/* particle.c * * * $Id: particle.c $ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2007 by Janne Karhu. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ #include #include #include #include "MEM_guardedalloc.h" #include "DNA_scene_types.h" #include "DNA_particle_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_object_force.h" #include "DNA_texture_types.h" #include "DNA_material_types.h" #include "DNA_object_types.h" #include "DNA_curve_types.h" #include "DNA_key_types.h" #include "DNA_ipo_types.h" #include "BLI_arithb.h" #include "BLI_blenlib.h" #include "BLI_dynstr.h" #include "BLI_kdtree.h" #include "BLI_linklist.h" #include "BLI_rand.h" #include "BLI_threads.h" #include "BKE_anim.h" #include "BKE_global.h" #include "BKE_main.h" #include "BKE_lattice.h" #include "BKE_utildefines.h" #include "BKE_displist.h" #include "BKE_particle.h" #include "BKE_DerivedMesh.h" #include "BKE_ipo.h" #include "BKE_object.h" #include "BKE_softbody.h" #include "BKE_material.h" #include "BKE_key.h" #include "BKE_library.h" #include "BKE_depsgraph.h" #include "BKE_bad_level_calls.h" #include "BKE_modifier.h" #include "BKE_mesh.h" #include "BKE_cdderivedmesh.h" #include "BKE_pointcache.h" #include "blendef.h" #include "RE_render_ext.h" static void key_from_object(Object *ob, ParticleKey *key); static void get_cpa_texture(DerivedMesh *dm, Material *ma, int face_index, float *fuv, float *orco, ParticleTexture *ptex, int event); /* few helpers for countall etc. */ int count_particles(ParticleSystem *psys){ ParticleSettings *part=psys->part; ParticleData *pa; int tot=0,p; for(p=0,pa=psys->particles; ptotpart; p++,pa++){ if(pa->alive == PARS_KILLED); else if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0); else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0); else if(pa->flag & (PARS_UNEXIST+PARS_NO_DISP)); else tot++; } return tot; } int count_particles_mod(ParticleSystem *psys, int totgr, int cur){ ParticleSettings *part=psys->part; ParticleData *pa; int tot=0,p; for(p=0,pa=psys->particles; ptotpart; p++,pa++){ if(pa->alive == PARS_KILLED); else if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0); else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0); else if(pa->flag & (PARS_UNEXIST+PARS_NO_DISP)); else if(p%totgr==cur) tot++; } return tot; } int psys_count_keys(ParticleSystem *psys) { ParticleData *pa; int i, totpart=psys->totpart, totkey=0; for(i=0, pa=psys->particles; itotkey; return totkey; } /* remember to free the pointer returned from this! */ char *psys_menu_string(Object *ob, int for_sb) { ParticleSystem *psys; DynStr *ds; char *str, num[6]; int i; ds = BLI_dynstr_new(); if(for_sb) BLI_dynstr_append(ds, "|Object%x-1"); for(i=0,psys=ob->particlesystem.first; psys; i++,psys=psys->next){ BLI_dynstr_append(ds, "|"); sprintf(num,"%i. ",i+1); BLI_dynstr_append(ds, num); BLI_dynstr_append(ds, psys->part->id.name+2); sprintf(num,"%%x%i",i+1); BLI_dynstr_append(ds, num); } str = BLI_dynstr_get_cstring(ds); BLI_dynstr_free(ds); return str; } /* we allocate path cache memory in chunks instead of a big continguous * chunk, windows' memory allocater fails to find big blocks of memory often */ #define PATH_CACHE_BUF_SIZE 1024 static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int steps) { LinkData *buf; ParticleCacheKey **cache; int i, totkey, totbufkey; tot= MAX2(tot, 1); totkey = 0; cache = MEM_callocN(tot*sizeof(void*), "PathCacheArray"); while(totkey < tot) { totbufkey= MIN2(tot-totkey, PATH_CACHE_BUF_SIZE); buf= MEM_callocN(sizeof(LinkData), "PathCacheLinkData"); buf->data= MEM_callocN(sizeof(ParticleCacheKey)*totbufkey*steps, "ParticleCacheKey"); for(i=0; idata) + i*steps; totkey += totbufkey; BLI_addtail(bufs, buf); } return cache; } static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs) { LinkData *buf; if(cache) MEM_freeN(cache); for(buf= bufs->first; buf; buf=buf->next) MEM_freeN(buf->data); BLI_freelistN(bufs); } /************************************************/ /* Getting stuff */ /************************************************/ /* get object's active particle system safely */ ParticleSystem *psys_get_current(Object *ob) { ParticleSystem *psys; if(ob==0) return 0; for(psys=ob->particlesystem.first; psys; psys=psys->next){ if(psys->flag & PSYS_CURRENT) return psys; } return 0; } short psys_get_current_num(Object *ob) { ParticleSystem *psys; short i; if(ob==0) return 0; for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++) if(psys->flag & PSYS_CURRENT) return i; return i; } /* change object's active particle system */ void psys_change_act(void *ob_v, void *act_v) { Object *ob = ob_v; ParticleSystem *npsys, *psys; short act = *((short*)act_v)-1; if(act>=0){ npsys=BLI_findlink(&ob->particlesystem,act); psys=psys_get_current(ob); if(psys) psys->flag &= ~PSYS_CURRENT; if(npsys) npsys->flag |= PSYS_CURRENT; } } Object *psys_get_lattice(Object *ob, ParticleSystem *psys) { Object *lattice=0; if(psys_in_edit_mode(psys)==0){ ModifierData *md = (ModifierData*)psys_get_modifier(ob,psys); for(; md; md=md->next){ if(md->type==eModifierType_Lattice){ LatticeModifierData *lmd = (LatticeModifierData *)md; lattice=lmd->object; break; } } if(lattice) init_latt_deform(lattice,0); } return lattice; } void psys_disable_all(Object *ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next) psys->flag |= PSYS_DISABLED; } void psys_enable_all(Object *ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next) psys->flag &= ~PSYS_DISABLED; } int psys_ob_has_hair(Object *ob) { ParticleSystem *psys = ob->particlesystem.first; for(; psys; psys=psys->next) if(psys->part->type == PART_HAIR) return 1; return 0; } int psys_in_edit_mode(ParticleSystem *psys) { return ((G.f & G_PARTICLEEDIT) && psys==psys_get_current(OBACT) && psys->edit); } int psys_check_enabled(Object *ob, ParticleSystem *psys) { ParticleSystemModifierData *psmd; Mesh *me; if(psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE) return 0; if(ob->type == OB_MESH) { me= (Mesh*)ob->data; if(me->mr && me->mr->current != 1) return 0; } psmd= psys_get_modifier(ob, psys); if(psys->renderdata) { if(!(psmd->modifier.mode & eModifierMode_Render)) return 0; } else if(!(psmd->modifier.mode & eModifierMode_Realtime)) return 0; return 1; } /************************************************/ /* Freeing stuff */ /************************************************/ void psys_free_settings(ParticleSettings *part) { if(part->pd) { MEM_freeN(part->pd); part->pd = NULL; } if(part->pd2) { MEM_freeN(part->pd2); part->pd2 = NULL; } } void free_hair(ParticleSystem *psys, int softbody) { ParticleData *pa; int i, totpart=psys->totpart; for(i=0, pa=psys->particles; ihair) MEM_freeN(pa->hair); pa->hair = NULL; } psys->flag &= ~PSYS_HAIR_DONE; if(softbody && psys->soft) { sbFree(psys->soft); psys->soft = NULL; } } void free_keyed_keys(ParticleSystem *psys) { if(psys->particles && psys->particles->keys) MEM_freeN(psys->particles->keys); } void free_child_path_cache(ParticleSystem *psys) { psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs); psys->childcache = NULL; psys->totchildcache = 0; } void psys_free_path_cache(ParticleSystem *psys) { psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs); psys->pathcache= NULL; psys->totcached= 0; free_child_path_cache(psys); } void psys_free_children(ParticleSystem *psys) { if(psys->child) { MEM_freeN(psys->child); psys->child=0; psys->totchild=0; } free_child_path_cache(psys); } /* free everything */ void psys_free(Object *ob, ParticleSystem * psys) { if(psys){ int nr = 0; ParticleSystem * tpsys; if(ob->particlesystem.first == NULL && G.f & G_PARTICLEEDIT) G.f &= ~G_PARTICLEEDIT; psys_free_path_cache(psys); free_hair(psys, 1); free_keyed_keys(psys); PE_free_particle_edit(psys); if(psys->particles){ MEM_freeN(psys->particles); psys->particles = 0; psys->totpart = 0; } if(psys->child){ MEM_freeN(psys->child); psys->child = 0; psys->totchild = 0; } if(psys->effectors.first) psys_end_effectors(psys); // check if we are last non-visible particle system for(tpsys=ob->particlesystem.first; tpsys; tpsys=tpsys->next){ if(tpsys->part) { if(ELEM(tpsys->part->draw_as,PART_DRAW_OB,PART_DRAW_GR)) { nr++; break; } } } // clear do-not-draw-flag if(!nr) ob->transflag &= ~OB_DUPLIPARTS; if(psys->part){ psys->part->id.us--; psys->part=0; } if(psys->reactevents.first) BLI_freelistN(&psys->reactevents); if(psys->pointcache) BKE_ptcache_free(psys->pointcache); MEM_freeN(psys); } } /* these functions move away particle data and bring it back after * rendering, to make different render settings possible without * removing the previous data. this should be solved properly once */ typedef struct ParticleRenderElem { int curchild, totchild, reduce; float lambda, t, scalemin, scalemax; } ParticleRenderElem; typedef struct ParticleRenderData { ChildParticle *child; ParticleCacheKey **pathcache; ParticleCacheKey **childcache; int totchild, totcached, totchildcache; DerivedMesh *dm; int totdmvert, totdmedge, totdmface; float mat[4][4]; float viewmat[4][4], winmat[4][4]; int winx, winy; int dosimplify; int timeoffset; ParticleRenderElem *elems; int *origindex; } ParticleRenderData; static float psys_render_viewport_falloff(double rate, float dist, float width) { return pow(rate, dist/width); } static float psys_render_projected_area(ParticleSystem *psys, float *center, float area, double vprate, float *viewport) { ParticleRenderData *data= psys->renderdata; float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius; /* transform to view space */ VECCOPY(co, center); co[3]= 1.0f; Mat4MulVec4fl(data->viewmat, co); /* compute two vectors orthogonal to view vector */ VECCOPY(view, co); Normalize(view); VecOrthoBasisf(view, ortho1, ortho2); /* compute on screen minification */ w= co[2]*data->winmat[2][3] + data->winmat[3][3]; dx= data->winx*ortho2[0]*data->winmat[0][0]; dy= data->winy*ortho2[1]*data->winmat[1][1]; w= sqrt(dx*dx + dy*dy)/w; /* w squared because we are working with area */ area= area*w*w; /* viewport of the screen test */ /* project point on screen */ Mat4MulVec4fl(data->winmat, co); if(co[3] != 0.0f) { co[0]= 0.5f*data->winx*(1.0f + co[0]/co[3]); co[1]= 0.5f*data->winy*(1.0f + co[1]/co[3]); } /* screen space radius */ radius= sqrt(area/M_PI); /* make smaller using fallof once over screen edge */ *viewport= 1.0f; if(co[0]+radius < 0.0f) *viewport *= psys_render_viewport_falloff(vprate, -(co[0]+radius), data->winx); else if(co[0]-radius > data->winx) *viewport *= psys_render_viewport_falloff(vprate, (co[0]-radius) - data->winx, data->winx); if(co[1]+radius < 0.0f) *viewport *= psys_render_viewport_falloff(vprate, -(co[1]+radius), data->winy); else if(co[1]-radius > data->winy) *viewport *= psys_render_viewport_falloff(vprate, (co[1]-radius) - data->winy, data->winy); return area; } void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[][4], float winmat[][4], int winx, int winy, int timeoffset) { ParticleRenderData*data; ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys); if(!G.rendering) return; if(psys->renderdata) return; data= MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData"); data->child= psys->child; data->totchild= psys->totchild; data->pathcache= psys->pathcache; data->totcached= psys->totcached; data->childcache= psys->childcache; data->totchildcache= psys->totchildcache; if(psmd->dm) data->dm= CDDM_copy(psmd->dm); data->totdmvert= psmd->totdmvert; data->totdmedge= psmd->totdmedge; data->totdmface= psmd->totdmface; psys->child= NULL; psys->pathcache= NULL; psys->childcache= NULL; psys->totchild= psys->totcached= psys->totchildcache= 