROUGH) ptex->rough1= ptex->rough2= ptex->roughe= texture_value_blend(def,ptex->rough1,value,mtex->roughfac,blend); SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac); SET_PARTICLE_TEXTURE(PAMAP_CLUMP, ptex->clump, mtex->clumpfac); SET_PARTICLE_TEXTURE(PAMAP_KINK, ptex->kink, mtex->kinkfac); SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac); } } CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_CLUMP, ptex->clump); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_KINK, ptex->kink); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_ROUGH, ptex->rough1); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist); } void psys_get_texture(ParticleSimulationData *sim, ParticleData *pa, ParticleTexture *ptex, int event, float cfra) { ParticleSettings *part = sim->psys->part; MTex **mtexp = part->mtex; MTex *mtex; int m; float value, rgba[4], co[3], texvec[3]; int setvars=0; /* initialize ptex */ ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp = ptex->gravity = ptex->field = ptex->length = ptex->clump = ptex->kink = ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.f; ptex->time = (float)(pa - sim->psys->particles)/(float)sim->psys->totpart; for(m=0; mmapto){ float def=mtex->def_var; short blend=mtex->blendtype; short texco = mtex->texco; if(texco == TEXCO_UV && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID)) texco = TEXCO_GLOB; switch(texco) { case TEXCO_GLOB: copy_v3_v3(texvec, pa->state.co); break; case TEXCO_OBJECT: copy_v3_v3(texvec, pa->state.co); if(mtex->object) mul_m4_v3(mtex->object->imat, texvec); break; case TEXCO_UV: if(get_particle_uv(sim->psmd->dm, pa, 0, pa->fuv, mtex->uvname, texvec)) break; /* no break, failed to get uv's, so let's try orco's */ case TEXCO_ORCO: psys_particle_on_emitter(sim->psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,0,0,0,texvec, 0); break; case TEXCO_PARTICLE: /* texture coordinates in range [-1,1] */ texvec[0] = 2.f * (cfra - pa->time)/(pa->dietime-pa->time) - 1.f; texvec[1] = 0.f; texvec[2] = 0.f; break; } externtex(mtex, texvec, &value, rgba, rgba+1, rgba+2, rgba+3, 0); if((event & mtex->mapto) & PAMAP_TIME) { /* the first time has to set the base value for time regardless of blend mode */ if((setvars&MAP_PA_TIME)==0){ int flip= (mtex->timefac < 0.0f); float timefac= fabsf(mtex->timefac); ptex->time *= 1.0f - timefac; ptex->time += timefac * ((flip)? 1.0f - value : value); setvars |= MAP_PA_TIME; } else ptex->time= texture_value_blend(def,ptex->time,value,mtex->timefac,blend); } SET_PARTICLE_TEXTURE(PAMAP_LIFE, ptex->life, mtex->lifefac) SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac) SET_PARTICLE_TEXTURE(PAMAP_SIZE, ptex->size, mtex->sizefac) SET_PARTICLE_TEXTURE(PAMAP_IVEL, ptex->ivel, mtex->ivelfac) SET_PARTICLE_TEXTURE(PAMAP_FIELD, ptex->field, mtex->fieldfac) SET_PARTICLE_TEXTURE(PAMAP_GRAVITY, ptex->gravity, mtex->gravityfac) SET_PARTICLE_TEXTURE(PAMAP_DAMP, ptex->damp, mtex->dampfac) SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac) } } CLAMP_PARTICLE_TEXTURE_POS(PAMAP_TIME, ptex->time) CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LIFE, ptex->life) CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist) CLAMP_PARTICLE_TEXTURE_POS(PAMAP_SIZE, ptex->size) CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_IVEL, ptex->ivel) CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_FIELD, ptex->field) CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_GRAVITY, ptex->gravity) CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DAMP, ptex->damp) CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length) } /************************************************/ /* Particle State */ /************************************************/ float psys_get_timestep(ParticleSimulationData *sim) { return 0.04f * sim->psys->part->timetweak; } float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *birthtime, float *dietime) { ParticleSettings *part = psys->part; float time, life; if(part->childtype==PART_CHILD_FACES){ int w=0; time=0.0; while(w<4 && cpa->pa[w]>=0){ time+=cpa->w[w]*(psys->particles+cpa->pa[w])->time; w++; } life = part->lifetime * (1.0f - part->randlife * PSYS_FRAND(cpa - psys->child + 25)); } else{ ParticleData *pa = psys->particles + cpa->parent; time = pa->time; life = pa->lifetime; } if(birthtime) *birthtime = time; if(dietime) *dietime = time+life; return (cfra-time)/life; } float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float UNUSED(cfra), float *UNUSED(pa_time)) { ParticleSettings *part = psys->part; float size; // time XXX if(part->childtype==PART_CHILD_FACES) size=part->size; else size=psys->particles[cpa->parent].size; size*=part->childsize; if(part->childrandsize != 0.0f) size *= 1.0f - part->childrandsize * PSYS_FRAND(cpa - psys->child + 26); return size; } static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex) { ParticleSystem *psys = ctx->sim.psys; int i = cpa - psys->child; get_cpa_texture(ctx->dm, psys, part, psys->particles + cpa->pa[0], i, cpa_num, cpa_fuv, orco, ptex, PAMAP_DENS|PAMAP_CHILD, psys->cfra); if(ptex->exist < PSYS_FRAND(i + 24)) return; if(ctx->vg_length) ptex->length*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_length); if(ctx->vg_clump) ptex->clump*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_clump); if(ctx->vg_kink) ptex->kink*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_kink); if(ctx->vg_rough1) ptex->rough1*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough1); if(ctx->vg_rough2) ptex->rough2*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough2); if(ctx->vg_roughe) ptex->roughe*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_roughe); if(ctx->vg_effector) ptex->effector*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_effector); } static void do_child_modifiers(ParticleSimulationData *sim, ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa, float *orco, float mat[4][4], ParticleKey *state, float t) { ParticleSettings *part = sim->psys->part; int i = cpa - sim->psys->child; int guided = 0; float kink_freq = part->kink_freq; float rough1 = part->rough1; float rough2 = part->rough2; float rough_end = part->rough_end; if(ptex) { kink_freq *= ptex->kink; rough1 *= ptex->rough1; rough2 *= ptex->rough2; rough_end *= ptex->roughe; } if(part->flag & PART_CHILD_EFFECT) /* state is safe to cast, since only co and vel are used */ guided = do_guides(sim->psys->effectors, (ParticleKey*)state, cpa->parent, t); if(guided==0){ float clump = do_clump(state, par, t, part->clumpfac, part->clumppow, ptex ? ptex->clump : 1.f); if(kink_freq != 0.f) { float kink_amp = part->kink_amp * (1.f - part->kink_amp_clump * clump); do_kink(state, par, par_rot, t, kink_freq, part->kink_shape, kink_amp, part->kink_flat, part->kink, part->kink_axis, sim->ob->obmat, sim->psys->part->childtype == PART_CHILD_FACES); } } if(rough1 > 0.f) do_rough(orco, mat, t, rough1, part->rough1_size, 0.0, state); if(rough2 > 0.f) do_rough(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough2, part->rough2_size, part->rough2_thres, state); if(rough_end > 