/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2007 by Janne Karhu. All rights reserved. */ /** \file * \ingroup bke */ /* Allow using deprecated functionality for .blend file I/O. */ #define DNA_DEPRECATED_ALLOW #include #include #include #include "MEM_guardedalloc.h" #include "DNA_defaults.h" #include "DNA_cloth_types.h" #include "DNA_collection_types.h" #include "DNA_curve_types.h" #include "DNA_dynamicpaint_types.h" #include "DNA_fluid_types.h" #include "DNA_key_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_force_types.h" #include "DNA_particle_types.h" #include "DNA_scene_types.h" #include "BLI_blenlib.h" #include "BLI_kdopbvh.h" #include "BLI_kdtree.h" #include "BLI_linklist.h" #include "BLI_math.h" #include "BLI_rand.h" #include "BLI_task.h" #include "BLI_threads.h" #include "BLI_utildefines.h" #include "BLT_translation.h" #include "BKE_anim_data.h" #include "BKE_anim_path.h" #include "BKE_boids.h" #include "BKE_cloth.h" #include "BKE_collection.h" #include "BKE_colortools.h" #include "BKE_deform.h" #include "BKE_displist.h" #include "BKE_effect.h" #include "BKE_idtype.h" #include "BKE_key.h" #include "BKE_lattice.h" #include "BKE_layer.h" #include "BKE_lib_id.h" #include "BKE_lib_query.h" #include "BKE_main.h" #include "BKE_material.h" #include "BKE_mesh.h" #include "BKE_mesh_legacy_convert.h" #include "BKE_mesh_runtime.h" #include "BKE_modifier.h" #include "BKE_object.h" #include "BKE_particle.h" #include "BKE_pointcache.h" #include "BKE_scene.h" #include "BKE_texture.h" #include "DEG_depsgraph.h" #include "DEG_depsgraph_build.h" #include "DEG_depsgraph_query.h" #include "RE_texture.h" #include "BLO_read_write.h" #include "particle_private.h" static void fluid_free_settings(SPHFluidSettings *fluid); static void particle_settings_init(ID *id) { ParticleSettings *particle_settings = (ParticleSettings *)id; BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(particle_settings, id)); MEMCPY_STRUCT_AFTER(particle_settings, DNA_struct_default_get(ParticleSettings), id); particle_settings->effector_weights = BKE_effector_add_weights(NULL); particle_settings->pd = BKE_partdeflect_new(PFIELD_NULL); particle_settings->pd2 = BKE_partdeflect_new(PFIELD_NULL); } static void particle_settings_copy_data(Main *UNUSED(bmain), ID *id_dst, const ID *id_src, const int UNUSED(flag)) { ParticleSettings *particle_settings_dst = (ParticleSettings *)id_dst; const ParticleSettings *partticle_settings_src = (const ParticleSettings *)id_src; particle_settings_dst->pd = BKE_partdeflect_copy(partticle_settings_src->pd); particle_settings_dst->pd2 = BKE_partdeflect_copy(partticle_settings_src->pd2); particle_settings_dst->effector_weights = MEM_dupallocN( partticle_settings_src->effector_weights); particle_settings_dst->fluid = MEM_dupallocN(partticle_settings_src->fluid); if (partticle_settings_src->clumpcurve) { particle_settings_dst->clumpcurve = BKE_curvemapping_copy(partticle_settings_src->clumpcurve); } if (partticle_settings_src->roughcurve) { particle_settings_dst->roughcurve = BKE_curvemapping_copy(partticle_settings_src->roughcurve); } if (partticle_settings_src->twistcurve) { particle_settings_dst->twistcurve = BKE_curvemapping_copy(partticle_settings_src->twistcurve); } particle_settings_dst->boids = boid_copy_settings(partticle_settings_src->boids); for (int a = 0; a < MAX_MTEX; a++) { if (partticle_settings_src->mtex[a]) { particle_settings_dst->mtex[a] = MEM_dupallocN(partticle_settings_src->mtex[a]); } } BLI_duplicatelist(&particle_settings_dst->instance_weights, &partticle_settings_src->instance_weights); } static void particle_settings_free_data(ID *id) { ParticleSettings *particle_settings = (ParticleSettings *)id; for (int a = 0; a < MAX_MTEX; a++) { MEM_SAFE_FREE(particle_settings->mtex[a]); } if (particle_settings->clumpcurve) { BKE_curvemapping_free(particle_settings->clumpcurve); } if (particle_settings->roughcurve) { BKE_curvemapping_free(particle_settings->roughcurve); } if (particle_settings->twistcurve) { BKE_curvemapping_free(particle_settings->twistcurve); } BKE_partdeflect_free(particle_settings->pd); BKE_partdeflect_free(particle_settings->pd2); MEM_SAFE_FREE(particle_settings->effector_weights); BLI_freelistN(&particle_settings->instance_weights); boid_free_settings(particle_settings->boids); fluid_free_settings(particle_settings->fluid); } static void particle_settings_foreach_id(ID *id, LibraryForeachIDData *data) { ParticleSettings *psett = (ParticleSettings *)id; BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->instance_collection, IDWALK_CB_USER); BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->instance_object, IDWALK_CB_NOP); BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->bb_ob, IDWALK_CB_NOP); BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->collision_group, IDWALK_CB_NOP); for (int i = 0; i < MAX_MTEX; i++) { if (psett->mtex[i]) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL(data, BKE_texture_mtex_foreach_id(data, psett->mtex[i])); } } if (psett->effector_weights) { BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->effector_weights->group, IDWALK_CB_USER); } if (psett->pd) { BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->pd->tex, IDWALK_CB_USER); BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->pd->f_source, IDWALK_CB_NOP); } if (psett->pd2) { BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->pd2->tex, IDWALK_CB_USER); BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, psett->pd2->f_source, IDWALK_CB_NOP); } if (psett->boids) { LISTBASE_FOREACH (BoidState *, state, &psett->boids->states) { LISTBASE_FOREACH (BoidRule *, rule, &state->rules) { if (rule->type == eBoidRuleType_Avoid) { BoidRuleGoalAvoid *gabr = (BoidRuleGoalAvoid *)rule; BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, gabr->ob, IDWALK_CB_NOP); } else if (rule->type == eBoidRuleType_FollowLeader) { BoidRuleFollowLeader *flbr = (BoidRuleFollowLeader *)rule; BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, flbr->ob, IDWALK_CB_NOP); } } } } LISTBASE_FOREACH (ParticleDupliWeight *, dw, &psett->instance_weights) { BKE_LIB_FOREACHID_PROCESS_IDSUPER(data, dw->ob, IDWALK_CB_NOP); } } static void write_boid_state(BlendWriter *writer, BoidState *state) { BLO_write_struct(writer, BoidState, state); LISTBASE_FOREACH (BoidRule *, rule, &state->rules) { switch (rule->type) { case eBoidRuleType_Goal: case eBoidRuleType_Avoid: BLO_write_struct(writer, BoidRuleGoalAvoid, rule); break; case eBoidRuleType_AvoidCollision: BLO_write_struct(writer, BoidRuleAvoidCollision, rule); break; case eBoidRuleType_FollowLeader: BLO_write_struct(writer, BoidRuleFollowLeader, rule); break; case eBoidRuleType_AverageSpeed: BLO_write_struct(writer, BoidRuleAverageSpeed, rule); break; case eBoidRuleType_Fight: BLO_write_struct(writer, BoidRuleFight, rule); break; default: BLO_write_struct(writer, BoidRule, rule); break; } } #if 0 BoidCondition *cond = state->conditions.first; for (; cond; cond = cond->next) { BLO_write_struct(writer, BoidCondition, cond); } #endif } static void particle_settings_blend_write(BlendWriter *writer, ID *id, const void *id_address) { ParticleSettings *part = (ParticleSettings *)id; /* write LibData */ BLO_write_id_struct(writer, ParticleSettings, id_address, &part->id); BKE_id_blend_write(writer, &part->id); if (part->adt) { BKE_animdata_blend_write(writer, part->adt); } BLO_write_struct(writer, PartDeflect, part->pd); BLO_write_struct(writer, PartDeflect, part->pd2); BLO_write_struct(writer, EffectorWeights, part->effector_weights); if (part->clumpcurve) { BKE_curvemapping_blend_write(writer, part->clumpcurve); } if (part->roughcurve) { BKE_curvemapping_blend_write(writer, part->roughcurve); } if (part->twistcurve) { BKE_curvemapping_blend_write(writer, part->twistcurve); } LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) { /* update indices, but only if dw->ob is set (can be NULL after loading e.g.) */ if (dw->ob != NULL) { dw->index = 0; if (part->instance_collection) { /* can be NULL if lining fails or set to None */ FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN (part->instance_collection, object) { if (object == dw->ob) { break; } dw->index++; } FOREACH_COLLECTION_OBJECT_RECURSIVE_END; } } BLO_write_struct(writer, ParticleDupliWeight, dw); } if (part->boids && part->phystype == PART_PHYS_BOIDS) { BLO_write_struct(writer, BoidSettings, part->boids); LISTBASE_FOREACH (BoidState *, state, &part->boids->states) { write_boid_state(writer, state); } } if (part->fluid && part->phystype == PART_PHYS_FLUID) { BLO_write_struct(writer, SPHFluidSettings, part->fluid); } for (int a = 0; a < MAX_MTEX; a++) { if (part->mtex[a]) { BLO_write_struct(writer, MTex, part->mtex[a]); } } } void BKE_particle_partdeflect_blend_read_data(BlendDataReader *UNUSED(reader), PartDeflect *pd) { if (pd) { pd->rng = NULL; } } static void particle_settings_blend_read_data(BlendDataReader *reader, ID *id) { ParticleSettings *part = (ParticleSettings *)id; BLO_read_data_address(reader, &part->adt); BLO_read_data_address(reader, &part->pd); BLO_read_data_address(reader, &part->pd2); BKE_animdata_blend_read_data(reader, part->adt); BKE_particle_partdeflect_blend_read_data(reader, part->pd); BKE_particle_partdeflect_blend_read_data(reader, part->pd2); BLO_read_data_address(reader, &part->clumpcurve); if (part->clumpcurve) { BKE_curvemapping_blend_read(reader, part->clumpcurve); } BLO_read_data_address(reader, &part->roughcurve); if (part->roughcurve) { BKE_curvemapping_blend_read(reader, part->roughcurve); } BLO_read_data_address(reader, &part->twistcurve); if (part->twistcurve) { BKE_curvemapping_blend_read(reader, part->twistcurve); } BLO_read_data_address(reader, &part->effector_weights); if (!part->effector_weights) { part->effector_weights = BKE_effector_add_weights(part->force_group); } BLO_read_list(reader, &part->instance_weights); BLO_read_data_address(reader, &part->boids); BLO_read_data_address(reader, &part->fluid); if (part->boids) { BLO_read_list(reader, &part->boids->states); LISTBASE_FOREACH (BoidState *, state, &part->boids->states) { BLO_read_list(reader, &state->rules); BLO_read_list(reader, &state->conditions); BLO_read_list(reader, &state->actions); } } for (int a = 0; a < MAX_MTEX; a++) { BLO_read_data_address(reader, &part->mtex[a]); } /* Protect against integer overflow vulnerability. */ CLAMP(part->trail_count, 1, 100000); } void BKE_particle_partdeflect_blend_read_lib(BlendLibReader *reader, ID *id, PartDeflect *pd) { if (pd && pd->tex) { BLO_read_id_address(reader, id->lib, &pd->tex); } if (pd && pd->f_source) { BLO_read_id_address(reader, id->lib, &pd->f_source); } } static void particle_settings_blend_read_lib(BlendLibReader *reader, ID *id) { ParticleSettings *part = (ParticleSettings *)id; /* XXX: deprecated - old animation system. */ BLO_read_id_address(reader, part->id.lib, &part->ipo); BLO_read_id_address(reader, part->id.lib, &part->instance_object); BLO_read_id_address(reader, part->id.lib, &part->instance_collection); BLO_read_id_address(reader, part->id.lib, &part->force_group); BLO_read_id_address(reader, part->id.lib, &part->bb_ob); BLO_read_id_address(reader, part->id.lib, &part->collision_group); BKE_particle_partdeflect_blend_read_lib(reader, &part->id, part->pd); BKE_particle_partdeflect_blend_read_lib(reader, &part->id, part->pd2); if (part->effector_weights) { BLO_read_id_address(reader, part->id.lib, &part->effector_weights->group); } else { part->effector_weights = BKE_effector_add_weights(part->force_group); } if (part->instance_weights.first && part->instance_collection) { LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) { BLO_read_id_address(reader, part->id.lib, &dw->ob); } } else { BLI_listbase_clear(&part->instance_weights); } if (part->boids) { LISTBASE_FOREACH (BoidState *, state, &part->boids->states) { LISTBASE_FOREACH (BoidRule *, rule, &state->rules) { switch (rule->type) { case eBoidRuleType_Goal: case eBoidRuleType_Avoid: { BoidRuleGoalAvoid *brga = (BoidRuleGoalAvoid *)rule; BLO_read_id_address(reader, part->id.lib, &brga->ob); break; } case eBoidRuleType_FollowLeader: { BoidRuleFollowLeader *brfl = (BoidRuleFollowLeader *)rule; BLO_read_id_address(reader, part->id.lib, &brfl->ob); break; } } } } } for (int a = 0; a < MAX_MTEX; a++) { MTex *mtex = part->mtex[a]; if (mtex) { BLO_read_id_address(reader, part->id.lib, &mtex->tex); BLO_read_id_address(reader, part->id.lib, &mtex->object); } } } static void particle_settings_blend_read_expand(BlendExpander *expander, ID *id) { ParticleSettings *part = (ParticleSettings *)id; BLO_expand(expander, part->instance_object); BLO_expand(expander, part->instance_collection); BLO_expand(expander, part->force_group); BLO_expand(expander, part->bb_ob); BLO_expand(expander, part->collision_group); for (int a = 0; a < MAX_MTEX; a++) { if (part->mtex[a]) { BLO_expand(expander, part->mtex[a]->tex); BLO_expand(expander, part->mtex[a]->object); } } if (part->effector_weights) { BLO_expand(expander, part->effector_weights->group); } if (part->pd) { BLO_expand(expander, part->pd->tex); BLO_expand(expander, part->pd->f_source); } if (part->pd2) { BLO_expand(expander, part->pd2->tex); BLO_expand(expander, part->pd2->f_source); } if (part->boids) { LISTBASE_FOREACH (BoidState *, state, &part->boids->states) { LISTBASE_FOREACH (BoidRule *, rule, &state->rules) { if (rule->type == eBoidRuleType_Avoid) { BoidRuleGoalAvoid *gabr = (BoidRuleGoalAvoid *)rule; BLO_expand(expander, gabr->ob); } else if (rule->type == eBoidRuleType_FollowLeader) { BoidRuleFollowLeader *flbr = (BoidRuleFollowLeader *)rule; BLO_expand(expander, flbr->ob); } } } } LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) { BLO_expand(expander, dw->ob); } } IDTypeInfo IDType_ID_PA = { .id_code = ID_PA, .id_filter = FILTER_ID_PA, .main_listbase_index = INDEX_ID_PA, .struct_size = sizeof(ParticleSettings), .name = "ParticleSettings", .name_plural = "particles", .translation_context = BLT_I18NCONTEXT_ID_PARTICLESETTINGS, .flags = 0, .asset_type_info = NULL, .init_data = particle_settings_init, .copy_data = particle_settings_copy_data, .free_data = particle_settings_free_data, .make_local = NULL, .foreach_id = particle_settings_foreach_id, .foreach_cache = NULL, .foreach_path = NULL, .owner_pointer_get = NULL, .blend_write = particle_settings_blend_write, .blend_read_data = particle_settings_blend_read_data, .blend_read_lib = particle_settings_blend_read_lib, .blend_read_expand = particle_settings_blend_read_expand, .blend_read_undo_preserve = NULL, .lib_override_apply_post = NULL, }; uint PSYS_FRAND_SEED_OFFSET[PSYS_FRAND_COUNT]; uint PSYS_FRAND_SEED_MULTIPLIER[PSYS_FRAND_COUNT]; float PSYS_FRAND_BASE[PSYS_FRAND_COUNT]; void BKE_particle_init_rng(void) { RNG *rng = BLI_rng_new_srandom(5831); /* arbitrary */ for (int i = 0; i < PSYS_FRAND_COUNT; i++) { PSYS_FRAND_BASE[i] = BLI_rng_get_float(rng); PSYS_FRAND_SEED_OFFSET[i] = (uint)BLI_rng_get_int(rng); PSYS_FRAND_SEED_MULTIPLIER[i] = (uint)BLI_rng_get_int(rng); } BLI_rng_free(rng); } static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex); static void get_cpa_texture(Mesh *mesh, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, const float fw[4], float *orco, ParticleTexture *ptex, int event, float cfra); int count_particles(ParticleSystem *psys) { ParticleSettings *part = psys->part; PARTICLE_P; int tot = 0; LOOP_SHOWN_PARTICLES { if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) { } else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) { } else { tot++; } } return tot; } int count_particles_mod(ParticleSystem *psys, int totgr, int cur) { ParticleSettings *part = psys->part; PARTICLE_P; int tot = 0; LOOP_SHOWN_PARTICLES { if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) { } else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) { } else if (p % totgr == cur) { tot++; } } return tot; } /* We allocate path cache memory in chunks instead of a big contiguous * chunk, windows' memory allocator fails to find big blocks of memory often. */ #define PATH_CACHE_BUF_SIZE 1024 static ParticleCacheKey *pcache_key_segment_endpoint_safe(ParticleCacheKey *key) { return (key->segments > 0) ? (key + (key->segments - 1)) : key; } static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int totkeys) { LinkData *buf; ParticleCacheKey **cache; int i, totkey, totbufkey; tot = MAX2(tot, 1); totkey = 0; cache = MEM_callocN(tot * sizeof(void *), "PathCacheArray"); while (totkey < tot) { totbufkey = MIN2(tot - totkey, PATH_CACHE_BUF_SIZE); buf = MEM_callocN(sizeof(LinkData), "PathCacheLinkData"); buf->data = MEM_callocN(sizeof(ParticleCacheKey) * totbufkey * totkeys, "ParticleCacheKey"); for (i = 0; i < totbufkey; i++) { cache[totkey + i] = ((ParticleCacheKey *)buf->data) + i * totkeys; } totkey += totbufkey; BLI_addtail(bufs, buf); } return cache; } static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs) { LinkData *buf; if (cache) { MEM_freeN(cache); } for (buf = bufs->first; buf; buf = buf->next) { MEM_freeN(buf->data); } BLI_freelistN(bufs); } /************************************************/ /* Getting stuff */ /************************************************/ ParticleSystem *psys_get_current(Object *ob) { ParticleSystem *psys; if (ob == NULL) { return NULL; } for (psys = ob->particlesystem.first; psys; psys = psys->next) { if (psys->flag & PSYS_CURRENT) { return psys; } } return NULL; } short psys_get_current_num(Object *ob) { ParticleSystem *psys; short i; if (ob == NULL) { return 0; } for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++) { if (psys->flag & PSYS_CURRENT) { return i; } } return i; } void psys_set_current_num(Object *ob, int index) { ParticleSystem *psys; short i; if (ob == NULL) { return; } for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++) { if (i == index) { psys->flag |= PSYS_CURRENT; } else { psys->flag &= ~PSYS_CURRENT; } } } void psys_sim_data_init(ParticleSimulationData *sim) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; /* Prepare lattice deform. */ psys->lattice_deform_data = NULL; if (psys_in_edit_mode(sim->depsgraph, sim->psys) == 0) { Object *lattice = NULL; ModifierData *md = (ModifierData *)psys_get_modifier(sim->ob, sim->psys); bool for_render = DEG_get_mode(sim->depsgraph) == DAG_EVAL_RENDER; int mode = for_render ? eModifierMode_Render : eModifierMode_Realtime; for (; md; md = md->next) { if (md->type == eModifierType_Lattice) { if (md->mode & mode) { LatticeModifierData *lmd = (LatticeModifierData *)md; lattice = lmd->object; psys->lattice_strength = lmd->strength; } break; } } if (lattice) { psys->lattice_deform_data = BKE_lattice_deform_data_create(lattice, NULL); } } /* Prepare curvemapping tables. */ if ((part->child_flag & PART_CHILD_USE_CLUMP_CURVE) && part->clumpcurve) { BKE_curvemapping_init(part->clumpcurve); } if ((part->child_flag & PART_CHILD_USE_ROUGH_CURVE) && part->roughcurve) { BKE_curvemapping_init(part->roughcurve); } if ((part->child_flag & PART_CHILD_USE_TWIST_CURVE) && part->twistcurve) { BKE_curvemapping_init(part->twistcurve); } } void psys_sim_data_free(ParticleSimulationData *sim) { ParticleSystem *psys = sim->psys; if (psys->lattice_deform_data) { BKE_lattice_deform_data_destroy(psys->lattice_deform_data); psys->lattice_deform_data = NULL; } } void psys_disable_all(Object *ob) { ParticleSystem *psys = ob->particlesystem.first; for (; psys; psys = psys->next) { psys->flag |= PSYS_DISABLED; } } void psys_enable_all(Object *ob) { ParticleSystem *psys = ob->particlesystem.first; for (; psys; psys = psys->next) { psys->flag &= ~PSYS_DISABLED; } } ParticleSystem *psys_orig_get(ParticleSystem *psys) { if (psys->orig_psys == NULL) { return psys; } return psys->orig_psys; } struct ParticleSystem *psys_eval_get(Depsgraph *depsgraph, Object *object, ParticleSystem *psys) { Object *object_eval = DEG_get_evaluated_object(depsgraph, object); if (object_eval == object) { return psys; } ParticleSystem *psys_eval = object_eval->particlesystem.first; while (psys_eval != NULL) { if (psys_eval->orig_psys == psys) { return psys_eval; } psys_eval = psys_eval->next; } return psys_eval; } static PTCacheEdit *psys_orig_edit_get(ParticleSystem *psys) { if (psys->orig_psys == NULL) { return psys->edit; } return psys->orig_psys->edit; } bool psys_in_edit_mode(Depsgraph *depsgraph, const ParticleSystem *psys) { const Scene *scene = DEG_get_input_scene(depsgraph); ViewLayer *view_layer = DEG_get_input_view_layer(depsgraph); BKE_view_layer_synced_ensure(scene, view_layer); const Object *object = BKE_view_layer_active_object_get(view_layer); if (object == NULL) { /* TODO(sergey): Needs double-check with multi-object edit. */ return false; } const bool use_render_params = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER); if (object->mode != OB_MODE_PARTICLE_EDIT) { return false; } const ParticleSystem *psys_orig = psys_orig_get((ParticleSystem *)psys); return (psys_orig->edit || psys->pointcache->edit) && (use_render_params == false); } bool psys_check_enabled(Object *ob, ParticleSystem *psys, const bool use_render_params) { ParticleSystemModifierData *psmd; if (psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE || !psys->part) { return 0; } psmd = psys_get_modifier(ob, psys); if (!psmd) { return 0; } if (use_render_params) { if (!(psmd->modifier.mode & eModifierMode_Render)) { return 0; } } else if (!(psmd->modifier.mode & eModifierMode_Realtime)) { return 0; } return 1; } bool psys_check_edited(ParticleSystem *psys) { if (psys->part && psys->part->type == PART_HAIR) { return (psys->flag & PSYS_EDITED || (psys->edit && psys->edit->edited)); } return (psys->pointcache->edit && psys->pointcache->edit->edited); } void psys_find_group_weights(ParticleSettings *part) { /* Find object pointers based on index. If the collection is linked from * another library linking may not have the object pointers available on * file load, so we have to retrieve them later. See T49273. */ ListBase instance_collection_objects = {NULL, NULL}; if (part->instance_collection) { instance_collection_objects = BKE_collection_object_cache_get(part->instance_collection); } LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) { if (dw->ob == NULL) { Base *base = BLI_findlink(&instance_collection_objects, dw->index); if (base != NULL) { dw->ob = base->object; } } } } void psys_check_group_weights(ParticleSettings *part) { ParticleDupliWeight *dw, *tdw; if (part->ren_as != PART_DRAW_GR || !part->instance_collection) { BLI_freelistN(&part->instance_weights); return; } /* Find object pointers. */ psys_find_group_weights(part); /* Remove NULL objects, that were removed from the collection. */ dw = part->instance_weights.first; while (dw) { if (dw->ob == NULL || !BKE_collection_has_object_recursive(part->instance_collection, dw->ob)) { tdw = dw->next; BLI_freelinkN(&part->instance_weights, dw); dw = tdw; } else { dw = dw->next; } } /* Add new objects in the collection. */ int index = 0; FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN (part->instance_collection, object) { dw = part->instance_weights.first; while (dw && dw->ob != object) { dw = dw->next; } if (!dw) { dw = MEM_callocN(sizeof(ParticleDupliWeight), "ParticleDupliWeight"); dw->ob = object; dw->count = 1; BLI_addtail(&part->instance_weights, dw); } dw->index = index++; } FOREACH_COLLECTION_OBJECT_RECURSIVE_END; /* Ensure there is an element marked as current. */ int current = 0; for (dw = part->instance_weights.first; dw; dw = dw->next) { if (dw->flag & PART_DUPLIW_CURRENT) { current = 1; break; } } if (!current) { dw = part->instance_weights.first; if (dw) { dw->flag |= PART_DUPLIW_CURRENT; } } } int psys_uses_gravity(ParticleSimulationData *sim) { return sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY && sim->psys->part && sim->psys->part->effector_weights->global_gravity != 0.0f; } /************************************************/ /* Freeing stuff */ /************************************************/ static void fluid_free_settings(SPHFluidSettings *fluid) { if (fluid) { MEM_freeN(fluid); } } void free_hair(Object *object, ParticleSystem *psys, int dynamics) { PARTICLE_P; LOOP_PARTICLES { MEM_SAFE_FREE(pa->hair); pa->totkey = 0; } psys->flag &= ~PSYS_HAIR_DONE; if (psys->clmd) { if (dynamics) { BKE_modifier_free((ModifierData *)psys->clmd); psys->clmd = NULL; PTCacheID pid; BKE_ptcache_id_from_particles(&pid, object, psys); BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0); } else { cloth_free_modifier(psys->clmd); } } if (psys->hair_in_mesh) { BKE_id_free(NULL, psys->hair_in_mesh); } psys->hair_in_mesh = NULL; if (psys->hair_out_mesh) { BKE_id_free(NULL, psys->hair_out_mesh); } psys->hair_out_mesh = NULL; } void free_keyed_keys(ParticleSystem *psys) { PARTICLE_P; if (psys->part->type == PART_HAIR) { return; } if (psys->particles && psys->particles->keys) { MEM_freeN(psys->particles->keys); LOOP_PARTICLES { if (pa->keys) { pa->keys = NULL; pa->totkey = 0; } } } } static void free_child_path_cache(ParticleSystem *psys) { psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs); psys->childcache = NULL; psys->totchildcache = 0; } void psys_free_path_cache(ParticleSystem *psys, PTCacheEdit *edit) { if (edit) { psys_free_path_cache_buffers(edit->pathcache, &edit->pathcachebufs); edit->pathcache = NULL; edit->totcached = 0; } if (psys) { psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs); psys->pathcache = NULL; psys->totcached = 0; free_child_path_cache(psys); } } void psys_free_children(ParticleSystem *psys) { if (psys->child) { MEM_freeN(psys->child); psys->child = NULL; psys->totchild = 0; } free_child_path_cache(psys); } void psys_free_particles(ParticleSystem *psys) { PARTICLE_P; if (psys->particles) { /* Even though psys->part should never be NULL, * this can happen as an exception during deletion. * See ID_REMAP_SKIP/FORCE/FLAG_NEVER_NULL_USAGE in BKE_library_remap. */ if (psys->part && psys->part->type == PART_HAIR) { LOOP_PARTICLES { if (pa->hair) { MEM_freeN(pa->hair); } } } if (psys->particles->keys) { MEM_freeN(psys->particles->keys); } if (psys->particles->boid) { MEM_freeN(psys->particles->boid); } MEM_freeN(psys->particles); psys->particles = NULL; psys->totpart = 0; } } void psys_free_pdd(ParticleSystem *psys) { if (psys->pdd) { MEM_SAFE_FREE(psys->pdd->cdata); MEM_SAFE_FREE(psys->pdd->vdata); MEM_SAFE_FREE(psys->pdd->ndata); MEM_SAFE_FREE(psys->pdd->vedata); psys->pdd->totpoint = 0; psys->pdd->totpart = 0; psys->pdd->partsize = 0; } } void psys_free(Object *ob, ParticleSystem *psys) { if (psys) { int nr = 0; ParticleSystem *tpsys; psys_free_path_cache(psys, NULL); /* NOTE: We pass dynamics=0 to free_hair() to prevent it from doing an * unneeded clear of the cache. But for historical reason that code path * was only clearing cloth part of modifier data. * * Part of the story there is that particle evaluation is trying to not * re-allocate thew ModifierData itself, and limits all allocations to * the cloth part of it. * * Why evaluation is relying on hair_free() and in some specific code * paths there is beyond me. */ free_hair(ob, psys, 0); if (psys->clmd != NULL) { BKE_modifier_free((ModifierData *)psys->clmd); } psys_free_particles(psys); if (psys->edit && psys->free_edit) { psys->free_edit(psys->edit); } if (psys->child) { MEM_freeN(psys->child); psys->child = NULL; psys->totchild = 0; } /* check if we are last non-visible particle system */ for (tpsys = ob->particlesystem.first; tpsys; tpsys = tpsys->next) { if (tpsys->part) { if (ELEM(tpsys->part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) { nr++; break; } } } /* clear do-not-draw-flag */ if (!nr) { ob->transflag &= ~OB_DUPLIPARTS; } psys->part = NULL; if ((psys->flag & PSYS_SHARED_CACHES) == 0) { BKE_ptcache_free_list(&psys->ptcaches); } psys->pointcache = NULL; BLI_freelistN(&psys->targets); BLI_bvhtree_free(psys->bvhtree); BLI_kdtree_3d_free(psys->tree); if (psys->fluid_springs) { MEM_freeN(psys->fluid_springs); } BKE_effectors_free(psys->effectors); if (psys->pdd) { psys_free_pdd(psys); MEM_freeN(psys->pdd); } BKE_particle_batch_cache_free(psys); MEM_freeN(psys); } } void psys_copy_particles(ParticleSystem *psys_dst, ParticleSystem *psys_src) { /* Free existing particles. */ if (psys_dst->particles != psys_src->particles) { psys_free_particles(psys_dst); } if (psys_dst->child != psys_src->child) { psys_free_children(psys_dst); } /* Restore counters. */ psys_dst->totpart = psys_src->totpart; psys_dst->totchild = psys_src->totchild; /* Copy particles and children. */ psys_dst->particles = MEM_dupallocN(psys_src->particles); psys_dst->child = MEM_dupallocN(psys_src->child); /* Ideally this should only be performed if `(psys_dst->part->type == PART_HAIR)`. * * But #ParticleData (`psys_dst`) is some sub-data of the #Object ID, while #ParticleSettings * (`psys_dst->part`) is another ID. In case the particle settings is a linked ID that gets * missing, it will be replaced (in readfile code) by a place-holder, which defaults to a * `PART_EMITTER` type of particle settings. * * This leads to a situation where each particle of `psys_dst` still has a valid allocated `hair` * data, which should still be preserved in case the missing particle settings ID becomes valid * again. * * Furthermore, #free_hair() always frees `pa->hair` if it's not NULL, regardless of the * particle type. So *not* copying here would cause a double free (or more), e.g. freeing the * copy-on-write copy and the original data will crash Blender. * In any case, sharing pointers between `psys_src` and `psys_dst` should be forbidden. * * So while we could in theory 'sanitize' the situation by setting `pa->hair` to NULL in the new * copy (in case of non-`PART_HAIR` type), it is probably safer for now to systematically * duplicate the `hair` data if available. */ { ParticleData *pa; int p; for (p = 0, pa = psys_dst->particles; p < psys_dst->totpart; p++, pa++) { pa->hair = MEM_dupallocN(pa->hair); } } if (psys_dst->particles && (psys_dst->particles->keys || psys_dst->particles->boid)) { ParticleKey *key = psys_dst->particles->keys; BoidParticle *boid = psys_dst->particles->boid; ParticleData *pa; int p; if (key != NULL) { key = MEM_dupallocN(key); } if (boid != NULL) { boid = MEM_dupallocN(boid); } for (p = 0, pa = psys_dst->particles; p < psys_dst->totpart; p++, pa++) { if (boid != NULL) { pa->boid = boid++; } if (key != NULL) { pa->keys = key; key += pa->totkey; } } } } /************************************************/ /* Interpolation */ /************************************************/ static float interpolate_particle_value( float v1, float v2, float v3, float v4, const float w[4], int four) { float value; value = w[0] * v1 + w[1] * v2 + w[2] * v3; if (four) { value += w[3] * v4; } CLAMP(value, 0.0f, 1.0f); return value; } void psys_interpolate_particle( short type, ParticleKey keys[4], float dt, ParticleKey *result, bool velocity) { float t[4]; if (type < 0) { interp_cubic_v3(result->co, result->vel, keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt); } else { key_curve_position_weights(dt, t, type); interp_v3_v3v3v3v3(result->co, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); if (velocity) { float temp[3]; if (dt > 0.999f) { key_curve_position_weights(dt - 0.001f, t, type); interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); sub_v3_v3v3(result->vel, result->co, temp); } else { key_curve_position_weights(dt + 0.001f, t, type); interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t); sub_v3_v3v3(result->vel, temp, result->co); } } } } typedef struct ParticleInterpolationData { HairKey *hkey[2]; Mesh *mesh; float *positions[2]; int keyed; ParticleKey *kkey[2]; PointCache *cache; PTCacheMem *pm; PTCacheEditPoint *epoint; PTCacheEditKey *ekey[2]; float birthtime; /** Die on this frame, see #ParticleData.dietime for details. */ float dietime; int bspline; } ParticleInterpolationData; /** * Assumes pointcache->mem_cache exists, so for disk cached particles * call #psys_make_temp_pointcache() before use. * It uses #ParticleInterpolationData.pm to store the current memory cache frame * so it's thread safe. */ static void get_pointcache_keys_for_time(Object *UNUSED(ob), PointCache *cache, PTCacheMem **cur, int index, float t, ParticleKey *key1, ParticleKey *key2) { static PTCacheMem *pm = NULL; int index1, index2; if (index < 0) { /* initialize */ *cur = cache->mem_cache.first; if (*cur) { *cur = (*cur)->next; } } else { if (*cur) { while (*cur && (*cur)->next && (float)(*cur)->frame < t) { *cur = (*cur)->next; } pm = *cur; index2 = BKE_ptcache_mem_index_find(pm, index); index1 = BKE_ptcache_mem_index_find(pm->prev, index); if (index2 < 0) { return; } BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame); if (index1 < 0) { copy_particle_key(key1, key2, 1); } else { BKE_ptcache_make_particle_key(key1, index1, pm->prev->data, (float)pm->prev->frame); } } else if (cache->mem_cache.first) { pm = cache->mem_cache.first; index2 = BKE_ptcache_mem_index_find(pm, index); if (index2 < 0) { return; } BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame); copy_particle_key(key1, key2, 1); } } } static int get_pointcache_times_for_particle(PointCache *cache, int index, float *r_start, float *r_dietime) { PTCacheMem *pm; int ret = 0; for (pm = cache->mem_cache.first; pm; pm = pm->next) { if (BKE_ptcache_mem_index_find(pm, index) >= 0) { *r_start = pm->frame; ret++; break; } } for (pm = cache->mem_cache.last; pm; pm = pm->prev) { if (BKE_ptcache_mem_index_find(pm, index) >= 0) { /* Die *after* the last available frame. */ *r_dietime = pm->frame + 1; ret++; break; } } return ret == 2; } float psys_get_dietime_from_cache(PointCache *cache, int index) { PTCacheMem *pm; int dietime = 10000000; /* some max value so that we can default to pa->time+lifetime */ for (pm = cache->mem_cache.last; pm; pm = pm->prev) { if (BKE_ptcache_mem_index_find(pm, index) >= 0) { /* Die *after* the last available frame. */ dietime = pm->frame + 1; break; } } return (float)dietime; } static void init_particle_interpolation(Object *ob, ParticleSystem *psys, ParticleData *pa, ParticleInterpolationData *pind) { if (pind->epoint) { PTCacheEditPoint *point = pind->epoint; pind->ekey[0] = point->keys; pind->ekey[1] = point->totkey > 1 ? point->keys + 1 : NULL; pind->birthtime = *(point->keys->time); pind->dietime = *((point->keys + point->totkey - 1)->time); } else if (pind->keyed) { ParticleKey *key = pa->keys; pind->kkey[0] = key; pind->kkey[1] = pa->totkey > 1 ? key + 1 : NULL; pind->birthtime = key->time; pind->dietime = (key + pa->totkey - 1)->time; } else if (pind->cache) { float start = 0.0f, dietime = 0.0f; get_pointcache_keys_for_time(ob, pind->cache, &pind->pm, -1, 0.0f, NULL, NULL); pind->birthtime = pa ? pa->time : pind->cache->startframe; pind->dietime = pa ? pa->dietime : (pind->cache->endframe + 1); if (get_pointcache_times_for_particle(pind->cache, pa - psys->particles, &start, &dietime)) { pind->birthtime = MAX2(pind->birthtime, start); pind->dietime = MIN2(pind->dietime, dietime); } } else { HairKey *key = pa->hair; pind->hkey[0] = key; pind->hkey[1] = key + 1; pind->birthtime = key->time; pind->dietime = (key + pa->totkey - 1)->time; if (pind->mesh) { float(*positions)[3] = BKE_mesh_positions_for_write(pind->mesh); pind->positions[0] = positions[pa->hair_index]; pind->positions[1] = positions[pa->hair_index + 1]; } } } static void edit_to_particle(ParticleKey *key, PTCacheEditKey *ekey) { copy_v3_v3(key->co, ekey->co); if (ekey->vel) { copy_v3_v3(key->vel, ekey->vel); } key->time = *(ekey->time); } static void hair_to_particle(ParticleKey *key, HairKey *hkey) { copy_v3_v3(key->co, hkey->co); key->time = hkey->time; } static void mvert_to_particle(ParticleKey *key, float position[3], HairKey *hkey) { copy_v3_v3(key->co, position); key->time = hkey->time; } static void do_particle_interpolation(ParticleSystem *psys, int p, ParticleData *pa, float t, ParticleInterpolationData *pind, ParticleKey *result) { PTCacheEditPoint *point = pind->epoint; ParticleKey keys[4]; int point_vel = (point && point->keys->vel); float real_t, dfra, keytime, invdt = 1.0f; /* billboards won't fill in all of these, so start cleared */ memset(keys, 0, sizeof(keys)); /* interpret timing and find keys */ if (point) { if (result->time < 0.0f) { real_t = -result->time; } else { real_t = *(pind->ekey[0]->time) + t * (*(pind->ekey[0][point->totkey - 1].time) - *(pind->ekey[0]->time)); } while (*(pind->ekey[1]->time) < real_t) { pind->ekey[1]++; } pind->ekey[0] = pind->ekey[1] - 1; } else if (pind->keyed) { /* we have only one key, so let's use that */ if (pind->kkey[1] == NULL) { copy_particle_key(result, pind->kkey[0], 1); return; } if (result->time < 0.0f) { real_t = -result->time; } else { real_t = pind->kkey[0]->time + t * (pind->kkey[0][pa->totkey - 1].time - pind->kkey[0]->time); } if (psys->part->phystype == PART_PHYS_KEYED && psys->flag & PSYS_KEYED_TIMING) { ParticleTarget *pt = psys->targets.first; pt = pt->next; while (pt && pa->time + pt->time < real_t) { pt = pt->next; } if (pt) { pt = pt->prev; if (pa->time + pt->time + pt->duration > real_t) { real_t = pa->time + pt->time; } } else { real_t = pa->time + ((ParticleTarget *)psys->targets.last)->time; } } CLAMP(real_t, pa->time, pa->dietime); while (pind->kkey[1]->time < real_t) { pind->kkey[1]++; } pind->kkey[0] = pind->kkey[1] - 1; } else if (pind->cache) { if (result->time < 0.0f) { /* flag for time in frames */ real_t = -result->time; } else { real_t = pa->time + t * (pa->dietime - pa->time); } } else { if (result->time < 0.0f) { real_t = -result->time; } else { real_t = pind->hkey[0]->time + t * (pind->hkey[0][pa->totkey - 1].time - pind->hkey[0]->time); } while (pind->hkey[1]->time < real_t) { pind->hkey[1]++; pind->positions[1] += 3; } pind->hkey[0] = pind->hkey[1] - 1; } /* set actual interpolation keys */ if (point) { edit_to_particle(keys + 1, pind->ekey[0]); edit_to_particle(keys + 2, pind->ekey[1]); } else if (pind->mesh) { pind->positions[0] = pind->positions[1] - 3; mvert_to_particle(keys + 1, pind->positions[0], pind->hkey[0]); mvert_to_particle(keys + 2, pind->positions[1], pind->hkey[1]); } else if (pind->keyed) { memcpy(keys + 1, pind->kkey[0], sizeof(ParticleKey)); memcpy(keys + 2, pind->kkey[1], sizeof(ParticleKey)); } else if (pind->cache) { get_pointcache_keys_for_time(NULL, pind->cache, &pind->pm, p, real_t, keys + 1, keys + 2); } else { hair_to_particle(keys + 1, pind->hkey[0]); hair_to_particle(keys + 2, pind->hkey[1]); } /* set secondary interpolation keys for hair */ if (!pind->keyed && !pind->cache && !point_vel) { if (point) { if (pind->ekey[0] != point->keys) { edit_to_particle(keys, pind->ekey[0] - 1); } else { edit_to_particle(keys, pind->ekey[0]); } } else if (pind->mesh) { if (pind->hkey[0] != pa->hair) { mvert_to_particle(keys, pind->positions[0] - 3, pind->hkey[0] - 3); } else { mvert_to_particle(keys, pind->positions[0], pind->hkey[0]); } } else { if (pind->hkey[0] != pa->hair) { hair_to_particle(keys, pind->hkey[0] - 1); } else { hair_to_particle(keys, pind->hkey[0]); } } if (point) { if (pind->ekey[1] != point->keys + point->totkey - 1) { edit_to_particle(keys + 3, pind->ekey[1] + 1); } else { edit_to_particle(keys + 3, pind->ekey[1]); } } else if (pind->mesh) { if (pind->hkey[1] != pa->hair + pa->totkey - 1) { mvert_to_particle(keys + 3, pind->positions[1] + 3, pind->hkey[1] + 3); } else { mvert_to_particle(keys + 3, pind->positions[1], pind->hkey[1]); } } else { if (pind->hkey[1] != pa->hair + pa->totkey - 1) { hair_to_particle(keys + 3, pind->hkey[1] + 1); } else { hair_to_particle(keys + 3, pind->hkey[1]); } } } dfra = keys[2].time - keys[1].time; keytime = (real_t - keys[1].time) / dfra; /* Convert velocity to time-step size. */ if (pind->keyed || pind->cache || point_vel) { invdt = dfra * 0.04f * (psys ? psys->part->timetweak : 1.0f); mul_v3_fl(keys[1].vel, invdt); mul_v3_fl(keys[2].vel, invdt); interp_qt_qtqt(result->rot, keys[1].rot, keys[2].rot, keytime); } /* Now we should have in chronological order k1<=k2<=t<=k3<=k4 with key-time between * [0, 1]->[k2, k3] (k1 & k4 used for cardinal & b-spline interpolation). */ psys_interpolate_particle((pind->keyed || pind->cache || point_vel) ? -1 /* signal for cubic interpolation */ : (pind->bspline ? KEY_BSPLINE : KEY_CARDINAL), keys, keytime, result, 1); /* the velocity needs to be converted back from cubic interpolation */ if (pind->keyed || pind->cache || point_vel) { mul_v3_fl(result->vel, 1.0f / invdt); } } static void interpolate_pathcache(ParticleCacheKey *first, float t, ParticleCacheKey *result) { int i = 0; ParticleCacheKey *cur = first; /* scale the requested time to fit the entire path even if the path is cut early */ t *= (first + first->segments)->time; while (i < first->segments && cur->time < t) { cur++; } if (cur->time == t) { *result = *cur; } else { float dt = (t - (cur - 1)->time) / (cur->time - (cur - 1)->time); interp_v3_v3v3(result->co, (cur - 1)->co, cur->co, dt); interp_v3_v3v3(result->vel, (cur - 1)->vel, cur->vel, dt); interp_qt_qtqt(result->rot, (cur - 1)->rot, cur->rot, dt); result->time = t; } /* first is actual base rotation, others are incremental from first */ if (cur == first || cur - 1 == first) { copy_qt_qt(result->rot, first->rot); } else { mul_qt_qtqt(result->rot, first->rot, result->rot); } } /************************************************/ /* Particles on a dm */ /************************************************/ void psys_interpolate_face(Mesh *mesh, const float (*positions)[3], const float (*vert_normals)[3], MFace *mface, MTFace *tface, const float (*orcodata)[3], float w[4], float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3]) { const float *v1 = 0, *v2 = 0, *v3 = 0, *v4 = 0; float e1[3], e2[3], s1, s2, t1, t2; float *uv1, *uv2, *uv3, *uv4; float n1[3], n2[3], n3[3], n4[3]; float tuv[4][2]; const float *o1, *o2, *o3, *o4; v1 = positions[mface->v1]; v2 = positions[mface->v2]; v3 = positions[mface->v3]; copy_v3_v3(n1, vert_normals[mface->v1]); copy_v3_v3(n2, vert_normals[mface->v2]); copy_v3_v3(n3, vert_normals[mface->v3]); if (mface->v4) { v4 = positions[mface->v4]; copy_v3_v3(n4, vert_normals[mface->v4]); interp_v3_v3v3v3v3(vec, v1, v2, v3, v4, w); if (nor) { if (mface->flag & ME_SMOOTH) { interp_v3_v3v3v3v3(nor, n1, n2, n3, n4, w); } else { normal_quad_v3(nor, v1, v2, v3, v4); } } } else { interp_v3_v3v3v3(vec, v1, v2, v3, w); if (nor) { if (mface->flag & ME_SMOOTH) { interp_v3_v3v3v3(nor, n1, n2, n3, w); } else { normal_tri_v3(nor, v1, v2, v3); } } } /* calculate tangent vectors */ if (utan && vtan) { if (tface) { uv1 = tface->uv[0]; uv2 = tface->uv[1]; uv3 = tface->uv[2]; uv4 = tface->uv[3]; } else { uv1 = tuv[0]; uv2 = tuv[1]; uv3 = tuv[2]; uv4 = tuv[3]; map_to_sphere(uv1, uv1 + 1, v1[0], v1[1], v1[2]); map_to_sphere(uv2, uv2 + 1, v2[0], v2[1], v2[2]); map_to_sphere(uv3, uv3 + 1, v3[0], v3[1], v3[2]); if (v4) { map_to_sphere(uv4, uv4 + 1, v4[0], v4[1], v4[2]); } } if (v4) { s1 = uv3[0] - uv1[0]; s2 = uv4[0] - uv1[0]; t1 = uv3[1] - uv1[1]; t2 = uv4[1] - uv1[1]; sub_v3_v3v3(e1, v3, v1); sub_v3_v3v3(e2, v4, v1); } else { s1 = uv2[0] - uv1[0]; s2 = uv3[0] - uv1[0]; t1 = uv2[1] - uv1[1]; t2 = uv3[1] - uv1[1]; sub_v3_v3v3(e1, v2, v1); sub_v3_v3v3(e2, v3, v1); } vtan[0] = (s1 * e2[0] - s2 * e1[0]); vtan[1] = (s1 * e2[1] - s2 * e1[1]); vtan[2] = (s1 * e2[2] - s2 * e1[2]); utan[0] = (t1 * e2[0] - t2 * e1[0]); utan[1] = (t1 * e2[1] - t2 * e1[1]); utan[2] = (t1 * e2[2] - t2 * e1[2]); } if (orco) { if (orcodata) { o1 = orcodata[mface->v1]; o2 = orcodata[mface->v2]; o3 = orcodata[mface->v3]; if (mface->v4) { o4 = orcodata[mface->v4]; interp_v3_v3v3v3v3(orco, o1, o2, o3, o4, w); } else { interp_v3_v3v3v3(orco, o1, o2, o3, w); } BKE_mesh_orco_verts_transform(mesh, (float(*)[3])orco, 1, true); } else { copy_v3_v3(orco, vec); } } } void psys_interpolate_uvs(const MTFace *tface, int quad, const float w[4], float uvco[2]) { float v10 = tface->uv[0][0]; float v11 = tface->uv[0][1]; float v20 = tface->uv[1][0]; float v21 = tface->uv[1][1]; float v30 = tface->uv[2][0]; float v31 = tface->uv[2][1]; float v40, v41; if (quad) { v40 = tface->uv[3][0]; v41 = tface->uv[3][1]; uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30 + w[3] * v40; uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31 + w[3] * v41; } else { uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30; uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31; } } void psys_interpolate_mcol(const MCol *mcol, int quad, const float w[4], MCol *mc) { const char *cp1, *cp2, *cp3, *cp4; char *cp; cp = (char *)mc; cp1 = (const char *)&mcol[0]; cp2 = (const char *)&mcol[1]; cp3 = (const char *)&mcol[2]; if (quad) { cp4 = (char *)&mcol[3]; cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0] + w[3] * cp4[0]); cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1] + w[3] * cp4[1]); cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2] + w[3] * cp4[2]); cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3] + w[3] * cp4[3]); } else { cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0]); cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1]); cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2]); cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3]); } } static float psys_interpolate_value_from_verts( Mesh *mesh, short from, int index, const float fw[4], const float *values) { if (values == 0 || index == -1) { return 0.0; } switch (from) { case PART_FROM_VERT: return values[index]; case PART_FROM_FACE: case PART_FROM_VOLUME: { MFace *mfaces = CustomData_get_layer(&mesh->fdata, CD_MFACE); MFace *mf = &mfaces[index]; return interpolate_particle_value( values[mf->v1], values[mf->v2], values[mf->v3], values[mf->v4], fw, mf->v4); } } return 0.0f; } /* conversion of pa->fw to origspace layer coordinates */ static void psys_w_to_origspace(const float w[4], float uv[2]) { uv[0] = w[1] + w[2]; uv[1] = w[2] + w[3]; } /* conversion of pa->fw to weights in face from origspace */ static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, const float w[4], float neww[4]) { float v[4][3], co[3]; v[0][0] = osface->uv[0][0]; v[0][1] = osface->uv[0][1]; v[0][2] = 0.0f; v[1][0] = osface->uv[1][0]; v[1][1] = osface->uv[1][1]; v[1][2] = 0.0f; v[2][0] = osface->uv[2][0]; v[2][1] = osface->uv[2][1]; v[2][2] = 0.0f; psys_w_to_origspace(w, co); co[2] = 0.0f; if (quad) { v[3][0] = osface->uv[3][0]; v[3][1] = osface->uv[3][1]; v[3][2] = 0.0f; interp_weights_poly_v3(neww, v, 4, co); } else { interp_weights_poly_v3(neww, v, 3, co); neww[3] = 0.0f; } } int psys_particle_dm_face_lookup(Mesh *mesh_final, Mesh *mesh_original, int findex_orig, const float fw[4], struct LinkNode **poly_nodes) { MFace *mtessface_final; const OrigSpaceFace *osface_final; int pindex_orig; float uv[2]; const float(*faceuv)[2]; const int *index_mf_to_mpoly_deformed = NULL; const int *index_mf_to_mpoly = NULL; const int *index_mp_to_orig = NULL; const int totface_final = mesh_final->totface; const int totface_deformed = mesh_original ? mesh_original->totface : totface_final; if (ELEM(0, totface_final, totface_deformed)) { return DMCACHE_NOTFOUND; } index_mf_to_mpoly = CustomData_get_layer(&mesh_final->fdata, CD_ORIGINDEX); index_mp_to_orig = CustomData_get_layer(&mesh_final->pdata, CD_ORIGINDEX); BLI_assert(index_mf_to_mpoly); if (mesh_original) { index_mf_to_mpoly_deformed = CustomData_get_layer(&mesh_original->fdata, CD_ORIGINDEX); } else { BLI_assert(BKE_mesh_is_deformed_only(mesh_final)); index_mf_to_mpoly_deformed = index_mf_to_mpoly; } BLI_assert(index_mf_to_mpoly_deformed); pindex_orig = index_mf_to_mpoly_deformed[findex_orig]; if (mesh_original == NULL) { mesh_original = mesh_final; } index_mf_to_mpoly_deformed = NULL; mtessface_final = CustomData_get_layer(&mesh_final->fdata, CD_MFACE); osface_final = CustomData_get_layer(&mesh_final->fdata, CD_ORIGSPACE); if (osface_final == NULL) { /* Assume we don't need osface_final data, and we get a direct 1-1 mapping... */ if (findex_orig < totface_final) { // printf("\tNO CD_ORIGSPACE, assuming not needed\n"); return findex_orig; } printf("\tNO CD_ORIGSPACE, error out of range\n"); return DMCACHE_NOTFOUND; } if (findex_orig >= mesh_original->totface) { return DMCACHE_NOTFOUND; /* index not in the original mesh */ } psys_w_to_origspace(fw, uv); if (poly_nodes) { /* we can have a restricted linked list of faces to check, faster! */ LinkNode *tessface_node = poly_nodes[pindex_orig]; for (; tessface_node; tessface_node = tessface_node->next) { int findex_dst = POINTER_AS_INT(tessface_node->link); faceuv = osface_final[findex_dst].uv; /* check