0; Mat4CpyMat4(data->winmat, winmat); Mat4MulMat4(data->viewmat, ob->obmat, viewmat); Mat4MulMat4(data->mat, data->viewmat, winmat); data->winx= winx; data->winy= winy; data->timeoffset= timeoffset; psys->renderdata= data; } void psys_render_restore(Object *ob, ParticleSystem *psys) { ParticleRenderData*data; ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys); data= psys->renderdata; if(!data) return; if(data->elems) MEM_freeN(data->elems); if(psmd->dm) { psmd->dm->needsFree= 1; psmd->dm->release(psmd->dm); } psys_free_path_cache(psys); if(psys->child){ MEM_freeN(psys->child); psys->child= 0; psys->totchild= 0; } psys->child= data->child; psys->totchild= data->totchild; psys->pathcache= data->pathcache; psys->totcached= data->totcached; psys->childcache= data->childcache; psys->totchildcache= data->totchildcache; psmd->dm= data->dm; psmd->totdmvert= data->totdmvert; psmd->totdmedge= data->totdmedge; psmd->totdmface= data->totdmface; psmd->flag &= ~eParticleSystemFlag_psys_updated; if(psmd->dm) psys_calc_dmcache(ob, psmd->dm, psys); MEM_freeN(data); psys->renderdata= NULL; } int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot) { DerivedMesh *dm= ctx->dm; Mesh *me= (Mesh*)(ctx->ob->data); MFace *mf, *mface; MVert *mvert; ParticleRenderData *data; ParticleRenderElem *elems, *elem; ParticleSettings *part= ctx->psys->part; float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp; float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport; double vprate; int *origindex, *facetotvert; int a, b, totorigface, totface, newtot, skipped; if(part->draw_as!=PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND)) return tot; if(!ctx->psys->renderdata) return tot; data= ctx->psys->renderdata; if(data->timeoffset) return 0; if(!(part->simplify_flag & PART_SIMPLIFY_ENABLE)) return tot; mvert= dm->getVertArray(dm); mface= dm->getFaceArray(dm); origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX); totface= dm->getNumFaces(dm); totorigface= me->totface; if(totface == 0 || totorigface == 0 || origindex == NULL) return tot; facearea= MEM_callocN(sizeof(float)*totorigface, "SimplifyFaceArea"); facecenter= MEM_callocN(sizeof(float[3])*totorigface, "SimplifyFaceCenter"); facetotvert= MEM_callocN(sizeof(int)*totorigface, "SimplifyFaceArea"); elems= MEM_callocN(sizeof(ParticleRenderElem)*totorigface, "SimplifyFaceElem"); if(data->elems) MEM_freeN(data->elems); data->dosimplify= 1; data->elems= elems; data->origindex= origindex; /* compute number of children per original face */ for(a=0; aindex[a]]; if(b != -1) elems[b].totchild++; } /* compute areas and centers of original faces */ for(mf=mface, a=0; av1].co); VECCOPY(co2, mvert[mf->v2].co); VECCOPY(co3, mvert[mf->v3].co); VECADD(facecenter[b], facecenter[b], co1); VECADD(facecenter[b], facecenter[b], co2); VECADD(facecenter[b], facecenter[b], co3); if(mf->v4) { VECCOPY(co4, mvert[mf->v4].co); VECADD(facecenter[b], facecenter[b], co4); facearea[b] += AreaQ3Dfl(co1, co2, co3, co4); facetotvert[b] += 4; } else { facearea[b] += AreaT3Dfl(co1, co2, co3); facetotvert[b] += 3; } } } for(a=0; a 0) VecMulf(facecenter[a], 1.0f/facetotvert[a]); /* for conversion from BU area / pixel area to reference screen size */ mesh_get_texspace(me, 0, 0, size); fac= ((size[0] + size[1] + size[2])/3.0f)/part->simplify_refsize; fac= fac*fac; powrate= log(0.5f)/log(part->simplify_rate*0.5f); if(part->simplify_flag & PART_SIMPLIFY_VIEWPORT) vprate= pow(1.0 - part->simplify_viewport, 5.0); else vprate= 1.0; /* set simplification parameters per original face */ for(a=0, elem=elems; apsys, facecenter[a], facearea[a], vprate, &viewport); arearatio= fac*area/facearea[a]; if((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) { /* lambda is percentage of elements to keep */ lambda= (arearatio < 1.0f)? pow(arearatio, powrate): 1.0f; lambda *= viewport; lambda= MAX2(lambda, 1.0f/elem->totchild); /* compute transition region */ t= part->simplify_transition; elem->t= (lambda-t < 0.0f)? lambda: (lambda+t > 1.0f)? 1.0f-lambda: t; elem->reduce= 1; /* scale at end and beginning of the transition region */ elem->scalemax= (lambda+t < 1.0f)? 1.0f/lambda: 1.0f/(1.0f - elem->t*elem->t/t); elem->scalemin= (lambda+t < 1.0f)? 0.0f: elem->scalemax*(1.0f-elem->t/t); elem->scalemin= sqrt(elem->scalemin); elem->scalemax= sqrt(elem->scalemax); /* clamp scaling */ scaleclamp= MIN2(elem->totchild, 10.0f); elem->scalemin= MIN2(scaleclamp, elem->scalemin); elem->scalemax= MIN2(scaleclamp, elem->scalemax); /* extend lambda to include transition */ lambda= lambda + elem->t; if(lambda > 1.0f) lambda= 1.0f; } else { lambda= arearatio; elem->scalemax= 1.0f; //sqrt(lambda); elem->scalemin= 1.0f; //sqrt(lambda); elem->reduce= 0; } elem->lambda= lambda; elem->scalemin= sqrt(elem->scalemin); elem->scalemax= sqrt(elem->scalemax); elem->curchild= 0; } MEM_freeN(facearea); MEM_freeN(facecenter); MEM_freeN(facetotvert); /* move indices and set random number skipping */ ctx->skip= MEM_callocN(sizeof(int)*tot, "SimplificationSkip"); skipped= 0; for(a=0, newtot=0; aindex[a]]; if(b != -1) { if(elems[b].curchild++ < ceil(elems[b].lambda*elems[b].totchild)) { ctx->index[newtot]= ctx->index[a]; ctx->skip[newtot]= skipped; skipped= 0; newtot++; } else skipped++; } else skipped++; } for(a=0, elem=elems; acurchild= 0; return newtot; } int psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params) { ParticleRenderData *data; ParticleRenderElem *elem; float x, w, scale, alpha, lambda, t, scalemin, scalemax; int b; if(!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE))) return 0; data= psys->renderdata; if(!data->dosimplify) return 0; b= data->origindex[cpa->num]; if(b == -1) return 0; elem= &data->elems[b]; lambda= elem->lambda; t= elem->t; scalemin= elem->scalemin; scalemax= elem->scalemax; if(!elem->reduce) { scale= scalemin; alpha= 1.0f; } else { x= (elem->curchild+0.5f)/elem->totchild; if(x < lambda-t) { scale= scalemax; alpha= 1.0f; } else if(x >= lambda+t) { scale= scalemin; alpha= 0.0f; } else { w= (lambda+t - x)/(2.0f*t); scale= scalemin + (scalemax - scalemin)*w; alpha= w; } } params[0]= scale; params[1]= alpha; elem->curchild++; return 1; } /************************************************/ /* Interpolated Particles */ /************************************************/ static float interpolate_particle_value(float v1, float v2, float v3, float v4, float *w, int four) { float value; value= w[0]*v1 + w[1]*v2 + w[2]*v3; if(four) value += w[3]*v4; return value; } static void weighted_particle_vector(float *v1, float *v2, float *v3, float *v4, float *weights, float *vec) { vec[0]= weights[0]*v1[0] + weights[1]*v2[0] + weights[2]*v3[0] + weights[3]*v4[0]; vec[1]= weights[0]*v1[1] + weights[1]*v2[1] + weights[2]*v3[1] + weights[3]*v4[1]; vec[2]= weights[0]*v1[2] + weights[1]*v2[2] + weights[2]*v3[2] + weights[3]*v4[2]; } static void interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result, int velocity) { float t[4]; if(type<0) { VecfCubicInterpol(keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt, result->co, result->vel); } else { set_four_ipo(dt, t, type); weighted_particle_vector(keys[0].co, keys[1].co, keys[2].co, keys[3].co, t, result->co); if(velocity){ float temp[3]; if(dt>0.999f){ set_four_ipo(dt-0.001f, t, type); weighted_particle_vector(keys[0].co, keys[1].co, keys[2].co, keys[3].co, t, temp); VECSUB(result->vel, result->co, temp); } else{ set_four_ipo(dt+0.001f, t, type); weighted_particle_vector(keys[0].co, keys[1].co, keys[2].co, keys[3].co, t, temp); VECSUB(result->vel, temp, result->co); } } } } /************************************************/ /* Particles on a dm */ /************************************************/ /* interpolate a location on a face based on face coordinates */ void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3], float *w, float *vec, float *nor, float *utan, float *vtan, float *orco,float *ornor){ float *v1=0, *v2=0, *v3=0, *v4=0; float e1[3],e2[3],s1,s2,t1,t2; float *uv1, *uv2, *uv3, *uv4; float n1[3], n2[3], n3[3], n4[3]; float tuv[4][2]; float *o1, *o2, *o3, *o4; v1= (mvert+mface->v1)->co; v2= (mvert+mface->v2)->co; v3= (mvert+mface->v3)->co; VECCOPY(n1,(mvert+mface->v1)->no); VECCOPY(n2,(mvert+mface->v2)->no); VECCOPY(n3,(mvert+mface->v3)->no); Normalize(n1); Normalize(n2); Normalize(n3); if(mface->v4) { v4= (mvert+mface->v4)->co; VECCOPY(n4,(mvert+mface->v4)->no); Normalize(n4); vec[0]= w[0]*v1[0] + w[1]*v2[0] + w[2]*v3[0] + w[3]*v4[0]; vec[1]= w[0]*v1[1] + w[1]*v2[1] + w[2]*v3[1] + w[3]*v4[1]; vec[2]= w[0]*v1[2] + w[1]*v2[2] + w[2]*v3[2] + w[3]*v4[2]; if(nor){ if(mface->flag & ME_SMOOTH){ nor[0]= w[0]*n1[0] + w[1]*n2[0] + w[2]*n3[0] + w[3]*n4[0]; nor[1]= w[0]*n1[1] + w[1]*n2[1] + w[2]*n3[1] + w[3]*n4[1]; nor[2]= w[0]*n1[2] + w[1]*n2[2] + w[2]*n3[2] + w[3]*n4[2]; } else CalcNormFloat4(v1,v2,v3,v4,nor); } } else { vec[0]= w[0]*v1[0] + w[1]*v2[0] + w[2]*v3[0]; vec[1]= w[0]*v1[1] + w[1]*v2[1] + w[2]*v3[1]; vec[2]= w[0]*v1[2] + w[1]*v2[2] + w[2]*v3[2]; if(nor){ if(mface->flag & ME_SMOOTH){ nor[0]= w[0]*n1[0] + w[1]*n2[0] + w[2]*n3[0]; nor[1]= w[0]*n1[1] + w[1]*n2[1] + w[2]*n3[1]; nor[2]= w[0]*n1[2] + w[1]*n2[2] + w[2]*n3[2]; } else CalcNormFloat(v1,v2,v3,nor); } } /* calculate tangent vectors */ if(utan && vtan){ if(tface){ uv1= tface->uv[0]; uv2= tface->uv[1]; uv3= tface->uv[2]; uv4= tface->uv[3]; } else{ uv1= tuv[0]; uv2= tuv[1]; uv3= tuv[2]; uv4= tuv[3]; spheremap(v1[0], v1[1], v1[2], uv1, uv1+1); spheremap(v2[0], v2[1], v2[2], uv2, uv2+1); spheremap(v3[0], v3[1], v3[2], uv3, uv3+1); if(v4) spheremap(v4[0], v4[1], v4[2], uv4, uv4+1); } if(v4){ s1= uv3[0] - uv1[0]; s2= uv4[0] - uv1[0]; t1= uv3[1] - uv1[1]; t2= uv4[1] - uv1[1]; VecSubf(e1, v3, v1); VecSubf(e2, v4, v1); } else{ s1= uv2[0] - uv1[0]; s2= uv3[0] - uv1[0]; t1= uv2[1] - uv1[1]; t2= uv3[1] - uv1[1]; VecSubf(e1, v2, v1); VecSubf(e2, v3, v1); } vtan[0] = (s1*e2[0] - s2*e1[0]); vtan[1] = (s1*e2[1] - s2*e1[1]); vtan[2] = (s1*e2[2] - s2*e1[2]); utan[0] = (t1*e2[0] - t2*e1[0]); utan[1] = (t1*e2[1] - t2*e1[1]); utan[2] = (t1*e2[2] - t2*e1[2]); } if(orco) { if(orcodata) { o1= orcodata[mface->v1]; o2= orcodata[mface->v2]; o3= orcodata[mface->v3]; if(mface->v4) { o4= orcodata[mface->v4]; orco[0]= w[0]*o1[0] + w[1]*o2[0] + w[2]*o3[0] + w[3]*o4[0]; orco[1]= w[0]*o1[1] + w[1]*o2[1] + w[2]*o3[1] + w[3]*o4[1]; orco[2]= w[0]*o1[2] + w[1]*o2[2] + w[2]*o3[2] + w[3]*o4[2]; if(ornor) CalcNormFloat4(o1, o2, o3, o4, ornor); } else { orco[0]= w[0]*o1[0] + w[1]*o2[0] + w[2]*o3[0]; orco[1]= w[0]*o1[1] + w[1]*o2[1] + w[2]*o3[1]; orco[2]= w[0]*o1[2] + w[1]*o2[2] + w[2]*o3[2]; if(ornor) CalcNormFloat(o1, o2, o3, ornor); } } else { VECCOPY(orco, vec); if(ornor) VECCOPY(ornor, nor); } } } void psys_interpolate_uvs(MTFace *tface, int quad, float *w, float *uvco) { float v10= tface->uv[0][0]; float v11= tface->uv[0][1]; float v20= tface->uv[1][0]; float v21= tface->uv[1][1]; float v30= tface->uv[2][0]; float v31= tface->uv[2][1]; float v40,v41; if(quad) { v40= tface->uv[3][0]; v41= tface->uv[3][1]; uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30 + w[3]*v40; uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31 + w[3]*v41; } else { uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30; uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31; } } void