0.f) do_rough_end(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough_end, part->rough_end_shape, state); } /* get's hair (or keyed) particles state at the "path time" specified in state->time */ void psys_get_particle_on_path(ParticleSimulationData *sim, int p, ParticleKey *state, int vel) { PARTICLE_PSMD; ParticleSystem *psys = sim->psys; ParticleSettings *part = sim->psys->part; Material *ma = give_current_material(sim->ob, part->omat); ParticleData *pa; ChildParticle *cpa; ParticleTexture ptex; ParticleKey *par=0, keys[4], tstate; ParticleThreadContext ctx; /* fake thread context for child modifiers */ ParticleInterpolationData pind; float t; float co[3], orco[3]; float hairmat[4][4]; int totpart = psys->totpart; int totchild = psys->totchild; short between = 0, edit = 0; int keyed = part->phystype & PART_PHYS_KEYED && psys->flag & PSYS_KEYED; int cached = !keyed && part->type != PART_HAIR; float *cpa_fuv; int cpa_num; short cpa_from; /* initialize keys to zero */ memset(keys, 0, 4*sizeof(ParticleKey)); t=state->time; CLAMP(t, 0.0f, 1.0f); if(pparticles + p; pind.keyed = keyed; pind.cache = cached ? psys->pointcache : NULL; pind.epoint = NULL; pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE); /* pind.dm disabled in editmode means we dont get effectors taken into * account when subdividing for instance */ pind.dm = psys_in_edit_mode(sim->scene, psys) ? NULL : psys->hair_out_dm; init_particle_interpolation(sim->ob, psys, pa, &pind); do_particle_interpolation(psys, p, pa, t, &pind, state); if(!keyed && !cached) { if((pa->flag & PARS_REKEY)==0) { psys_mat_hair_to_global(sim->ob, sim->psmd->dm, part->from, pa, hairmat); mul_m4_v3(hairmat, state->co); mul_mat3_m4_v3(hairmat, state->vel); if(sim->psys->effectors && (part->flag & PART_CHILD_GUIDE)==0) { do_guides(sim->psys->effectors, state, p, state->time); /* TODO: proper velocity handling */ } if(psys->lattice && edit==0) calc_latt_deform(psys->lattice, state->co,1.0f); } } } else if(totchild){ //invert_m4_m4(imat,ob->obmat); cpa=psys->child+p-totpart; if(state->time < 0.0f) t = psys_get_child_time(psys, cpa, -state->time, NULL, NULL); if(totchild && part->childtype==PART_CHILD_FACES){ /* part->parents could still be 0 so we can't test with totparent */ between=1; } if(between){ int w = 0; float foffset; /* get parent states */ while(w<4 && cpa->pa[w]>=0){ keys[w].time = state->time; psys_get_particle_on_path(sim, cpa->pa[w], keys+w, 1); w++; } /* get the original coordinates (orco) for texture usage */ cpa_num=cpa->num; foffset= cpa->foffset; cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,0,0,0,orco,0); /* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */ //VECCOPY(cpa_1st,co); //mul_m4_v3(ob->obmat,cpa_1st); pa = psys->particles + cpa->parent; if(part->type == PART_HAIR) psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat); else unit_m4(hairmat); pa=0; } else{ /* get the parent state */ keys->time = state->time; psys_get_particle_on_path(sim, cpa->parent, keys,1); /* get the original coordinates (orco) for texture usage */ pa=psys->particles+cpa->parent; cpa_from=part->from; cpa_num=pa->num; cpa_fuv=pa->fuv; if(part->type == PART_HAIR) { psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,0,0,0,orco,0); psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat); } else { copy_v3_v3(orco, cpa->fuv); unit_m4(hairmat); } } /* correct child ipo timing */ #if 0 // XXX old animation system if((part->flag&PART_ABS_TIME)==0 && part->ipo){ calc_ipo(part->ipo, 100.0f*t); execute_ipo((ID *)part, part->ipo); } #endif // XXX old