psys_interpolate_mcol(MCol *mcol, int quad, float *w, MCol *mc) { char *cp, *cp1, *cp2, *cp3, *cp4; cp= (char *)mc; cp1= (char *)&mcol[0]; cp2= (char *)&mcol[1]; cp3= (char *)&mcol[2]; if(quad) { cp4= (char *)&mcol[3]; cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0] + w[3]*cp4[0]); cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1] + w[3]*cp4[1]); cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2] + w[3]*cp4[2]); cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3] + w[3]*cp4[3]); } else { cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0]); cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1]); cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2]); cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3]); } } float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, float *fw, float *values) { if(values==0 || index==-1) return 0.0; switch(from){ case PART_FROM_VERT: return values[index]; case PART_FROM_FACE: case PART_FROM_VOLUME: { MFace *mf=dm->getFaceData(dm,index,CD_MFACE); return interpolate_particle_value(values[mf->v1],values[mf->v2],values[mf->v3],values[mf->v4],fw,mf->v4); } } return 0.0; } /* conversion of pa->fw to origspace layer coordinates */ static void psys_w_to_origspace(float *w, float *uv) { uv[0]= w[1] + w[2]; uv[1]= w[2] + w[3]; } /* conversion of pa->fw to weights in face from origspace */ static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, float *w, float *neww) { float v[4][3], co[3]; v[0][0]= osface->uv[0][0]; v[0][1]= osface->uv[0][1]; v[0][2]= 0.0f; v[1][0]= osface->uv[1][0]; v[1][1]= osface->uv[1][1]; v[1][2]= 0.0f; v[2][0]= osface->uv[2][0]; v[2][1]= osface->uv[2][1]; v[2][2]= 0.0f; psys_w_to_origspace(w, co); co[2]= 0.0f; if(quad) { v[3][0]= osface->uv[3][0]; v[3][1]= osface->uv[3][1]; v[3][2]= 0.0f; MeanValueWeights(v, 4, co, neww); } else { MeanValueWeights(v, 3, co, neww); neww[3]= 0.0f; } } /* find the derived mesh face for a particle, set the mf passed. this is slow * and can be optimized but only for many lookups. returns the face index. */ int psys_particle_dm_face_lookup(Object *ob, DerivedMesh *dm, int index, float *fw, struct LinkNode *node) { Mesh *me= (Mesh*)ob->data; MFace *mface; OrigSpaceFace *osface; int *origindex; int quad, findex, totface; float uv[2], (*faceuv)[2]; mface = dm->getFaceDataArray(dm, CD_MFACE); origindex = dm->getFaceDataArray(dm, CD_ORIGINDEX); osface = dm->getFaceDataArray(dm, CD_ORIGSPACE); totface = dm->getNumFaces(dm); if(osface==NULL || origindex==NULL) { /* Assume we dont need osface data */ if (index = me->totface) return DMCACHE_NOTFOUND; /* index not in the original mesh */ psys_w_to_origspace(fw, uv); if(node) { /* we have a linked list of faces that we use, faster! */ for(;node; node=node->next) { findex= GET_INT_FROM_POINTER(node->link); faceuv= osface[findex].uv; quad= mface[findex].v4; /* check that this intersects - Its possible this misses :/ - * could also check its not between */ if(quad) { if(IsectPQ2Df(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) return findex; } else if(IsectPT2Df(uv, faceuv[0], faceuv[1], faceuv[2])) return findex; } } else { /* if we have no node, try every face */ for(findex=0; findexdeformedOnly || index_dmcache == DMCACHE_ISCHILD) { /* for meshes that are either only defined or for child particles, the * index and fw do not require any mapping, so we can directly use it */ if(from == PART_FROM_VERT) { if(index >= dm->getNumVerts(dm)) return 0; *mapindex = index; } else { /* FROM_FACE/FROM_VOLUME */ if(index >= dm->getNumFaces(dm)) return 0; *mapindex = index; QUATCOPY(mapfw, fw); } } else { /* for other meshes that have been modified, we try to map the particle * to their new location, which means a different index, and for faces * also a new face interpolation weights */ if(from == PART_FROM_VERT) { if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache > dm->getNumVerts(dm)) return 0; *mapindex = index_dmcache; } else { /* FROM_FACE/FROM_VOLUME */ /* find a face on the derived mesh that uses this face */ MFace *mface; OrigSpaceFace *osface; int i; i = index_dmcache; if(i== DMCACHE_NOTFOUND || i >= dm->getNumFaces(dm)) return 0; *mapindex = i; /* modify the original weights to become * weights for the derived mesh face */ osface= dm->getFaceDataArray(dm, CD_ORIGSPACE); mface= dm->getFaceData(dm, i, CD_MFACE); if(osface == NULL) mapfw[0]= mapfw[1]= mapfw[2]= mapfw[3]= 0.0f; else psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw); } } return 1; } /* interprets particle data to get a point on a mesh in object space */ void psys_particle_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, float *fw, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor) { float tmpnor[3], mapfw[4]; float (*orcodata)[3]; int mapindex; if(!psys_map_index_on_dm(dm, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) { if(vec) { vec[0]=vec[1]=vec[2]=0.0; } if(nor) { nor[0]=nor[1]=0.0; nor[2]=1.0; } if(orco) { orco[0]=orco[1]=orco[2]=0.0; } if(ornor) { ornor[0]=ornor[1]=0.0; ornor[2]=1.0; } if(utan) { utan[0]=utan[1]=utan[2]=0.0; } if(vtan) { vtan[0]=vtan[1]=vtan[2]=0.0; } return; } orcodata= dm->getVertDataArray(dm, CD_ORCO); if(from == PART_FROM_VERT) { dm->getVertCo(dm,mapindex,vec); if(nor) { dm->getVertNo(dm,mapindex,nor); Normalize(nor); } if(orco) VECCOPY(orco, orcodata[mapindex]) if(ornor) { dm->getVertNo(dm,mapindex,nor); Normalize(nor); } if(utan && vtan) { utan[0]= utan[1]= utan[2]= 0.0f; vtan[0]= vtan[1]= vtan[2]= 0.0f; } } else { /* PART_FROM_FACE / PART_FROM_VOLUME */ MFace *mface; MTFace *mtface; MVert *mvert; mface=dm->getFaceData(dm,mapindex,CD_MFACE); mvert=dm->getVertDataArray(dm,CD_MVERT); mtface=CustomData_get_layer(&dm->faceData,CD_MTFACE); if(mtface) mtface += mapindex; if(from==PART_FROM_VOLUME) { psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,tmpnor,utan,vtan,orco,ornor); if(nor) VECCOPY(nor,tmpnor); Normalize(tmpnor); VecMulf(tmpnor,-foffset); VECADD(vec,vec,tmpnor); } else psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,nor,utan,vtan,orco,ornor); } } float psys_particle_value_from_verts(DerivedMesh *dm, short from, ParticleData *pa, float *values) { float mapfw[4]; int mapindex; if(!psys_map_index_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw)) return 0.0f; return psys_interpolate_value_from_verts(dm, from, mapindex, mapfw, values); } ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys) { ModifierData *md; ParticleSystemModifierData *psmd; for(md=ob->modifiers.first; md; md=md->next){ if(md->type==eModifierType_ParticleSystem){ psmd= (ParticleSystemModifierData*) md; if(psmd->psys==psys){ return psmd; } } } return 0; } /************************************************/ /* Particles on a shape */ /************************************************/ /* ready for future use */ static void psys_particle_on_shape(int distr, int index, float *fuv, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor) { /* TODO */ float zerovec[3]={0.0f,0.0f,0.0f}; if(vec){ VECCOPY(vec,zerovec); } if(nor){ VECCOPY(nor,zerovec); } if(utan){ VECCOPY(utan,zerovec); } if(vtan){ VECCOPY(vtan,zerovec); } if(orco){ VECCOPY(orco,zerovec); } if(ornor){ VECCOPY(ornor,zerovec); } } /************************************************/ /* Particles on emitter */ /************************************************/ void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache, float *fuv, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor){ if(psmd){ if(psmd->psys->part->distr==PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT){ if(vec){ VECCOPY(vec,fuv); } return; } /* we cant use the num_dmcache */ psys_particle_on_dm(psmd->dm,from,index,index_dmcache,fuv,foffset,vec,nor,utan,vtan,orco,ornor); } else psys_particle_on_shape(from,index,fuv,vec,nor,utan,vtan,orco,ornor); } /************************************************/ /* Path Cache */ /************************************************/ static void hair_to_particle(ParticleKey *key, HairKey *hkey) { VECCOPY(key->co, hkey->co); key->time = hkey->time; } static void bp_to_particle(ParticleKey *key, BodyPoint *bp, HairKey *hkey) { VECCOPY(key->co, bp->pos); key->time = hkey->time; } static float vert_weight(MDeformVert *dvert, int group) { MDeformWeight *dw; int i; if(dvert) { dw= dvert->dw; for(i= dvert->totweight; i>0; i--, dw++) { if(dw->def_nr == group) return dw->weight; if(i==1) break; /*otherwise dw will point to somewhere it shouldn't*/ } } return 0.0; } static void do_prekink(ParticleKey *state, ParticleKey *par, float *par_rot, float time, float freq, float shape, float amplitude, short type, short axis, float obmat[][4]) { float vec[3]={0.0,0.0,0.0}, q1[4]={1,0,0,0},q2[4]; float t; CLAMP(time,0.0,1.0); if(shape!=0.0f && type!=PART_KINK_BRAID) { if(shape<0.0f) time= (float)pow(time, 1.0+shape); else time= (float)pow(time, 1.0/(1.0-shape)); } t=time; t*=(float)M_PI*freq; if(par==0) return; switch(type){ case PART_KINK_CURL: vec[axis]=1.0; if(par_rot) QUATCOPY(q2,par_rot) else vectoquat(par->vel,axis,(axis+1)%3, q2); QuatMulVecf(q2,vec); VecMulf(vec,amplitude); VECADD(state->co,state->co,vec); VECSUB(vec,state->co,par->co); if(t!=0.0) VecRotToQuat(par->vel,t,q1); QuatMulVecf(q1,vec); VECADD(state->co,par->co,vec); break; case PART_KINK_RADIAL: VECSUB(vec,state->co,par->co); Normalize(vec); VecMulf(vec,amplitude*(float)sin(t)); VECADD(state->co,state->co,vec); break; case PART_KINK_WAVE: vec[axis]=1.0; if(obmat) Mat4MulVecfl(obmat,vec); if(par_rot) QuatMulVecf(par_rot,vec); Projf(q1,vec,par->vel); VECSUB(vec,vec,q1); Normalize(vec); VecMulf(vec,amplitude*(float)sin(t)); VECADD(state->co,state->co,vec); break; case PART_KINK_BRAID: if(par){ float y_vec[3]={0.0,1.0,0.0}; float z_vec[3]={0.0,0.0,1.0}; float vec_from_par[3], vec_one[3], radius, state_co[3]; float inp_y,inp_z,length; if(par_rot) QUATCOPY(q2,par_rot) else vectoquat(par->vel,axis,(axis+1)%3,q2); QuatMulVecf(q2,y_vec); QuatMulVecf(q2,z_vec); VECSUB(vec_from_par,state->co,par->co); VECCOPY(vec_one,vec_from_par); radius=Normalize(vec_one); inp_y=Inpf(y_vec,vec_one); inp_z=Inpf(z_vec,vec_one); if(inp_y>0.5){ VECCOPY(state_co,y_vec); VecMulf(y_vec,amplitude*(float)cos(t)); VecMulf(z_vec,amplitude/2.0f*(float)sin(2.0f*t)); } else if(inp_z>0.0){ VECCOPY(state_co,z_vec); VecMulf(state_co,(float)sin(M_PI/3.0f)); VECADDFAC(state_co,state_co,y_vec,-0.5f); VecMulf(y_vec,-amplitude*(float)cos(t + M_PI/3.0f)); VecMulf(z_vec,amplitude/2.0f*(float)cos(2.0f*t + M_PI/6.0f)); } else{ VECCOPY(state_co,z_vec); VecMulf(state_co,-(float)sin(M_PI/3.0f)); VECADDFAC(state_co,state_co,y_vec,-0.5f); VecMulf(y_vec,amplitude*(float)-sin(t+M_PI/6.0f)); VecMulf(z_vec,amplitude/2.0f*(float)-sin(2.0f*t+M_PI/3.0f)); } VecMulf(state_co,amplitude); VECADD(state_co,state_co,par->co); VECSUB(vec_from_par,state->co,state_co); length=Normalize(vec_from_par); VecMulf(vec_from_par,MIN2(length,amplitude/2.0f)); VECADD(state_co,par->co,y_vec); VECADD(state_co,state_co,z_vec); VECADD(state_co,state_co,vec_from_par); shape=(2.0f*(float)M_PI)*(1.0f+shape); if(tco,state->co,state_co,shape); } else{ VECCOPY(state->co,state_co); } } break; } } static void do_clump(ParticleKey *state, ParticleKey *par, float time, float clumpfac, float clumppow, float pa_clump) { if(par && clumpfac!=0.0){ float clump, cpow; if(clumppow<0.0) cpow=1.0f+clumppow; else cpow=1.0f+9.0f*clumppow; if(clumpfac<0.0) /* clump roots instead of tips */ clump = -clumpfac*pa_clump*(float)pow(1.0-(double)time,(double)cpow); else clump = clumpfac*pa_clump*(float)pow((double)time,(double)cpow); VecLerpf(state->co,state->co,par->co,clump); } } int do_guide(ParticleKey *state, int pa_num, float time, ListBase *lb) { PartDeflect *pd; ParticleEffectorCache *ec; Object *eob; Curve *cu; ParticleKey key, par; float effect[3]={0.0,0.0,0.0}, distance, f_force, mindist, totforce=0.0; float guidevec[4], guidedir[3], rot2[4], temp[3], angle, pa_loc[3], pa_zero[3]={0.0f,0.0f,0.0f}; float veffect[3]={0.0,0.0,0.0}, guidetime; effect[0]=effect[1]=effect[2]=0.0; if(lb->first){ for(ec = lb->first; ec; ec= ec->next){ eob= ec->ob; if(ec->type & PSYS_EC_EFFECTOR){ pd=eob->pd; if(pd->forcefield==PFIELD_GUIDE){ cu = (Curve*)eob->data; distance=ec->distances[pa_num]; mindist=pd->f_strength; VECCOPY(pa_loc, ec->locations+3*pa_num); VECCOPY(pa_zero,pa_loc); VECADD(pa_zero,pa_zero,ec->firstloc); guidetime=time/(1.0-pd->free_end); /* WARNING: bails out with continue here */ if(((pd->flag & PFIELD_USEMAX) && distance>pd->maxdist) || guidetime>1.0f) continue; if(guidetime>1.0f) continue; /* calculate contribution factor for this guide */ f_force=1.0f; if(distance<=mindist); else if(pd->flag & PFIELD_USEMAX) { if(mindist>=pd->maxdist) f_force= 0.0f; else if(pd->f_power!=0.0f){ f_force= 1.0f - (distance-mindist)/(pd->maxdist - mindist); f_force = (float)pow(f_force, pd->f_power); } } else if(pd->f_power!=0.0f){ f_force= 1.0f/(1.0f + distance-mindist); f_force = (float)pow(f_force, pd->f_power); } if(pd->flag & PFIELD_GUIDE_PATH_ADD) where_on_path(eob, f_force*guidetime, guidevec, guidedir); else where_on_path(eob, guidetime, guidevec, guidedir); Mat4MulVecfl(ec->ob->obmat,guidevec); Mat4Mul3Vecfl(ec->ob->obmat,guidedir); Normalize(guidedir); if(guidetime!=0.0){ /* curve direction */ Crossf(temp, ec->firstdir, guidedir); angle=Inpf(ec->firstdir,guidedir)/(VecLength(ec->firstdir)); angle=saacos(angle); VecRotToQuat(temp,angle,rot2); QuatMulVecf(rot2,pa_loc); /* curve tilt */ VecRotToQuat(guidedir,guidevec[3]-ec->firstloc[3],rot2); QuatMulVecf(rot2,pa_loc); //vectoquat(guidedir, pd->kink_axis, (pd->kink_axis+1)%3, q); //QuatMul(par.rot,rot2,q); } //else{ // par.rot[0]=1.0f; // par.rot[1]=par.rot[2]=par.rot[3]=0.0f; //} /* curve taper */ if(cu->taperobj) VecMulf(pa_loc,calc_taper(cu->taperobj,(int)(f_force*guidetime*100.0),100)); /* TODO */ //else{ ///* curve size*/ //} par.co[0]=par.co[1]=par.co[2]=0.0f; VECCOPY(key.co,pa_loc); do_prekink(&key, &par, 0, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, pd->kink, pd->kink_axis, 0); do_clump(&key, &par, guidetime, pd->clump_fac, pd->clump_pow, 1.0f); VECCOPY(pa_loc,key.co); VECADD(pa_loc,pa_loc,guidevec); VECSUB(pa_loc,pa_loc,pa_zero); VECADDFAC(effect,effect,pa_loc,f_force); VECADDFAC(veffect,veffect,guidedir,f_force); totforce+=f_force; } } } if(totforce!=0.0){ if(totforce>1.0) VecMulf(effect,1.0f/totforce); CLAMP(totforce,0.0,1.0); VECADD(effect,effect,pa_zero); VecLerpf(state->co,state->co,effect,totforce); Normalize(veffect); VecMulf(veffect,VecLength(state->vel)); VECCOPY(state->vel,veffect); return 1; } } return 0; } static void do_rough(float *loc, float t, float fac, float size, float thres, ParticleKey *state) { float rough[3]; float rco[3]; if(thres!=0.0) if((float)fabs((float)(-1.5+loc[0]+loc[1]+loc[2]))<1.5f*thres) return; VECCOPY(rco,loc); VecMulf(rco,t); rough[0]=-1.0f+2.0f*BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2,0,2); rough[1]=-1.0f+2.0f*BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2,0,2); rough[2]=-1.0f+2.0f*BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2,0,2); VECADDFAC(state->co,state->co,rough,fac); } static void do_rough_end(float *loc, float t, float fac, float shape, ParticleKey *state, ParticleKey *par) { float rough[3], rnor[3]; float roughfac; roughfac=fac*(float)pow((double)t,shape); VECCOPY(rough,loc); rough[0]=-1.0f+2.0f*rough[0]; rough[1]=-1.0f+2.0f*rough[1]; rough[2]=-1.0f+2.0f*rough[2]; VecMulf(rough,roughfac); if(par){ VECCOPY(rnor,par->vel); } else{ VECCOPY(rnor,state->vel); } Normalize(rnor); Projf(rnor,rough,rnor); VECSUB(rough,rough,rnor); VECADD(state->co,state->co,rough); } static void do_path_effectors(Object *ob, ParticleSystem *psys, int i, ParticleCacheKey *ca, int k, int steps, float *rootco, float effector, float dfra, float cfra, float *length, float *vec) { float force[3] = {0.0f,0.0f,0.0f}, vel[3] = {0.0f,0.0f,0.0f}; ParticleKey eff_key; ParticleData *pa; VECCOPY(eff_key.co,(ca-1)->co); VECCOPY(eff_key.vel,(ca-1)->vel); QUATCOPY(eff_key.rot,(ca-1)->rot); pa= psys->particles+i; do_effectors(i, pa, &eff_key, ob, psys, rootco, force, vel, dfra, cfra); VecMulf(force, effector*pow((float)k / (float)steps, 100.0f * psys->part->eff_hair) / (float)steps); VecAddf(force, force, vec); Normalize(force); if(k < steps) { VecSubf(vec, (ca+1)->co, ca->co); *length = VecLength(vec); } VECADDFAC(ca->co, (ca-1)->co, force, *length); } static int check_path_length(int k, ParticleCacheKey *keys, ParticleCacheKey *state, float max_length, float *cur_length, float length, float *dvec) { if(*cur_length + length > max_length){ VecMulf(dvec, (max_length - *cur_length) / length); VECADD(state->co, (state - 1)->co, dvec); keys->steps = k; /* something over the maximum step value */ return k=100000; } else { *cur_length+=length; return k; } } static void offset_child(ChildParticle *cpa, ParticleKey *par, ParticleKey *child, float flat, float radius) { VECCOPY(child->co,cpa->fuv); VecMulf(child->co,radius); child->co[0]*=flat; VECCOPY(child->vel,par->vel); QuatMulVecf(par->rot,child->co); QUATCOPY(child->rot,par->rot); VECADD(child->co,child->co,par->co); } float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup) { float *vg=0; if(psys->vgroup[vgroup]){ MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT); if(dvert){ int totvert=dm->getNumVerts(dm), i; vg=MEM_callocN(sizeof(float)*totvert, "vg_cache"); if(psys->vg_neg&(1<vgroup[vgroup]-1); } else{ for(i=0; ivgroup[vgroup]-1); } } } return vg; } void psys_find_parents(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys) { ParticleSettings *part=psys->part; KDTree *tree; ChildParticle *cpa; int p, totparent,totchild=psys->totchild; float co[3], orco[3]; int from=PART_FROM_FACE; totparent=(int)(totchild*part->parents*0.3); tree=BLI_kdtree_new(totparent); for(p=0,cpa=psys->child; pnum,-1,cpa->fuv,cpa->foffset,co,0,0,0,orco,0); BLI_kdtree_insert(tree, p, orco, NULL); } BLI_kdtree_balance(tree); for(; pnum,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0); cpa->parent=BLI_kdtree_find_nearest(tree, orco, NULL, NULL); } BLI_kdtree_free(tree); } static void get_strand_normal(Material *ma, float *surfnor, float surfdist, float *nor) { float cross[3], nstrand[3], vnor[3], blend; if(!((ma->mode & MA_STR_SURFDIFF) || (ma->strand_surfnor > 0.0f))) return; if(ma->mode & MA_STR_SURFDIFF) { Crossf(cross, surfnor, nor); Crossf(nstrand, nor, cross); blend= INPR(nstrand, surfnor); CLAMP(blend, 0.0f, 1.0f); VecLerpf(vnor, nstrand, surfnor, blend); Normalize(vnor); } else VECCOPY(vnor, nor) if(ma->strand_surfnor > 0.0f) { if(ma->strand_surfnor > surfdist) { blend= (ma->strand_surfnor - surfdist)/ma->strand_surfnor; VecLerpf(vnor, vnor, surfnor, blend); Normalize(vnor); } } VECCOPY(nor, vnor); } int psys_threads_init_path(ParticleThread *threads, float cfra, int editupdate) { ParticleThreadContext *ctx= threads[0].ctx; Object *ob= ctx->ob; ParticleSystem *psys= ctx->psys; ParticleSettings *part = psys->part; ParticleEditSettings *pset = &G.scene->toolsettings->particle; int totparent=0, between=0; int steps = (int)pow(2.0,(double)part->draw_step); int totchild = psys->totchild; int i, seed, totthread= threads[0].tot; /*---start figuring out what is actually wanted---*/ if(psys_in_edit_mode(psys)) if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_SHOW_CHILD)==0) totchild=0; if(totchild && part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){ totparent=(int)(totchild*part->parents*0.3); /* part->parents could still be 0 so we can't test with totparent */ between=1; } if(psys->renderdata) steps=(int)pow(2.0,(double)part->ren_step); else{ totchild=(int)((float)totchild*(float)part->disp/100.0f); totparent=MIN2(totparent,totchild); } if(totchild==0) return 0; /* init random number generator */ if(ctx->psys->part->flag & PART_ANIM_BRANCHING) seed= 31415926 + ctx->psys->seed + (int)cfra; else seed= 31415926 + ctx->psys->seed; if(part->flag & PART_BRANCHING || ctx->editupdate || totchild < 10000) totthread= 1; for(i=0; ibetween= between; ctx->steps= steps; ctx->totchild= totchild; ctx->totparent= totparent; ctx->cfra= cfra; psys->lattice = psys_get_lattice(ob, psys); /* cache all relevant vertex groups if they exist */ if(part->from!=PART_FROM_PARTICLE){ ctx->vg_length = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_LENGTH); ctx->vg_clump = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_CLUMP); ctx->vg_kink = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_KINK); ctx->vg_rough1 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH1); ctx->vg_rough2 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH2); ctx->vg_roughe = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGHE); if(psys->part->flag & PART_CHILD_EFFECT) ctx->vg_effector = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_EFFECTOR); } /* set correct ipo timing */ if(part->flag&PART_ABS_TIME && part->ipo){ calc_ipo(part->ipo, cfra); execute_ipo((ID *)part, part->ipo); } return 1; } /* note: this function must be thread safe, except for branching! */ void psys_thread_create_path(ParticleThread *thread, struct ChildParticle *cpa, ParticleCacheKey *keys, int i) { ParticleThreadContext *ctx= thread->ctx; Object *ob= ctx->ob; ParticleSystem *psys = ctx->psys; ParticleSettings *part = psys->part; ParticleCacheKey **cache= psys->childcache; ParticleCacheKey **pcache= psys->pathcache; ParticleCacheKey *state, *par = NULL, *key[4]; ParticleData *pa=NULL; ParticleTexture ptex; float *cpa_fuv=0; float co[3], orco[3], ornor[3], t, rough_t, cpa_1st[3], dvec[3]; float branch_begin, branch_end, branch_prob, branchfac, rough_rand; float pa_rough1, pa_rough2, pa_roughe; float length, pa_length, pa_clump, pa_kink, pa_effector; float max_length = 1.0f, cur_length = 0.0f; float eff_length, eff_vec[3]; int k, cpa_num, guided=0; short cpa_from; if(part->flag & PART_BRANCHING) { branch_begin=rng_getFloat(thread->rng_path); branch_end=branch_begin+(1.0f-branch_begin)*rng_getFloat(thread->rng_path); branch_prob=rng_getFloat(thread->rng_path); rough_rand=rng_getFloat(thread->rng_path); } else { branch_begin= 0.0f; branch_end= 0.0f; branch_prob= 0.0f; rough_rand= 0.0f; } if(itotpart){ branch_begin=0.0f; branch_end=1.0f; branch_prob=0.0f; } if(ctx->between){ int w, needupdate; float foffset; if(ctx->editupdate && !(part->flag & PART_BRANCHING)) { needupdate= 0; w= 0; while(w<4 && cpa->pa[w]>=0) { if(psys->particles[cpa->pa[w]].flag & PARS_EDIT_RECALC) { needupdate= 1; break; } w++; } if(!needupdate) return; else memset(keys, 0, sizeof(*keys)*(ctx->steps+1)); } /* get parent paths */ w= 0; while(w<4 && cpa->pa[w]>=0){ key[w] = pcache[cpa->pa[w]]; w++; } /* get the original coordinates (orco) for texture usage */ cpa_num = cpa->num; foffset= cpa->foffset; if(part->childtype == PART_CHILD_FACES) foffset = -(2.0f + part->childspread); cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter(ctx->psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,ornor,0,0,orco,0); /* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */ VECCOPY(cpa_1st,co); Mat4MulVecfl(ob->obmat,cpa_1st); pa=0; } else{ if(ctx->editupdate && !