animation system /* get different child parameters from textures & vgroups */ memset(&ctx, 0, sizeof(ParticleThreadContext)); ctx.sim = *sim; ctx.dm = psmd->dm; ctx.ma = ma; /* TODO: assign vertex groups */ get_child_modifier_parameters(part, &ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex); if(between){ int w=0; state->co[0] = state->co[1] = state->co[2] = 0.0f; state->vel[0] = state->vel[1] = state->vel[2] = 0.0f; /* child position is the weighted sum of parent positions */ while(w<4 && cpa->pa[w]>=0){ state->co[0] += cpa->w[w] * keys[w].co[0]; state->co[1] += cpa->w[w] * keys[w].co[1]; state->co[2] += cpa->w[w] * keys[w].co[2]; state->vel[0] += cpa->w[w] * keys[w].vel[0]; state->vel[1] += cpa->w[w] * keys[w].vel[1]; state->vel[2] += cpa->w[w] * keys[w].vel[2]; w++; } /* apply offset for correct positioning */ //VECADD(state->co,state->co,cpa_1st); } else{ /* offset the child from the parent position */ offset_child(cpa, keys, keys->rot, state, part->childflat, part->childrad); } par = keys; if(vel) copy_particle_key(&tstate, state, 1); /* apply different deformations to the child path */ do_child_modifiers(sim, &ptex, par, par->rot, cpa, orco, hairmat, state, t); /* try to estimate correct velocity */ if(vel){ ParticleKey tstate; float length = len_v3(state->vel); if(t>=0.001f){ tstate.time=t-0.001f; psys_get_particle_on_path(sim,p,&tstate,0); VECSUB(state->vel,state->co,tstate.co); normalize_v3(state->vel); } else{ tstate.time=t+0.001f; psys_get_particle_on_path(sim,p,&tstate,0); VECSUB(state->vel,tstate.co,state->co); normalize_v3(state->vel); } mul_v3_fl(state->vel, length); } } } /* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */ int psys_get_particle_state(ParticleSimulationData *sim, int p, ParticleKey *state, int always){ ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleData *pa = NULL; ChildParticle *cpa = NULL; float cfra; int totpart = psys->totpart; float timestep = psys_get_timestep(sim); /* negative time means "use current time" */ cfra = state->time > 0 ? state->time : bsystem_time(sim->scene, 0, (float)sim->scene->r.cfra, 0.0); if(p>=totpart){ if(!psys->totchild) return 0; if(part->childtype == PART_CHILD_FACES){ if(!(psys->flag & PSYS_KEYED)) return 0; cpa = psys->child + p - totpart; state->time = psys_get_child_time(psys, cpa, cfra, NULL, NULL); if(!always) if((state->time < 0.0f && !(part->flag & PART_UNBORN)) || (state->time > 1.0f && !(part->flag & PART_DIED))) return 0; state->time= (cfra - (part->sta + (part->end - part->sta) * PSYS_FRAND(p + 23))) / (part->lifetime * PSYS_FRAND(p + 24)); psys_get_particle_on_path(sim, p, state,1); return 1; } else { cpa = sim->psys->child + p - totpart; pa = sim->psys->particles + cpa->parent; } } else { pa = sim->psys->particles + p; } if(pa) { if(!always) if((cfra < pa->time && (part->flag & PART_UNBORN)==0) || (cfra > pa->dietime && (part->flag & PART_DIED)==0)) return 0; cfra = MIN2(cfra, pa->dietime); } if(sim->psys->flag & PSYS_KEYED){ state->time= -cfra; psys_get_particle_on_path(sim, p, state,1); return 1; } else{ if(cpa){ float mat[4][4]; ParticleKey *key1; float t = (cfra - pa->time) / pa->lifetime; key1=&pa->state; offset_child(cpa, key1, key1->rot, state, part->childflat, part->childrad); CLAMP(t, 0.0f, 1.0f); unit_m4(mat); do_child_modifiers(sim, NULL, key1, key1->rot, cpa, cpa->fuv, mat, state, t); if(psys->lattice) calc_latt_deform(sim->psys->lattice, state->co,1.0f); } else{ if(pa->state.time==cfra || ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)) copy_particle_key(state, &pa->state, 