(part->flag & PART_BRANCHING)) { if(!(psys->particles[cpa->parent].flag & PARS_EDIT_RECALC)) return; memset(keys, 0, sizeof(*keys)*(ctx->steps+1)); } /* get the parent path */ key[0]=pcache[cpa->parent]; /* get the original coordinates (orco) for texture usage */ pa=psys->particles+cpa->parent; cpa_from=part->from; cpa_num=pa->num; cpa_fuv=pa->fuv; psys_particle_on_emitter(ctx->psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,ornor,0,0,orco,0); } keys->steps = ctx->steps; /* correct child ipo timing */ if((part->flag&PART_ABS_TIME)==0 && part->ipo){ float dsta=part->end-part->sta; calc_ipo(part->ipo, 100.0f*(ctx->cfra-(part->sta+dsta*cpa->rand[1]))/(part->lifetime*(1.0f - part->randlife*cpa->rand[0]))); execute_ipo((ID *)part, part->ipo); } /* get different child parameters from textures & vgroups */ ptex.length=part->length*(1.0f - part->randlength*cpa->rand[0]); ptex.clump=1.0; ptex.kink=1.0; ptex.rough= 1.0; get_cpa_texture(ctx->dm,ctx->ma,cpa_num,cpa_fuv,orco,&ptex, MAP_PA_LENGTH|MAP_PA_CLUMP|MAP_PA_KINK|MAP_PA_ROUGH); pa_length=ptex.length; pa_clump=ptex.clump; pa_kink=ptex.kink; pa_rough1=ptex.rough; pa_rough2=ptex.rough; pa_roughe=ptex.rough; pa_effector= 1.0f; if(ctx->vg_length) pa_length*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_length); if(ctx->vg_clump) pa_clump*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_clump); if(ctx->vg_kink) pa_kink*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_kink); if(ctx->vg_rough1) pa_rough1*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough1); if(ctx->vg_rough2) pa_rough2*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough2); if(ctx->vg_roughe) pa_roughe*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_roughe); if(ctx->vg_effector) pa_effector*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_effector); /* create the child path */ for(k=0,state=keys; k<=ctx->steps; k++,state++){ if(ctx->between){ int w=0; state->co[0] = state->co[1] = state->co[2] = 0.0f; state->vel[0] = state->vel[1] = state->vel[2] = 0.0f; state->rot[0] = state->rot[1] = state->rot[2] = state->rot[3] = 0.0f; //QUATCOPY(state->rot,key[0]->rot); /* child position is the weighted sum of parent positions */ while(w<4 && cpa->pa[w]>=0){ state->co[0] += cpa->w[w] * key[w]->co[0]; state->co[1] += cpa->w[w] * key[w]->co[1]; state->co[2] += cpa->w[w] * key[w]->co[2]; state->vel[0] += cpa->w[w] * key[w]->vel[0]; state->vel[1] += cpa->w[w] * key[w]->vel[1]; state->vel[2] += cpa->w[w] * key[w]->vel[2]; key[w]++; w++; } if(k==0){ /* calculate the offset between actual child root position and first position interpolated from parents */ VECSUB(cpa_1st,cpa_1st,state->co); } /* apply offset for correct positioning */ VECADD(state->co,state->co,cpa_1st); } else{ /* offset the child from the parent position */ offset_child(cpa, (ParticleKey*)key[0], (ParticleKey*)state, part->childflat, part->childrad); key[0]++; } } /* apply effectors */ if(part->flag & PART_CHILD_EFFECT) { for(k=0,state=keys; k<=ctx->steps; k++,state++) { if(k) { do_path_effectors(ob, psys, cpa->pa[0], state, k, ctx->steps, keys->co, pa_effector, 0.0f, ctx->cfra, &eff_length, eff_vec); } else { VecSubf(eff_vec,(state+1)->co,state->co); eff_length= VecLength(eff_vec); } } } for(k=0,state=keys; k<=ctx->steps; k++,state++){ t=(float)k/(float)ctx->steps; if(ctx->totparent){ if(i>=ctx->totparent) /* this is not threadsafe, but should only happen for * branching particles particles, which are not threaded */ par = cache[cpa->parent] + k; else par=0; } else if(cpa->parent>=0){ par=pcache[cpa->parent]+k; } /* apply different deformations to the child path */ if(part->flag & PART_CHILD_EFFECT) /* state is safe to cast, since only co and vel are used */ guided = do_guide((ParticleKey*)state, cpa->parent, t, &(psys->effectors)); if(guided==0){ if(part->kink) do_prekink((ParticleKey*)state, (ParticleKey*)par, par->rot, t, part->kink_freq * pa_kink, part->kink_shape, part->kink_amp, part->kink, part->kink_axis, ob->obmat); do_clump((ParticleKey*)state, (ParticleKey*)par, t, part->clumpfac, part->clumppow, pa_clump); } if(part->flag & PART_BRANCHING && ctx->between == 0 && part->flag & PART_ANIM_BRANCHING) rough_t = t * rough_rand; else rough_t = t; if(part->rough1 != 0.0 && pa_rough1 != 0.0) do_rough(orco, rough_t, pa_rough1*part->rough1, part->rough1_size, 0.0, (ParticleKey*)state); if(part->rough2 != 0.0 && pa_rough2 != 0.0) do_rough(cpa->rand, rough_t, pa_rough2*part->rough2, part->rough2_size, part->rough2_thres, (ParticleKey*)state); if(part->rough_end != 0.0 && pa_roughe != 0.0) do_rough_end(cpa->rand, rough_t, pa_roughe*part->rough_end, part->rough_end_shape, (ParticleKey*)state, (ParticleKey*)par); if(part->flag & PART_BRANCHING && ctx->between==0){ if(branch_prob > part->branch_thres){ branchfac=0.0f; } else{ if(part->flag & PART_SYMM_BRANCHING){ if(t < branch_begin || t > branch_end) branchfac=0.0f; else{ if((t-branch_begin)/(branch_end-branch_begin)<0.5) branchfac=2.0f*(t-branch_begin)/(branch_end-branch_begin); else branchfac=2.0f*(branch_end-t)/(branch_end-branch_begin); CLAMP(branchfac,0.0f,1.0f); } } else{ if(t < branch_begin){ branchfac=0.0f; } else{ branchfac=(t-branch_begin)/((1.0f-branch_begin)*0.5f); CLAMP(branchfac,0.0f,1.0f); } } } if(itotpart) VecLerpf(state->co, (pcache[i] + k)->co, state->co, branchfac); else /* this is not threadsafe, but should only happen for * branching particles particles, which are not threaded */ VecLerpf(state->co, (cache[i - psys->totpart] + k)->co, state->co, branchfac); } /* we have to correct velocity because of kink & clump */ if(k>1){ VECSUB((state-1)->vel,state->co,(state-2)->co); VecMulf((state-1)->vel,0.5); if(ctx->ma && (part->draw & PART_DRAW_MAT_COL)) get_strand_normal(ctx->ma, ornor, cur_length, (state-1)->vel); } /* check if path needs to be cut before actual end of data points */ if(k){ VECSUB(dvec,state->co,(state-1)->co); if(part->flag&PART_ABS_LENGTH) length=VecLength(dvec); else length=1.0f/(float)ctx->steps; k=check_path_length(k,keys,state,max_length,&cur_length,length,dvec); } else{ /* initialize length calculation */ if(part->flag&PART_ABS_LENGTH) max_length= part->abslength*pa_length; else max_length= pa_length; cur_length= 0.0f; } if(ctx->ma && (part->draw & PART_DRAW_MAT_COL)) { VECCOPY(state->col, &ctx->ma->r) get_strand_normal(ctx->ma, ornor, cur_length, state->vel); } } } static void *exec_child_path_cache(void *data) { ParticleThread *thread= (ParticleThread*)data; ParticleThreadContext *ctx= thread->ctx; ParticleSystem *psys= ctx->psys; ParticleCacheKey **cache= psys->childcache; ChildParticle *cpa; int i, totchild= ctx->totchild; cpa= psys->child + thread->num; for(i=thread->num; itot, cpa+=thread->tot) psys_thread_create_path(thread, cpa, cache[i], i); return 0; } void psys_cache_child_paths(Object *ob, ParticleSystem *psys, float cfra, int editupdate) { ParticleSettings *part = psys->part; ParticleThread *pthreads; ParticleThreadContext *ctx; ParticleCacheKey **cache; ListBase threads; int i, totchild, totparent, totthread; pthreads= psys_threads_create(ob, psys); if(!psys_threads_init_path(pthreads, cfra, editupdate)) { psys_threads_free(pthreads); return; } ctx= pthreads[0].ctx; totchild= ctx->totchild; totparent= ctx->totparent; if(editupdate && psys->childcache && !(part->flag & PART_BRANCHING) && totchild == psys->totchildcache) { cache = psys->childcache; } else { /* clear out old and create new empty path cache */ free_child_path_cache(psys); psys->childcache= psys_alloc_path_cache_buffers(&psys->childcachebufs, totchild, ctx->steps+1); psys->totchildcache = totchild; } totthread= pthreads[0].tot; if(totthread > 1) { BLI_init_threads(&threads, exec_child_path_cache, totthread); for(i=0; ipathcache; ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys); ParticleEditSettings *pset = &G.scene->toolsettings->particle; ParticleSettings *part = psys->part; ParticleData *pa; ParticleKey keys[4], result, *kkey[2] = {NULL, NULL}; HairKey *hkey[2] = {NULL, NULL}; ParticleEdit *edit = 0; ParticleEditKey *ekey = 0; SoftBody *soft = 0; BodyPoint *bp[2] = {NULL, NULL}; Material *ma; float birthtime = 0.0, dietime = 0.0; float t, time = 0.0, keytime = 0.0, dfra = 1.0, frs_sec = G.scene->r.frs_sec; float col[3] = {0.5f, 0.5f, 0.5f}; float prev_tangent[3], hairmat[4][4]; int k,i; int steps = (int)pow(2.0, (double)psys->part->draw_step); int totpart = psys->totpart; char nosel[4], sel[4]; float sel_col[3]; float nosel_col[3]; float length, vec[3]; float *vg_effector= NULL, effector=0.0f; float *vg_length= NULL, pa_length=1.0f, max_length=1.0f, cur_length=0.0f; float len, dvec[3]; /* we don't have anything valid to create paths from so let's quit here */ if((psys->flag & PSYS_HAIR_DONE)==0 && (psys->flag & PSYS_KEYED)==0) return; if(psys->renderdata) steps = (int)pow(2.0, (double)psys->part->ren_step); else if(psys_in_edit_mode(psys)){ edit=psys->edit; //timed = edit->draw_timed; PE_get_colors(sel,nosel); if(pset->brushtype == PE_BRUSH_WEIGHT){ sel_col[0] = sel_col[1] = sel_col[2] = 1.0f; nosel_col[0] = nosel_col[1] = nosel_col[2] = 0.0f; } else{ sel_col[0] = (float)sel[0] / 255.0f; sel_col[1] = (float)sel[1] / 255.0f; sel_col[2] = (float)sel[2] / 255.0f; nosel_col[0] = (float)nosel[0] / 255.0f; nosel_col[1] = (float)nosel[1] / 255.0f; nosel_col[2] = (float)nosel[2] / 255.0f; } } if(editupdate && psys->pathcache && totpart == psys->totcached) { cache = psys->pathcache; } else { /* clear out old and create new empty path cache */ psys_free_path_cache(psys); cache= psys_alloc_path_cache_buffers(&psys->pathcachebufs, totpart, steps+1); psys->pathcache= cache; } if(edit==NULL && psys->soft && psys->softflag & OB_SB_ENABLE) { soft = psys->soft; if(!soft->bpoint) soft= NULL; } psys->lattice = psys_get_lattice(ob, psys); ma= give_current_material(ob, psys->part->omat); if(ma && (psys->part->draw & PART_DRAW_MAT_COL)) VECCOPY(col, &ma->r) if(psys->part->from!=PART_FROM_PARTICLE) { if(!(psys->part->flag & PART_CHILD_EFFECT)) vg_effector = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_EFFECTOR); if(!edit && !psys->totchild) vg_length = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_LENGTH); } /*---first main loop: create all actual particles' paths---*/ for(i=0,pa=psys->particles; iflag & PARS_NO_DISP || pa->flag & PARS_UNEXIST)) { if(soft) bp[0] += pa->totkey; /* TODO use of initialized value? */ continue; } if(editupdate && !