1); else if(pa->prev_state.time==cfra) copy_particle_key(state, &pa->prev_state, 1); else { float dfra, frs_sec = sim->scene->r.frs_sec; /* let's interpolate to try to be as accurate as possible */ if(pa->state.time + 2.f >= state->time && pa->prev_state.time - 2.f <= state->time) { if(pa->prev_state.time >= pa->state.time || pa->prev_state.time < 0.f) { /* prev_state is wrong so let's not use it, this can happen at frames 1, 0 or particle birth */ dfra = state->time - pa->state.time; copy_particle_key(state, &pa->state, 1); madd_v3_v3v3fl(state->co, state->co, state->vel, dfra/frs_sec); } else { ParticleKey keys[4]; float keytime; copy_particle_key(keys+1, &pa->prev_state, 1); copy_particle_key(keys+2, &pa->state, 1); dfra = keys[2].time - keys[1].time; keytime = (state->time - keys[1].time) / dfra; /* convert velocity to timestep size */ mul_v3_fl(keys[1].vel, dfra * timestep); mul_v3_fl(keys[2].vel, dfra * timestep); psys_interpolate_particle(-1, keys, keytime, state, 1); /* convert back to real velocity */ mul_v3_fl(state->vel, 1.f / (dfra * timestep)); interp_v3_v3v3(state->ave, keys[1].ave, keys[2].ave, keytime); interp_qt_qtqt(state->rot, keys[1].rot, keys[2].rot, keytime); } } else if(pa->state.time + 1.f >= state->time && pa->state.time - 1.f <= state->time) { /* linear interpolation using only pa->state */ dfra = state->time - pa->state.time; copy_particle_key(state, &pa->state, 1); madd_v3_v3v3fl(state->co, state->co, state->vel, dfra/frs_sec); } else { /* extrapolating over big ranges is not accurate so let's just give something close to reasonable back */ copy_particle_key(state, &pa->state, 0); } } if(sim->psys->lattice) calc_latt_deform(sim->psys->lattice, state->co,1.0f); } return 1; } } void psys_get_dupli_texture(ParticleSystem *psys, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, float *uv, float *orco) { MFace *mface; MTFace *mtface; float loc[3]; int num; uv[0] = uv[1] = 0.f; if(cpa) { if(part->childtype == PART_CHILD_FACES) { mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE); if(mtface) { mface= psmd->dm->getFaceData(psmd->dm, cpa->num, CD_MFACE); mtface += cpa->num; psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv); } psys_particle_on_emitter(psmd,PART_FROM_FACE,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,0,0,0,orco,0); return; } else { pa = psys->particles + cpa->pa[0]; } } if(part->from == PART_FROM_FACE) { mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE); num= pa->num_dmcache; if(num == DMCACHE_NOTFOUND) num= pa->num; if (num >= psmd->dm->getNumFaces(psmd->dm)) { /* happens when simplify is enabled * gives invalid coords but would crash otherwise */ num= DMCACHE_NOTFOUND; } if(mtface && num != DMCACHE_NOTFOUND) { mface= psmd->dm->getFaceData(psmd->dm, num, CD_MFACE); mtface += num; psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv); } } psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,orco,0); } void psys_get_dupli_path_transform(ParticleSimulationData *sim, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[][4], float *scale) { Object *ob = sim->ob; ParticleSystem *psys = sim->psys; ParticleSystemModifierData *psmd = sim->psmd; float loc[3], nor[3], vec[3], side[3], len, obrotmat[4][4], qmat[4][4]; float xvec[3] = {-1.0, 0.0, 0.0}, q[4], nmat[3][3]; sub_v3_v3v3(vec, (cache+cache->steps)->co, cache->co); len= normalize_v3(vec); if(psys->part->rotmode) { if(pa == NULL) pa= psys->particles+cpa->pa[0]; vec_to_quat( q,xvec, ob->trackflag, ob->upflag); quat_to_mat4( obrotmat,q); obrotmat[3][3]= 1.0f; quat_to_mat4( qmat,pa->state.rot); mul_m4_m4m4(mat, obrotmat, qmat); } else { if(pa == NULL && psys->part->childflat != PART_CHILD_FACES) pa = psys->particles + cpa->pa[0]; if(pa) psys_particle_on_emitter(psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,nor,0,0,0,0); else psys_particle_on_emitter(psmd,PART_FROM_FACE,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,nor,0,0,0,0); copy_m3_m4(nmat, ob->imat); transpose_m3(nmat); mul_m3_v3(nmat, nor); /* make sure that we get a proper side vector */ if(fabs(dot_v3v3(nor,vec))>0.999999) { if(fabs(dot_v3v3(nor,xvec))>0.999999) { nor[0] = 0.0f; nor[1] = 1.0f; nor[2] = 0.0f; } else { nor[0] = 1.0f; nor[1] = 0.0f; nor[2] = 0.0f; } } cross_v3_v3v3(side, nor, vec); normalize_v3(side); cross_v3_v3v3(nor, vec, side); unit_m4(mat); VECCOPY(mat[0], vec); VECCOPY(mat[1], side); VECCOPY(mat[2], nor); } *scale= len; } void psys_make_billboard(ParticleBillboardData *bb, float xvec[3], float yvec[3], float zvec[3], float center[3]) { float onevec[3] = {0.0f,0.0f,0.0f}, tvec[3], tvec2[3]; xvec[0] = 1.0f; xvec[1] = 0.0f; xvec[2] = 0.0f; yvec[0] = 0.0f; yvec[1] = 1.0f; yvec[2] = 0.0f; /* can happen with bad pointcache or physics calculation * since this becomes geometry, nan's and inf's crash raytrace code. * better not allow this. */ if( !finite(bb->vec[0]) || !finite(bb->vec[1]) || !finite(bb->vec[2]) || !finite(bb->vel[0]) || !finite(bb->vel[1]) || !finite(bb->vel[2]) ) { zero_v3(bb->vec); zero_v3(bb->vel); zero_v3(xvec); zero_v3(yvec); zero_v3(zvec); zero_v3(center); return; } if(bb->align < PART_BB_VIEW) onevec[bb->align]=1.0f; if(bb->lock && (bb->align == PART_BB_VIEW)) { normalize_v3_v3(xvec, bb->ob->obmat[0]); normalize_v3_v3(yvec, bb->ob->obmat[1]); normalize_v3_v3(zvec, bb->ob->obmat[2]); } else if(bb->align == PART_BB_VEL) { float temp[3]; normalize_v3_v3(temp, bb->vel); VECSUB(zvec, bb->ob->obmat[3], bb->vec); if(bb->lock) { float fac = -dot_v3v3(zvec, temp); VECADDFAC(zvec, zvec, temp, fac); } normalize_v3(zvec); cross_v3_v3v3(xvec,temp,zvec); normalize_v3(xvec); cross_v3_v3v3(yvec,zvec,xvec); } else { VECSUB(zvec, bb->ob->obmat[3], bb->vec); if(bb->lock) zvec[bb->align] = 0.0f; normalize_v3(zvec); if(bb->align < PART_BB_VIEW) cross_v3_v3v3(xvec, onevec, zvec); else cross_v3_v3v3(xvec, bb->ob->obmat[1], zvec); normalize_v3(xvec); cross_v3_v3v3(yvec,zvec,xvec); } VECCOPY(tvec, xvec); VECCOPY(tvec2, yvec); mul_v3_fl(xvec, cos(bb->tilt * (float)M_PI)); mul_v3_fl(tvec2, sin(bb->tilt * (float)M_PI)); VECADD(xvec, xvec, tvec2); mul_v3_fl(yvec, cos(bb->tilt * (float)M_PI)); mul_v3_fl(tvec, -sin(bb->tilt * (float)M_PI)); VECADD(yvec, yvec, tvec); mul_v3_fl(xvec, bb->size); mul_v3_fl(yvec, bb->size); VECADDFAC(center, bb->vec, xvec, bb->offset[0]); VECADDFAC(center, center, yvec, bb->offset[1]); } void psys_apply_hair_lattice(Scene *scene, Object *ob, ParticleSystem *psys) { ParticleSimulationData sim= {0}; sim.scene= scene; sim.ob= ob; sim.psys= psys; sim.psmd= psys_get_modifier(ob, psys); psys->lattice = psys_get_lattice(&sim); if(psys->lattice) { ParticleData *pa = psys->particles; HairKey *hkey; int p, h; float hairmat[4][4], imat[4][4]; for(p=0; ptotpart; p++, pa++) { psys_mat_hair_to_global(sim.ob, sim.psmd->dm, psys->part->from, pa, hairmat); invert_m4_m4(imat, hairmat); hkey = pa->hair; for(h=0; htotkey; h++, hkey++) { mul_m4_v3(hairmat, hkey->co); calc_latt_deform(psys->lattice, hkey->co, 1.0f); mul_m4_v3(imat, hkey->co); } } end_latt_deform(psys->lattice); psys->lattice= NULL; /* protect the applied shape */ psys->flag |= PSYS_EDITED; } }