(pa->flag & PARS_EDIT_RECALC)) continue; else memset(cache[i], 0, sizeof(*cache[i])*(steps+1)); if(!edit && !psys->totchild) { pa_length = part->length * (1.0f - part->randlength*pa->r_ave[0]); if(vg_length) pa_length *= psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_length); } cache[i]->steps = steps; if(edit) ekey = edit->keys[i]; /*--get the first data points--*/ if(psys->flag & PSYS_KEYED) { kkey[0] = pa->keys; kkey[1] = kkey[0] + 1; birthtime = kkey[0]->time; dietime = kkey[0][pa->totkey-1].time; } else { hkey[0] = pa->hair; hkey[1] = hkey[0] + 1; birthtime = hkey[0]->time; dietime = hkey[0][pa->totkey-1].time; psys_mat_hair_to_global(ob, psmd->dm, psys->part->from, pa, hairmat); } if(soft){ bp[0] = soft->bpoint + pa->bpi; bp[1] = bp[0] + 1; } /*--interpolate actual path from data points--*/ for(k=0, ca=cache[i]; k<=steps; k++, ca++){ time = (float)k / (float)steps; t = birthtime + time * (dietime - birthtime); if(psys->flag & PSYS_KEYED) { while(kkey[1]->time < t) { kkey[1]++; } kkey[0] = kkey[1] - 1; } else { while(hkey[1]->time < t) { hkey[1]++; bp[1]++; } hkey[0] = hkey[1] - 1; } if(soft) { bp[0] = bp[1] - 1; bp_to_particle(keys + 1, bp[0], hkey[0]); bp_to_particle(keys + 2, bp[1], hkey[1]); } else if(psys->flag & PSYS_KEYED) { memcpy(keys + 1, kkey[0], sizeof(ParticleKey)); memcpy(keys + 2, kkey[1], sizeof(ParticleKey)); } else { hair_to_particle(keys + 1, hkey[0]); hair_to_particle(keys + 2, hkey[1]); } if((psys->flag & PSYS_KEYED)==0) { if(soft) { if(hkey[0] != pa->hair) bp_to_particle(keys, bp[0] - 1, hkey[0] - 1); else bp_to_particle(keys, bp[0], hkey[0]); } else { if(hkey[0] != pa->hair) hair_to_particle(keys, hkey[0] - 1); else hair_to_particle(keys, hkey[0]); } if(soft) { if(hkey[1] != pa->hair + pa->totkey - 1) bp_to_particle(keys + 3, bp[1] + 1, hkey[1] + 1); else bp_to_particle(keys + 3, bp[1], hkey[1]); } else { if(hkey[1] != pa->hair + pa->totkey - 1) hair_to_particle(keys + 3, hkey[1] + 1); else hair_to_particle(keys + 3, hkey[1]); } } dfra = keys[2].time - keys[1].time; keytime = (t - keys[1].time) / dfra; /* convert velocity to timestep size */ if(psys->flag & PSYS_KEYED){ VecMulf(keys[1].vel, dfra / frs_sec); VecMulf(keys[2].vel, dfra / frs_sec); } /* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0,1]->[k2,k3] (k1 & k4 used for cardinal & bspline interpolation)*/ interpolate_particle((psys->flag & PSYS_KEYED) ? -1 /* signal for cubic interpolation */ : ((psys->part->flag & PART_HAIR_BSPLINE) ? KEY_BSPLINE : KEY_CARDINAL) ,keys, keytime, &result, 0); /* the velocity needs to be converted back from cubic interpolation */ if(psys->flag & PSYS_KEYED){ VecMulf(result.vel, frs_sec / dfra); } else if(soft==NULL) { /* softbody and keyed are allready in global space */ Mat4MulVecfl(hairmat, result.co); } VECCOPY(ca->co, result.co); /* selection coloring in edit mode */ if(edit){ if(pset->brushtype==PE_BRUSH_WEIGHT){ if(k==steps) VecLerpf(ca->col, nosel_col, sel_col, hkey[0]->weight); else VecLerpf(ca->col, nosel_col, sel_col, (1.0f - keytime) * hkey[0]->weight + keytime * hkey[1]->weight); } else{ if((ekey + (hkey[0] - pa->hair))->flag & PEK_SELECT){ if((ekey + (hkey[1] - pa->hair))->flag & PEK_SELECT){ VECCOPY(ca->col, sel_col); } else{ VecLerpf(ca->col, sel_col, nosel_col, keytime); } } else{ if((ekey + (hkey[1] - pa->hair))->flag & PEK_SELECT){ VecLerpf(ca->col, nosel_col, sel_col, keytime); } else{ VECCOPY(ca->col, nosel_col); } } } } else{ VECCOPY(ca->col, col); } } /*--modify paths--*/ VecSubf(vec,(cache[i]+1)->co,cache[i]->co); length = VecLength(vec); effector= 1.0f; if(vg_effector) effector*= psys_particle_value_from_verts(psmd->dm,psys->part->from,pa,vg_effector); for(k=0, ca=cache[i]; k<=steps; k++, ca++) { /* apply effectors */ if(!(psys->part->flag & PART_CHILD_EFFECT) && edit==0 && k) do_path_effectors(ob, psys, i, ca, k, steps, cache[i]->co, effector, dfra, cfra, &length, vec); /* apply guide curves to path data */ if(edit==0 && psys->effectors.first && (psys->part->flag & PART_CHILD_EFFECT)==0) /* ca is safe to cast, since only co and vel are used */ do_guide((ParticleKey*)ca, i, (float)k/(float)steps, &psys->effectors); /* apply lattice */ if(psys->lattice && edit==0) calc_latt_deform(ca->co, 1.0f); /* figure out rotation */ if(k) { float cosangle, angle, tangent[3], normal[3], q[4]; if(k == 1) { VECSUB(tangent, ca->co, (ca - 1)->co); vectoquat(tangent, OB_POSX, OB_POSZ, (ca-1)->rot); VECCOPY(prev_tangent, tangent); Normalize(prev_tangent); } else { VECSUB(tangent, ca->co, (ca - 1)->co); Normalize(tangent); cosangle= Inpf(tangent, prev_tangent); /* note we do the comparison on cosangle instead of * angle, since floating point accuracy makes it give * different results across platforms */ if(cosangle > 0.999999f) { QUATCOPY((ca - 1)->rot, (ca - 2)->rot); } else { angle= saacos(cosangle); Crossf(normal, prev_tangent, tangent); VecRotToQuat(normal, angle, q); QuatMul((ca - 1)->rot, q, (ca - 2)->rot); } VECCOPY(prev_tangent, tangent); } if(k == steps) QUATCOPY(ca->rot, (ca - 1)->rot); } /* set velocity */ if(k){ VECSUB(ca->vel, ca->co, (ca-1)->co); if(k==1) { VECCOPY((ca-1)->vel, ca->vel); } } if(!edit && !psys->totchild) { /* check if path needs to be cut before actual end of data points */ if(k){ VECSUB(dvec,ca->co,(ca-1)->co); if(part->flag&PART_ABS_LENGTH) len=VecLength(dvec); else len=1.0f/(float)steps; k=check_path_length(k,cache[i],ca,max_length,&cur_length,len,dvec); } else{ /* initialize length calculation */ if(part->flag&PART_ABS_LENGTH) max_length= part->abslength*pa_length; else max_length= pa_length; cur_length= 0.0f; } } } } psys->totcached = totpart; if(psys && psys->lattice){ end_latt_deform(); psys->lattice=0; } if(vg_effector) MEM_freeN(vg_effector); if(vg_length) MEM_freeN(vg_length); } /************************************************/ /* Particle Key handling */ /************************************************/ void copy_particle_key(ParticleKey *to, ParticleKey *from, int time){ if(time){ memcpy(to,from,sizeof(ParticleKey)); } else{ float to_time=to->time; memcpy(to,from,sizeof(ParticleKey)); to->time=to_time; } /* VECCOPY(to->co,from->co); VECCOPY(to->vel,from->vel); QUATCOPY(to->rot,from->rot); if(time) to->time=from->time; to->flag=from->flag; to->sbw=from->sbw; */ } void psys_get_from_key(ParticleKey *key, float *loc, float *vel, float *rot, float *time){ if(loc) VECCOPY(loc,key->co); if(vel) VECCOPY(vel,key->vel); if(rot) QUATCOPY(rot,key->rot); if(time) *time=key->time; } /*-------changing particle keys from space to another-------*/ void psys_key_to_object(Object *ob, ParticleKey *key, float imat[][4]){ float q[4], imat2[4][4]; if(imat==0){ Mat4Invert(imat2,ob->obmat); imat=imat2; } VECADD(key->vel,key->vel,key->co); Mat4MulVecfl(imat,key->co); Mat4MulVecfl(imat,key->vel); Mat4ToQuat(imat,q); VECSUB(key->vel,key->vel,key->co); QuatMul(key->rot,q,key->rot); } static void key_from_object(Object *ob, ParticleKey *key){ float q[4]; VECADD(key->vel,key->vel,key->co); Mat4MulVecfl(ob->obmat,key->co); Mat4MulVecfl(ob->obmat,key->vel); Mat4ToQuat(ob->obmat,q); VECSUB(key->vel,key->vel,key->co); QuatMul(key->rot,q,key->rot); } static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[][4]) { float det, w1, w2, d1[2], d2[2]; memset(mat, 0, sizeof(float)*4*4); mat[3][3]= 1.0f; /* first axis is the normal */ CalcNormFloat(v1, v2, v3, mat[2]); /* second axis along (1, 0) in uv space */ if(uv) { d1[0]= uv[1][0] - uv[0][0]; d1[1]= uv[1][1] - uv[0][1]; d2[0]= uv[2][0] - uv[0][0]; d2[1]= uv[2][1] - uv[0][1]; det = d2[0]*d1[1] - d2[1]*d1[0]; if(det != 0.0f) { det= 1.0f/det; w1= -d2[1]*det; w2= d1[1]*det; mat[1][0]= w1*(v2[0] - v1[0]) + w2*(v3[0] - v1[0]); mat[1][1]= w1*(v2[1] - v1[1]) + w2*(v3[1] - v1[1]); mat[1][2]= w1*(v2[2] - v1[2]) + w2*(v3[2] - v1[2]); Normalize(mat[1]); } else mat[1][0]= mat[1][1]= mat[1][2]= 0.0f; } else { VecSubf(mat[1], v2, v1); Normalize(mat[1]); } /* third as a cross product */ Crossf(mat[0], mat[1], mat[2]); } static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[][4], int orco) { float v[3][3]; MFace *mface; OrigSpaceFace *osface; float (*orcodata)[3]; int i = pa->num_dmcache==DMCACHE_NOTFOUND ? pa->num : pa->num_dmcache; if (i==-1 || i >= dm->getNumFaces(dm)) { Mat4One(mat); return; } mface=dm->getFaceData(dm,i,CD_MFACE); osface=dm->getFaceData(dm,i,CD_ORIGSPACE); if(orco && (orcodata=dm->getVertDataArray(dm, CD_ORCO))) { VECCOPY(v[0], orcodata[mface->v1]); VECCOPY(v[1], orcodata[mface->v2]); VECCOPY(v[2], orcodata[mface->v3]); /* ugly hack to use non-transformed orcos, since only those * give symmetric results for mirroring in particle mode */ transform_mesh_orco_verts(ob->data, v, 3, 1); } else { dm->getVertCo(dm,mface->v1,v[0]); dm->getVertCo(dm,mface->v2,v[1]); dm->getVertCo(dm,mface->v3,v[2]); } triatomat(v[0], v[1], v[2], (osface)? osface->uv: NULL, mat); } void psys_mat_hair_to_object(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4]) { float vec[3]; psys_face_mat(0, dm, pa, hairmat, 0); psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0); VECCOPY(hairmat[3],vec); } void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4]) { float vec[3], orco[3]; psys_face_mat(ob, dm, pa, hairmat, 1); psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0); /* see psys_face_mat for why this function is called */ transform_mesh_orco_verts(ob->data, &orco, 1, 1); VECCOPY(hairmat[3],orco); } void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float *vec) { float mat[4][4]; psys_face_mat(0, dm, pa, mat, 0); Mat4Transp(mat); /* cheap inverse for rotation matrix */ Mat4Mul3Vecfl(mat, vec); } void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4]) { float facemat[4][4]; psys_mat_hair_to_object(ob, dm, from, pa, facemat); Mat4MulMat4(hairmat, facemat, ob->obmat); } /************************************************/ /* ParticleSettings handling */ /************************************************/ static void default_particle_settings(ParticleSettings *part) { int i; part->type= PART_EMITTER; part->distr= PART_DISTR_JIT; part->draw_as=PART_DRAW_DOT; part->bb_uv_split=1; part->bb_align=PART_BB_VIEW; part->bb_split_offset=PART_BB_OFF_LINEAR; part->flag=PART_REACT_MULTIPLE|PART_HAIR_GEOMETRY; part->sta= 1.0; part->end= 100.0; part->lifetime= 50.0; part->jitfac= 1.0; part->totpart= 1000; part->grid_res= 10; part->timetweak= 1.0; part->keyed_time= 0.5; //part->userjit; part->integrator= PART_INT_MIDPOINT; part->phystype= PART_PHYS_NEWTON; part->hair_step= 5; part->keys_step= 5; part->draw_step= 2; part->ren_step= 3; part->adapt_angle= 5; part->adapt_pix= 3; part->kink_axis= 2; part->reactevent= PART_EVENT_DEATH; part->disp=100; part->from= PART_FROM_FACE; part->length= 1.0; part->nbetween= 4; part->boidneighbours= 5; part->max_vel = 10.0f; part->average_vel = 0.3f; part->max_tan_acc = 0.2f; part->max_lat_acc = 1.0f; part->reactshape=1.0f; part->mass=1.0; part->size=1.0; part->childsize=1.0; part->child_nbr=10; part->ren_child_nbr=100; part->childrad=0.2f; part->childflat=0.0f; part->clumppow=0.0f; part->kink_amp=0.2f; part->kink_freq=2.0; part->rough1_size=1.0; part->rough2_size=1.0; part->rough_end_shape=1.0; part->draw_line[0]=0.5; part->banking=1.0; part->max_bank=1.0; for(i=0; iboidrule[i]=(char)i; part->boidfac[i]=0.5; } part->ipo = NULL; part->simplify_refsize= 1920; part->simplify_rate= 1.0f; part->simplify_transition= 0.1f; part->simplify_viewport= 0.8; } ParticleSettings *psys_new_settings(char *name, Main *main) { ParticleSettings *part; part= alloc_libblock(&main->particle, ID_PA, name); default_particle_settings(part); return part; } ParticleSettings *psys_copy_settings(ParticleSettings *part) { ParticleSettings *partn; partn= copy_libblock(part); if(partn->pd) partn->pd= MEM_dupallocN(part->pd); if(partn->pd2) partn->pd2= MEM_dupallocN(part->pd2); return partn; } void make_local_particlesettings(ParticleSettings *part) { Object *ob; ParticleSettings *par; int local=0, lib=0; /* - only lib users: do nothing * - only local users: set flag * - mixed: make copy */ if(part->id.lib==0) return; if(part->id.us==1) { part->id.lib= 0; part->id.flag= LIB_LOCAL; new_id(0, (ID *)part, 0); return; } /* test objects */ ob= G.main->object.first; while(ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next){ if(psys->part==part) { if(ob->id.lib) lib= 1; else local= 1; } } ob= ob->id.next; } if(local && lib==0) { part->id.lib= 0; part->id.flag= LIB_LOCAL; new_id(0, (ID *)part, 0); } else if(local && lib) { par= psys_copy_settings(part); par->id.us= 0; /* do objects */ ob= G.main->object.first; while(ob) { ParticleSystem *psys=ob->particlesystem.first; for(; psys; psys=psys->next){ if(psys->part==part && ob->id.lib==0) { psys->part= par; par->id.us++; part->id.us--; } } ob= ob->id.next; } } } /* should be integrated to depgraph signals */ void psys_flush_settings(ParticleSettings *part, int event, int hair_recalc) { Base *base; Object *ob, *tob; ParticleSystem *psys; int flush; /* update all that have same particle settings */ for(base = G.scene->base.first; base; base= base->next) { if(base->object->particlesystem.first) { ob=base->object; flush=0; for(psys=ob->particlesystem.first; psys; psys=psys->next){ if(psys->part==part){ psys->recalc |= event; if(hair_recalc) psys->recalc |= PSYS_RECALC_HAIR; flush++; } else if(psys->part->type==PART_REACTOR){ ParticleSystem *tpsys; tob=psys->target_ob; if(tob==0) tob=ob; tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1); if(tpsys && tpsys->part==part){ psys->recalc |= event; flush++; } } } if(flush) DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA); } } } LinkNode *psys_using_settings(ParticleSettings *part, int flush_update) { Object *ob, *tob; ParticleSystem *psys, *tpsys; LinkNode *node= NULL; int found; /* update all that have same particle settings */ for(ob=G.main->object.first; ob; ob=ob->id.next) { found= 0; for(psys=ob->particlesystem.first; psys; psys=psys->next) { if(psys->part == part) { BLI_linklist_append(&node, psys); found++; } else if(psys->part->type == PART_REACTOR){ tob= (psys->target_ob)? psys->target_ob: ob; tpsys= BLI_findlink(&tob->particlesystem, psys->target_psys-1); if(tpsys && tpsys->part==part) { BLI_linklist_append(&node, tpsys); found++; } } } if(flush_update && found) DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA); } return node; } /************************************************/ /* Textures */ /************************************************/ static int get_particle_uv(DerivedMesh *dm, ParticleData *pa, int face_index, float *fuv, char *name, float *texco) { MFace *mf; MTFace *tf; int i; tf= CustomData_get_layer_named(&dm->faceData, CD_MTFACE, name); if(tf == NULL) tf= CustomData_get_layer(&dm->faceData, CD_MTFACE); if(tf == NULL) return 0; if(pa) { i= (pa->num_dmcache==DMCACHE_NOTFOUND)? pa->num: pa->num_dmcache; if(i >= dm->getNumFaces(dm)) i = -1; } else i= face_index; if (i==-1) { texco[0]= 0.0f; texco[1]= 0.0f; texco[2]= 0.0f; } else { mf= dm->getFaceData(dm, i, CD_MFACE); psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco); texco[0]= texco[0]*2.0f - 1.0f; texco[1]= texco[1]*2.0f - 1.0f; texco[2]= 0.0f; } return 1; } static void get_cpa_texture(DerivedMesh *dm, Material *ma, int face_index, float *fw, float *orco, ParticleTexture *ptex, int event) { MTex *mtex; int m,setvars=0; float value, rgba[4], texco[3]; if(ma) for(m=0; mmtex[m]; if(mtex && (ma->septex & (1<def_var; float var=mtex->varfac; short blend=mtex->blendtype; short neg=mtex->pmaptoneg; if((mtex->texco & TEXCO_UV) && fw) { if(!get_particle_uv(dm, NULL, face_index, fw, mtex->uvname, texco)) VECCOPY(texco,orco); } else VECCOPY(texco,orco); externtex(mtex, texco, &value, rgba, rgba+1, rgba+2, rgba+3); if((event & mtex->pmapto) & MAP_PA_TIME){ if((setvars&MAP_PA_TIME)==0){ ptex->time=0.0; setvars|=MAP_PA_TIME; } ptex->time= texture_value_blend(mtex->def_var,ptex->time,value,var,blend,neg & MAP_PA_TIME); } if((event & mtex->pmapto) & MAP_PA_LENGTH) ptex->length= texture_value_blend(def,ptex->length,value,var,blend,neg & MAP_PA_LENGTH); if((event & mtex->pmapto) & MAP_PA_CLUMP) ptex->clump= texture_value_blend(def,ptex->clump,value,var,blend,neg & MAP_PA_CLUMP); if((event & mtex->pmapto) & MAP_PA_KINK) ptex->kink= texture_value_blend(def,ptex->kink,value,var,blend,neg & MAP_PA_KINK); if((event & mtex->pmapto) & MAP_PA_ROUGH) ptex->rough= texture_value_blend(def,ptex->rough,value,var,blend,neg & MAP_PA_ROUGH); } } if(event & MAP_PA_TIME) { CLAMP(ptex->time,0.0,1.0); } if(event & MAP_PA_LENGTH) { CLAMP(ptex->length,0.0,1.0); } if(event & MAP_PA_CLUMP) { CLAMP(ptex->clump,0.0,1.0); } if(event & MAP_PA_KINK) { CLAMP(ptex->kink,0.0,1.0); } if(event & MAP_PA_ROUGH) { CLAMP(ptex->rough,0.0,1.0); } } void psys_get_texture(Object *ob, Material *ma, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleData *pa, ParticleTexture *ptex, int event) { MTex *mtex; int m; float value, rgba[4], co[3], texco[3]; int setvars=0; if(ma) for(m=0; mmtex[m]; if(mtex && (ma->septex & (1<varfac; float def=mtex->def_var; short blend=mtex->blendtype; short neg=mtex->pmaptoneg; if((mtex->texco & TEXCO_UV) && ELEM(psys->part->from, PART_FROM_FACE, PART_FROM_VOLUME)) { if(!get_particle_uv(psmd->dm, pa, 0, pa->fuv, mtex->uvname, texco)) { /* failed to get uv's, let's try orco's */ psys_particle_on_emitter(psmd,psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,0,0,0,texco, 0); } } else { psys_particle_on_emitter(psmd,psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,0,0,0,texco, 0); } externtex(mtex, texco, &value, rgba, rgba+1, rgba+2, rgba+3); if((event & mtex->pmapto) & MAP_PA_TIME){ /* the first time has to set the base value for time regardless of blend mode */ if((setvars&MAP_PA_TIME)==0){ ptex->time *= 1.0f - var; ptex->time += var * ((neg & MAP_PA_TIME)? 1.0f - value : value); setvars |= MAP_PA_TIME; } else ptex->time= texture_value_blend(def,ptex->time,value,var,blend,neg & MAP_PA_TIME); } if((event & mtex->pmapto) & MAP_PA_LIFE) ptex->life= texture_value_blend(def,ptex->life,value,var,blend,neg & MAP_PA_LIFE); if((event & mtex->pmapto) & MAP_PA_DENS) ptex->exist= texture_value_blend(def,ptex->exist,value,var,blend,neg & MAP_PA_DENS); if((event & mtex->pmapto) & MAP_PA_SIZE) ptex->size= texture_value_blend(def,ptex->size,value,var,blend,neg & MAP_PA_SIZE); if((event & mtex->pmapto) & MAP_PA_IVEL) ptex->ivel= texture_value_blend(def,ptex->ivel,value,var,blend,neg & MAP_PA_IVEL); if((event & mtex->pmapto) & MAP_PA_PVEL) texture_rgb_blend(ptex->pvel,rgba,ptex->pvel,value,var,blend); if((event & mtex->pmapto) & MAP_PA_LENGTH) ptex->length= texture_value_blend(def,ptex->length,value,var,blend,neg & MAP_PA_LENGTH); if((event & mtex->pmapto) & MAP_PA_CLUMP) ptex->clump= texture_value_blend(def,ptex->clump,value,var,blend,neg & MAP_PA_CLUMP); if((event & mtex->pmapto) & MAP_PA_KINK) ptex->kink= texture_value_blend(def,ptex->kink,value,var,blend,neg & MAP_PA_CLUMP); } } if(event & MAP_PA_TIME) { CLAMP(ptex->time,0.0,1.0); } if(event & MAP_PA_LIFE) { CLAMP(ptex->life,0.0,1.0); } if(event & MAP_PA_DENS) { CLAMP(ptex->exist,0.0,1.0); } if(event & MAP_PA_SIZE) { CLAMP(ptex->size,0.0,1.0); } if(event & MAP_PA_IVEL) { CLAMP(ptex->ivel,0.0,1.0); } if(event & MAP_PA_LENGTH) { CLAMP(ptex->length,0.0,1.0); } if(event & MAP_PA_CLUMP) { CLAMP(ptex->clump,0.0,1.0); } if(event & MAP_PA_KINK) { CLAMP(ptex->kink,0.0,1.0); } } /************************************************/ /* Particle State */ /************************************************/ float psys_get_timestep(ParticleSettings *part) { return 0.04f*part->timetweak; } /* part->size should be updated with possible ipo effection before this is called */ float psys_get_size(Object *ob, Material *ma, ParticleSystemModifierData *psmd, IpoCurve *icu_size, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, float *vg_size) { ParticleTexture ptex; float size=1.0f; if(ma && part->from!=PART_FROM_PARTICLE){ ptex.size=size; psys_get_texture(ob,ma,psmd,psys,pa,&ptex,MAP_PA_SIZE); size=ptex.size; } if(icu_size){ calc_icu(icu_size,pa->time); size*=icu_size->curval; } if(vg_size) size*=psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_size); if(part->randsize!=0.0) size*= 1.0f - part->randsize*pa->sizemul; return size*part->size; } float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra) { ParticleSettings *part = psys->part; if(part->childtype==PART_CHILD_FACES){ float time; int w=0; time=0.0; while(w<4 && cpa->pa[w]>=0){ time+=cpa->w[w]*(psys->particles+cpa->pa[w])->time; w++; } return (cfra-time)/(part->lifetime*(1.0f-part->randlife*cpa->rand[1])); } else{ ParticleData *pa = psys->particles + cpa->parent; return (cfra-pa->time)/pa->lifetime; } } float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *pa_time) { ParticleSettings *part = psys->part; float size, time; if(part->childtype==PART_CHILD_FACES){ size=part->size; if((part->flag&PART_ABS_TIME)==0 && part->ipo){ IpoCurve *icu; if(pa_time) time=*pa_time; else time=psys_get_child_time(psys,cpa,cfra); /* correction for lifetime */ calc_ipo(part->ipo, 100*time); for(icu = part->ipo->curve.first; icu; icu=icu->next) { if(icu->adrcode == PART_SIZE) size = icu->curval; } } } else size=psys->particles[cpa->parent].size; size*=part->childsize; if(part->childrandsize!=0.0) size *= 1.0f - part->childrandsize*cpa->rand[2]; return size; } /* get's hair (or keyed) particles state at the "path time" specified in state->time */ void psys_get_particle_on_path(Object *ob, ParticleSystem *psys, int p, ParticleKey *state, int vel) { ParticleSettings *part = psys->part; ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys); Material *ma = give_current_material(ob, part->omat); ParticleData *pa; ChildParticle *cpa; ParticleTexture ptex; ParticleKey *kkey[2] = {NULL, NULL}; HairKey *hkey[2] = {NULL, NULL}; ParticleKey *par=0, keys[4]; float t, real_t, dfra, keytime, frs_sec = G.scene->r.frs_sec; float co[3], orco[3]; float hairmat[4][4]; float pa_clump = 0.0, pa_kink = 0.0; int totparent = 0; int totpart = psys->totpart; int totchild = psys->totchild; short between = 0, edit = 0; float *cpa_fuv; int cpa_num; short cpa_from; //if(psys_in_edit_mode(psys)){ // if((psys->edit_path->flag & PSYS_EP_SHOW_CHILD)==0) // totchild=0; // edit=1; //} /* user want's cubic interpolation but only without sb it possible */ //if(interpolation==PART_INTER_CUBIC && baked && psys->softflag==OB_SB_ENABLE) // interpolation=PART_INTER_BSPLINE; //else if(baked==0) /* it doesn't make sense to use other types for keyed */ // interpolation=PART_INTER_CUBIC; t=state->time; CLAMP(t, 0.0, 1.0); if(pparticles + p; if(pa->alive==PARS_DEAD && part->flag & PART_STICKY && pa->flag & PARS_STICKY && pa->stick_ob){ copy_particle_key(state,&pa->state,0); key_from_object(pa->stick_ob,state); return; } if(psys->flag & PSYS_KEYED) { kkey[0] = pa->keys; kkey[1] = kkey[0] + 1; real_t = kkey[0]->time + t * (kkey[0][pa->totkey-1].time - kkey[0]->time); } else { hkey[0] = pa->hair; hkey[1] = pa->hair + 1; real_t = hkey[0]->time + (hkey[0][pa->totkey-1].time - hkey[0]->time) * t; } if(psys->flag & PSYS_KEYED) { while(kkey[1]->time < real_t) { kkey[1]++; } kkey[0] = kkey[1] - 1; memcpy(keys + 1, kkey[0], sizeof(ParticleKey)); memcpy(keys + 2, kkey[1], sizeof(ParticleKey)); } else { while(hkey[1]->time < real_t) hkey[1]++; hkey[0] = hkey[1] - 1; hair_to_particle(keys + 1, hkey[0]); hair_to_particle(keys + 2, hkey[1]); } if((psys->flag & PSYS_KEYED)==0) { //if(soft){ // if(key[0] != sbel.keys) // DB_copy_key(&k1,key[0]-1); // else // DB_copy_key(&k1,&k2); //} //else{ if(hkey[0] != pa->hair) hair_to_particle(keys, hkey[0] - 1); else hair_to_particle(keys, hkey[0]); //} //if(soft){ // if(key[1] != sbel.keys + sbel.totkey-1) // DB_copy_key(&k4,key[1]+1); // else // DB_copy_key(&k4,&k3); //} //else { if(hkey[1] != pa->hair + pa->totkey - 1) hair_to_particle(keys + 3, hkey[1] + 1); else hair_to_particle(keys + 3, hkey[1]); } //} //psys_get_particle_on_path(bsys,p,t,bkey,ckey[0]); //if(part->rotfrom==PART_ROT_KEYS) // QuatInterpol(state->rot,k2.rot,k3.rot,keytime); //else{ // /* TODO: different rotations */ // float nvel[3]; // VECCOPY(nvel,state->vel); // VecMulf(nvel,-1.0f); // vectoquat(nvel, OB_POSX, OB_POSZ, state->rot); //} dfra = keys[2].time - keys[1].time; keytime = (real_t - keys[1].time) / dfra; /* convert velocity to timestep size */ if(psys->flag & PSYS_KEYED){ VecMulf(keys[1].vel, dfra / frs_sec); VecMulf(keys[2].vel, dfra / frs_sec); QuatInterpol(state->rot,keys[1].rot,keys[2].rot,keytime); } interpolate_particle((psys->flag & PSYS_KEYED) ? -1 /* signal for cubic interpolation */ : ((psys->part->flag & PART_HAIR_BSPLINE) ? KEY_BSPLINE : KEY_CARDINAL) ,keys, keytime, state, 1); /* the velocity needs to be converted back from cubic interpolation */ if(psys->flag & PSYS_KEYED){ VecMulf(state->vel, frs_sec / dfra); } else { if((pa->flag & PARS_REKEY)==0) { psys_mat_hair_to_global(ob, psmd->dm, part->from, pa, hairmat); Mat4MulVecfl(hairmat, state->co); Mat4Mul3Vecfl(hairmat, state->vel); if(psys->effectors.first && (part->flag & PART_CHILD_GUIDE)==0) { do_guide(state, p, state->time, &psys->effectors); /* TODO: proper velocity handling */ } if(psys->lattice && edit==0) calc_latt_deform(state->co,1.0f); } } } else if(totchild){ //Mat4Invert(imat,ob->obmat); cpa=psys->child+p-totpart; if(totchild && part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){ totparent=(int)(totchild*part->parents*0.3); /* part->parents could still be 0 so we can't test with totparent */ between=1; } if(between){ int w = 0; float foffset; /* get parent states */ while(w<4 && cpa->pa[w]>=0){ keys[w].time = t; psys_get_particle_on_path(ob, psys, cpa->pa[w], keys+w, 1); w++; } /* get the original coordinates (orco) for texture usage */ cpa_num=cpa->num; foffset= cpa->foffset; if(part->childtype == PART_CHILD_FACES) foffset = -(2.0f + part->childspread); cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,0,0,0,orco,0); /* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */ //VECCOPY(cpa_1st,co); //Mat4MulVecfl(ob->obmat,cpa_1st); pa=0; } else{ /* get the parent state */ keys->time = t; psys_get_particle_on_path(ob,psys,cpa->parent,keys,1); /* get the original coordinates (orco) for texture usage */ pa=psys->particles+cpa->parent; cpa_from=part->from; cpa_num=pa->num; cpa_fuv=pa->fuv; psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,0,0,0,orco,0); } /* correct child ipo timing */ if((part->flag&PART_ABS_TIME)==0 && part->ipo){ calc_ipo(part->ipo, 100.0f*t); execute_ipo((ID *)part, part->ipo); } /* get different child parameters from textures & vgroups */ ptex.clump=1.0; ptex.kink=1.0; get_cpa_texture(psmd->dm,ma,cpa_num,cpa_fuv,orco,&ptex,MAP_PA_CLUMP|MAP_PA_KINK); pa_clump=ptex.clump; pa_kink=ptex.kink; /* TODO: vertex groups */ if(between){ int w=0; state->co[0] = state->co[1] = state->co[2] = 0.0f; state->vel[0] = state->vel[1] = state->vel[2] = 0.0f; /* child position is the weighted sum of parent positions */ while(w<4 && cpa->pa[w]>=0){ state->co[0] += cpa->w[w] * keys[w].co[0]; state->co[1] += cpa->w[w] * keys[w].co[1]; state->co[2] += cpa->w[w] * keys[w].co[2]; state->vel[0] += cpa->w[w] * keys[w].vel[0]; state->vel[1] += cpa->w[w] * keys[w].vel[1]; state->vel[2] += cpa->w[w] * keys[w].vel[2]; w++; } /* apply offset for correct positioning */ //VECADD(state->co,state->co,cpa_1st); } else{ /* offset the child from the parent position */ offset_child(cpa, keys, state, part->childflat, part->childrad); } par = keys; //if(totparent){ // if(p-totpart>=totparent){ // key.time=t; // psys_get_particle_on_path(ob,psys,totpart+cpa->parent,&key,1); // bti->convert_dynamic_key(bsys,&key,par,cpar); // } // else // par=0; //} //else // DB_get_key_on_path(bsys,cpa->parent,t,par,cpar); /* apply different deformations to the child path */ if(part->kink) do_prekink(state, par, par->rot, t, part->kink_freq * pa_kink, part->kink_shape, part->kink_amp, part->kink, part->kink_axis, ob->obmat); do_clump(state, par, t, part->clumpfac, part->clumppow, 1.0f); if(part->rough1 != 0.0) do_rough(orco, t, part->rough1, part->rough1_size, 0.0, state); if(part->rough2 != 0.0) do_rough(cpa->rand, t, part->rough2, part->rough2_size, part->rough2_thres, state); if(part->rough_end != 0.0) do_rough_end(cpa->rand, t, part->rough_end, part->rough_end_shape, state, par); //if(vel){ // if(t>=0.001f){ // tstate.time=t-0.001f; // psys_get_particle_on_path(ob,psys,p,&tstate,0); // VECSUB(state->vel,state->co,tstate.co); // } // else{ // tstate.time=t+0.001f; // psys_get_particle_on_path(ob,psys,p,&tstate,0); // VECSUB(state->vel,tstate.co,state->co); // } //} } } /* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */ int psys_get_particle_state(Object *ob, ParticleSystem *psys, int p, ParticleKey *state, int always){ ParticleSettings *part=psys->part; ParticleData *pa=0; float cfra; int totpart=psys->totpart, between=0; /* negative time means "use current time" */ if(state->time>0) cfra=state->time; else cfra=bsystem_time(0,(float)G.scene->r.cfra,0.0); if(psys->totchild && p>=totpart){ if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){ between=1; } else pa=psys->particles+(psys->child+p-totpart)->parent; } else pa=psys->particles+p; if(between){ state->time = psys_get_child_time(psys,&psys->child[p-totpart],cfra); if(always==0) if((state->time<0.0 && (part->flag & PART_UNBORN)==0) || (state->time>1.0 && (part->flag & PART_DIED)==0)) return 0; } else{ if(pa->alive==PARS_KILLED) return 0; if(always==0) if((pa->alive==PARS_UNBORN && (part->flag & PART_UNBORN)==0) || (pa->alive==PARS_DEAD && (part->flag & PART_DIED)==0)) return 0; } if(psys->flag & PSYS_KEYED){ if(between){ ChildParticle *cpa=psys->child+p-totpart; state->time= (cfra-(part->sta+(part->end-part->sta)*cpa->rand[0]))/(part->lifetime*cpa->rand[1]); } else state->time= (cfra-pa->time)/(pa->dietime-pa->time); psys_get_particle_on_path(ob,psys,p,state,1); return 1; } else{ if(between) return 0; /* currently not supported */ else if(psys->totchild && p>=psys->totpart){ ChildParticle *cpa=psys->child+p-psys->totpart; ParticleKey *key1, skey; float t = (cfra - pa->time + pa->loop * pa->lifetime) / pa->lifetime; pa = psys->particles + cpa->parent; if(pa->alive==PARS_DEAD && part->flag&PART_STICKY && pa->flag&PARS_STICKY && pa->stick_ob) { key1 = &skey; copy_particle_key(key1,&pa->state,0); key_from_object(pa->stick_ob,key1); } else { key1=&pa->state; } offset_child(cpa, key1, state, part->childflat, part->childrad); CLAMP(t,0.0,1.0); if(part->kink) /* TODO: part->kink_freq*pa_kink */ do_prekink(state,key1,key1->rot,t,part->kink_freq,part->kink_shape,part->kink_amp,part->kink,part->kink_axis,ob->obmat); /* TODO: pa_clump vgroup */ do_clump(state,key1,t,part->clumpfac,part->clumppow,1.0); if(psys->lattice) calc_latt_deform(state->co,1.0f); } else{ if (pa) { /* TODO PARTICLE - should this ever be NULL? - Campbell */ if(pa->state.time==state->time || ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)) copy_particle_key(state, &pa->state, 1); else if(pa->prev_state.time==state->time) copy_particle_key(state, &pa->prev_state, 1); else { /* let's interpolate to try to be as accurate as possible */ if(pa->state.time + 1.0f > state->time && pa->prev_state.time - 1.0f < state->time) { ParticleKey keys[4]; float dfra, keytime, frs_sec = G.scene->r.frs_sec; if(pa->prev_state.time >= pa->state.time) { /* prev_state is wrong so let's not use it, this can happen at frame 1 or particle birth */ copy_particle_key(state, &pa->state, 1); VECADDFAC(state->co, state->co, state->vel, (state->time-pa->state.time)/frs_sec); } else { copy_particle_key(keys+1, &pa->prev_state, 1); copy_particle_key(keys+2, &pa->state, 1); dfra = keys[2].time - keys[1].time; keytime = (state->time - keys[1].time) / dfra; /* convert velocity to timestep size */ VecMulf(keys[1].vel, dfra / frs_sec); VecMulf(keys[2].vel, dfra / frs_sec); interpolate_particle(-1, keys, keytime, state, 1); /* convert back to real velocity */ VecMulf(state->vel, frs_sec / dfra); VecLerpf(state->ave, keys[1].ave, keys[2].ave, keytime); QuatInterpol(state->rot, keys[1].rot, keys[2].rot, keytime); } } else { /* extrapolating over big ranges is not accurate so let's just give something close to reasonable back */ copy_particle_key(state, &pa->state, 0); } } if(pa->alive==PARS_DEAD && part->flag&PART_STICKY && pa->flag&PARS_STICKY && pa->stick_ob){ key_from_object(pa->stick_ob,state); } if(psys->lattice) calc_latt_deform(state->co,1.0f); } } return 1; } } void psys_get_dupli_texture(Object *ob, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, float *uv, float *orco) { MFace *mface; MTFace *mtface; float loc[3]; int num; if(cpa) { if(part->childtype == PART_CHILD_FACES) { mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE); if(mtface) { mface= psmd->dm->getFaceData(psmd->dm, cpa->num, CD_MFACE); mtface += cpa->num; psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv); } else uv[0]= uv[1]= 0.0f; } else uv[0]= uv[1]= 0.0f; psys_particle_on_emitter(psmd, (part->childtype == PART_CHILD_FACES)? PART_FROM_FACE: PART_FROM_PARTICLE, cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,0,0,0,orco,0); } else { if(part->from == PART_FROM_FACE) { mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE); num= pa->num_dmcache; if(num == DMCACHE_NOTFOUND) if(pa->num < psmd->dm->getNumFaces(psmd->dm)) num= pa->num; if(mtface && num != DMCACHE_NOTFOUND) { mface= psmd->dm->getFaceData(psmd->dm, num, CD_MFACE); mtface += num; psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv); } else uv[0]= uv[1]= 0.0f; } else uv[0]= uv[1]= 0.0f; psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,orco,0); } } void psys_get_dupli_path_transform(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[][4], float *scale) { float loc[3], nor[3], vec[3], side[3], len, obrotmat[4][4], qmat[4][4]; float xvec[3] = {-1.0, 0.0, 0.0}, q[4]; VecSubf(vec, (cache+cache->steps-1)->co, cache->co); len= Normalize(vec); if(pa) psys_particle_on_emitter(psmd,psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,nor,0,0,0,0); else psys_particle_on_emitter(psmd, (psys->part->childtype == PART_CHILD_FACES)? PART_FROM_FACE: PART_FROM_PARTICLE, cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,nor,0,0,0,0); if(psys->part->rotmode) { if(!pa) pa= psys->particles+cpa->pa[0]; vectoquat(xvec, ob->trackflag, ob->upflag, q); QuatToMat4(q, obrotmat); obrotmat[3][3]= 1.0f; QuatToMat4(pa->state.rot, qmat); Mat4MulMat4(mat, obrotmat, qmat); } else { /* make sure that we get a proper side vector */ if(fabs(Inpf(nor,vec))>0.999999) { if(fabs(Inpf(nor,xvec))>0.999999) { nor[0] = 0.0f; nor[1] = 1.0f; nor[2] = 0.0f; } else { nor[0] = 1.0f; nor[1] = 0.0f; nor[2] = 0.0f; } } Crossf(side, nor, vec); Normalize(side); Crossf(nor, vec, side); Mat4One(mat); VECCOPY(mat[0], vec); VECCOPY(mat[1], side); VECCOPY(mat[2], nor); } *scale= len; }