that this intersects - Its possible this misses :/ - * could also check its not between */ if (mtessface_final[findex_dst].v4) { if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) { return findex_dst; } } else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) { return findex_dst; } } } else { /* if we have no node, try every face */ for (int findex_dst = 0; findex_dst < totface_final; findex_dst++) { /* If current tessface from 'final' DM and orig tessface (given by index) * map to the same orig poly. */ if (BKE_mesh_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, findex_dst) == pindex_orig) { faceuv = osface_final[findex_dst].uv; /* check that this intersects - Its possible this misses :/ - * could also check its not between */ if (mtessface_final[findex_dst].v4) { if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) { return findex_dst; } } else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) { return findex_dst; } } } } return DMCACHE_NOTFOUND; } static int psys_map_index_on_dm(Mesh *mesh, int from, int index, int index_dmcache, const float fw[4], float UNUSED(foffset), int *mapindex, float mapfw[4]) { if (index < 0) { return 0; } if (BKE_mesh_is_deformed_only(mesh) || index_dmcache == DMCACHE_ISCHILD) { /* for meshes that are either only deformed or for child particles, the * index and fw do not require any mapping, so we can directly use it */ if (from == PART_FROM_VERT) { if (index >= mesh->totvert) { return 0; } *mapindex = index; } else { /* FROM_FACE/FROM_VOLUME */ if (index >= mesh->totface) { return 0; } *mapindex = index; copy_v4_v4(mapfw, fw); } } else { /* for other meshes that have been modified, we try to map the particle * to their new location, which means a different index, and for faces * also a new face interpolation weights */ if (from == PART_FROM_VERT) { if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache >= mesh->totvert) { return 0; } *mapindex = index_dmcache; } else { /* FROM_FACE/FROM_VOLUME */ /* find a face on the derived mesh that uses this face */ int i = index_dmcache; if (i == DMCACHE_NOTFOUND || i >= mesh->totface) { return 0; } *mapindex = i; /* modify the original weights to become * weights for the derived mesh face */ OrigSpaceFace *osface = CustomData_get_layer(&mesh->fdata, CD_ORIGSPACE); const MFace *mfaces = CustomData_get_layer(&mesh->fdata, CD_MFACE); const MFace *mface = &mfaces[i]; if (osface == NULL) { mapfw[0] = mapfw[1] = mapfw[2] = mapfw[3] = 0.0f; } else { psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw); } } } return 1; } void psys_particle_on_dm(Mesh *mesh_final, int from, int index, int index_dmcache, const float fw[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3]) { float tmpnor[3], mapfw[4]; const float(*orcodata)[3]; int mapindex; if (!psys_map_index_on_dm( mesh_final, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) { if (vec) { vec[0] = vec[1] = vec[2] = 0.0; } if (nor) { nor[0] = nor[1] = 0.0; nor[2] = 1.0; } if (orco) { orco[0] = orco[1] = orco[2] = 0.0; } if (utan) { utan[0] = utan[1] = utan[2] = 0.0; } if (vtan) { vtan[0] = vtan[1] = vtan[2] = 0.0; } return; } orcodata = CustomData_get_layer(&mesh_final->vdata, CD_ORCO); const float(*vert_normals)[3] = BKE_mesh_vertex_normals_ensure(mesh_final); if (from == PART_FROM_VERT) { const float(*positions)[3] = BKE_mesh_positions(mesh_final); copy_v3_v3(vec, positions[mapindex]); if (nor) { copy_v3_v3(nor, vert_normals[mapindex]); } if (orco) { if (orcodata) { copy_v3_v3(orco, orcodata[mapindex]); BKE_mesh_orco_verts_transform(mesh_final, (float(*)[3])orco, 1, true); } else { copy_v3_v3(orco, vec); } } if (utan && vtan) { utan[0] = utan[1] = utan[2] = 0.0f; vtan[0] = vtan[1] = vtan[2] = 0.0f; } } else { /* PART_FROM_FACE / PART_FROM_VOLUME */ MFace *mface; MTFace *mtface; MFace *mfaces = CustomData_get_layer(&mesh_final->fdata, CD_MFACE); mface = &mfaces[mapindex]; const float(*positions)[3] = BKE_mesh_positions(mesh_final); mtface = CustomData_get_layer(&mesh_final->fdata, CD_MTFACE); if (mtface) { mtface += mapindex; } if (from == PART_FROM_VOLUME) { psys_interpolate_face(mesh_final, positions, vert_normals, mface, mtface, orcodata, mapfw, vec, tmpnor, utan, vtan, orco); if (nor) { copy_v3_v3(nor, tmpnor); } /* XXX Why not normalize tmpnor before copying it into nor??? -- mont29 */ normalize_v3(tmpnor); mul_v3_fl(tmpnor, -foffset); add_v3_v3(vec, tmpnor); } else { psys_interpolate_face(mesh_final, positions, vert_normals, mface, mtface, orcodata, mapfw, vec, nor, utan, vtan, orco); } } } float psys_particle_value_from_verts(Mesh *mesh, short from, ParticleData *pa, float *values) { float mapfw[4]; int mapindex; if (!psys_map_index_on_dm( mesh, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw)) { return 0.0f; } return psys_interpolate_value_from_verts(mesh, from, mapindex, mapfw, values); } ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys) { ModifierData *md; ParticleSystemModifierData *psmd; for (md = ob->modifiers.first; md; md = md->next) { if (md->type == eModifierType_ParticleSystem) { psmd = (ParticleSystemModifierData *)md; if (psmd->psys == psys) { return psmd; } } } return NULL; } /************************************************/ /* Particles on a shape */ /************************************************/ /* ready for future use */ static void psys_particle_on_shape(int UNUSED(distr), int UNUSED(index), float *UNUSED(fuv), float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3]) { /* TODO */ const float zerovec[3] = {0.0f, 0.0f, 0.0f}; if (vec) { copy_v3_v3(vec, zerovec); } if (nor) { copy_v3_v3(nor, zerovec); } if (utan) { copy_v3_v3(utan, zerovec); } if (vtan) { copy_v3_v3(vtan, zerovec); } if (orco) { copy_v3_v3(orco, zerovec); } } /************************************************/ /* Particles on emitter */ /************************************************/ void psys_emitter_customdata_mask(ParticleSystem *psys, CustomData_MeshMasks *r_cddata_masks) { MTex *mtex; int i; if (!psys->part) { return; } for (i = 0; i < MAX_MTEX; i++) { mtex = psys->part->mtex[i]; if (mtex && mtex->mapto && (mtex->texco & TEXCO_UV)) { r_cddata_masks->fmask |= CD_MASK_MTFACE; } } if (psys->part->tanfac != 0.0f) { r_cddata_masks->fmask |= CD_MASK_MTFACE; } /* Ask for vertex-groups if we need them. */ for (i = 0; i < PSYS_TOT_VG; i++) { if (psys->vgroup[i]) { r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT; break; } } /* particles only need this if they are after a non deform modifier, and * the modifier stack will only create them in that case. */ r_cddata_masks->lmask |= CD_MASK_ORIGSPACE_MLOOP; /* XXX Check we do need all those? */ r_cddata_masks->vmask |= CD_MASK_ORIGINDEX; r_cddata_masks->emask |= CD_MASK_ORIGINDEX; r_cddata_masks->pmask |= CD_MASK_ORIGINDEX; r_cddata_masks->vmask |= CD_MASK_ORCO; } void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache, float fuv[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3], float orco[3]) { if (psmd && psmd->mesh_final) { if (psmd->psys->part->distr == PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT) { if (vec) { copy_v3_v3(vec, fuv); } if (orco) { copy_v3_v3(orco, fuv); } return; } /* we can't use the num_dmcache */ psys_particle_on_dm( psmd->mesh_final, from, index, index_dmcache, fuv, foffset, vec, nor, utan, vtan, orco); } else { psys_particle_on_shape(from, index, fuv, vec, nor, utan, vtan, orco); } } /************************************************/ /* Path Cache */ /************************************************/ void precalc_guides(ParticleSimulationData *sim, ListBase *effectors) { EffectedPoint point; ParticleKey state; EffectorData efd; EffectorCache *eff; ParticleSystem *psys = sim->psys; EffectorWeights *weights = sim->psys->part->effector_weights; GuideEffectorData *data; PARTICLE_P; if (!effectors) { return; } LOOP_PARTICLES { psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, state.co, 0, 0, 0, 0); mul_m4_v3(sim->ob->object_to_world, state.co); mul_mat3_m4_v3(sim->ob->object_to_world, state.vel); pd_point_from_particle(sim, pa, &state, &point); for (eff = effectors->first; eff; eff = eff->next) { if (eff->pd->forcefield != PFIELD_GUIDE) { continue; } if (!eff->guide_data) { eff->guide_data = MEM_callocN(sizeof(GuideEffectorData) * psys->totpart, "GuideEffectorData"); } data = eff->guide_data + p; sub_v3_v3v3(efd.vec_to_point, state.co, eff->guide_loc); copy_v3_v3(efd.nor, eff->guide_dir); efd.distance = len_v3(efd.vec_to_point); copy_v3_v3(data->vec_to_point, efd.vec_to_point); data->strength = effector_falloff(eff, &efd, &point, weights); } } } bool do_guides(Depsgraph *depsgraph, ParticleSettings *part, ListBase *effectors, ParticleKey *state, int index, float time) { CurveMapping *clumpcurve = (part->child_flag & PART_CHILD_USE_CLUMP_CURVE) ? part->clumpcurve : NULL; CurveMapping *roughcurve = (part->child_flag & PART_CHILD_USE_ROUGH_CURVE) ? part->roughcurve : NULL; EffectorCache *eff; PartDeflect *pd; Curve *cu; GuideEffectorData *data; float effect[3] = {0.0f, 0.0f, 0.0f}, veffect[3] = {0.0f, 0.0f, 0.0f}; float guidevec[4], guidedir[3], rot2[4], temp[3]; float guidetime, radius, weight, angle, totstrength = 0.0f; float vec_to_point[3]; if (effectors) { for (eff = effectors->first; eff; eff = eff->next) { pd = eff->pd; if (pd->forcefield != PFIELD_GUIDE) { continue; } data = eff->guide_data + index; if (data->strength <= 0.0f) { continue; } guidetime = time / (1.0f - pd->free_end); if (guidetime > 1.0f) { continue; } cu = (Curve *)eff->ob->data; if (pd->flag & PFIELD_GUIDE_PATH_ADD) { if (BKE_where_on_path( eff->ob, data->strength * guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0) { return 0; } } else { if (BKE_where_on_path(eff->ob, guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0) { return 0; } } mul_m4_v3(eff->ob->object_to_world, guidevec); mul_mat3_m4_v3(eff->ob->object_to_world, guidedir); normalize_v3(guidedir); copy_v3_v3(vec_to_point, data->vec_to_point); if (guidetime != 0.0f) { /* curve direction */ cross_v3_v3v3(temp, eff->guide_dir, guidedir); angle = dot_v3v3(eff->guide_dir, guidedir) / len_v3(eff->guide_dir); angle = saacos(angle); axis_angle_to_quat(rot2, temp, angle); mul_qt_v3(rot2, vec_to_point); /* curve tilt */ axis_angle_to_quat(rot2, guidedir, guidevec[3] - eff->guide_loc[3]); mul_qt_v3(rot2, vec_to_point); } /* curve taper */ if (cu->taperobj) { mul_v3_fl(vec_to_point, BKE_displist_calc_taper(depsgraph, eff->scene, cu->taperobj, (int)(data->strength * guidetime * 100.0f), 100)); } else { /* Curve size. */ if (cu->flag & CU_PATH_RADIUS) { mul_v3_fl(vec_to_point, radius); } } if (clumpcurve) { BKE_curvemapping_changed_all(clumpcurve); } if (roughcurve) { BKE_curvemapping_changed_all(roughcurve); } { ParticleKey key; const float par_co[3] = {0.0f, 0.0f, 0.0f}; const float par_vel[3] = {0.0f, 0.0f, 0.0f}; const float par_rot[4] = {1.0f, 0.0f, 0.0f, 0.0f}; const float orco_offset[3] = {0.0f, 0.0f, 0.0f}; copy_v3_v3(key.co, vec_to_point); do_kink(&key, par_co, par_vel, par_rot, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, 0.0f, pd->kink, pd->kink_axis, 0, 0); do_clump(&key, par_co, guidetime, orco_offset, pd->clump_fac, pd->clump_pow, 1.0f, part->child_flag & PART_CHILD_USE_CLUMP_NOISE, part->clump_noise_size, clumpcurve); copy_v3_v3(vec_to_point, key.co); } add_v3_v3(vec_to_point, guidevec); // sub_v3_v3v3(pa_loc, pa_loc, pa_zero); madd_v3_v3fl(effect, vec_to_point, data->strength); madd_v3_v3fl(veffect, guidedir, data->strength); totstrength += data->strength; if (pd->flag & PFIELD_GUIDE_PATH_WEIGHT) { totstrength *= weight; } } } if (totstrength != 0.0f) { if (totstrength > 1.0f) { mul_v3_fl(effect, 1.0f / totstrength); } CLAMP(totstrength, 0.0f, 1.0f); // add_v3_v3(effect, pa_zero); interp_v3_v3v3(state->co, state->co, effect, totstrength); normalize_v3(veffect); mul_v3_fl(veffect, len_v3(state->vel)); copy_v3_v3(state->vel, veffect); return 1; } return 0; } static void do_path_effectors(ParticleSimulationData *sim, int i, ParticleCacheKey *ca, int k, int steps, float *UNUSED(rootco), float effector, float UNUSED(dfra), float UNUSED(cfra), float *length, float *vec) { float force[3] = {0.0f, 0.0f, 0.0f}; ParticleKey eff_key; EffectedPoint epoint; /* Don't apply effectors for dynamic hair, otherwise the effectors don't get applied twice. */ if (sim->psys->flag & PSYS_HAIR_DYNAMICS) { return; } copy_v3_v3(eff_key.co, (ca - 1)->co); copy_v3_v3(eff_key.vel, (ca - 1)->vel); copy_qt_qt(eff_key.rot, (ca - 1)->rot); pd_point_from_particle(sim, sim->psys->particles + i, &eff_key, &epoint); BKE_effectors_apply(sim->psys->effectors, sim->colliders, sim->psys->part->effector_weights, &epoint, force, NULL, NULL); mul_v3_fl(force, effector * powf((float)k / (float)steps, 100.0f * sim->psys->part->eff_hair) / (float)steps); add_v3_v3(force, vec); normalize_v3(force); if (k < steps) { sub_v3_v3v3(vec, (ca + 1)->co, ca->co); } madd_v3_v3v3fl(ca->co, (ca - 1)->co, force, *length); if (k < steps) { *length = len_v3(vec); } } static void offset_child(ChildParticle *cpa, ParticleKey *par, float *par_rot, ParticleKey *child, float flat, float radius) { copy_v3_v3(child->co, cpa->fuv); mul_v3_fl(child->co, radius); child->co[0] *= flat; copy_v3_v3(child->vel, par->vel); if (par_rot) { mul_qt_v3(par_rot, child->co); copy_qt_qt(child->rot, par_rot); } else { unit_qt(child->rot); } add_v3_v3(child->co, par->co); } float *psys_cache_vgroup(Mesh *mesh, ParticleSystem *psys, int vgroup) { float *vg = 0; if (vgroup < 0) { /* hair dynamics pinning vgroup */ } else if (psys->vgroup[vgroup]) { const MDeformVert *dvert = BKE_mesh_deform_verts(mesh); if (dvert) { int totvert = mesh->totvert, i; vg = MEM_callocN(sizeof(float) * totvert, "vg_cache"); if (psys->vg_neg & (1 << vgroup)) { for (i = 0; i < totvert; i++) { vg[i] = 1.0f - BKE_defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1); } } else { for (i = 0; i < totvert; i++) { vg[i] = BKE_defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1); } } } } return vg; } void psys_find_parents(ParticleSimulationData *sim, const bool use_render_params) { ParticleSystem *psys = sim->psys; ParticleSettings *part = sim->psys->part; KDTree_3d *tree; ChildParticle *cpa; ParticleTexture ptex; int p, totparent, totchild = sim->psys->totchild; float co[3], orco[3]; int from = PART_FROM_FACE; totparent = (int)(totchild * part->parents * 0.3f); if (use_render_params && part->child_percent && part->child_render_percent) { totparent *= (float)part->child_percent / (float)part->child_render_percent; } /* hard limit, workaround for it being ignored above */ if (sim->psys->totpart < totparent) { totparent = sim->psys->totpart; } tree = BLI_kdtree_3d_new(totparent); for (p = 0, cpa = sim->psys->child; p < totparent; p++, cpa++) { psys_particle_on_emitter( sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco); /* Check if particle doesn't exist because of texture influence. * Insert only existing particles into kdtree. */ get_cpa_texture(sim->psmd->mesh_final, psys, part, psys->particles + cpa->pa[0], p, cpa->num, cpa->fuv, orco, &ptex, PAMAP_DENS | PAMAP_CHILD, psys->cfra); if (ptex.exist >= psys_frand(psys, p + 24)) { BLI_kdtree_3d_insert(tree, p, orco); } } BLI_kdtree_3d_balance(tree); for (; p < totchild; p++, cpa++) { psys_particle_on_emitter( sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco); cpa->parent = BLI_kdtree_3d_find_nearest(tree, orco, NULL); } BLI_kdtree_3d_free(tree); } static bool psys_thread_context_init_path(ParticleThreadContext *ctx, ParticleSimulationData *sim, Scene *scene, float cfra, const bool editupdate, const bool use_render_params) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; int totparent = 0, between = 0; int segments = 1 << part->draw_step; int totchild = psys->totchild; psys_thread_context_init(ctx, sim); /*---start figuring out what is actually wanted---*/ if (psys_in_edit_mode(sim->depsgraph, psys)) { ParticleEditSettings *pset = &scene->toolsettings->particle; if ((use_render_params == 0) && (psys_orig_edit_get(psys) == NULL || pset->flag & PE_DRAW_PART) == 0) { totchild = 0; } segments = 1 << pset->draw_step; } if (totchild && part->childtype == PART_CHILD_FACES) { totparent = (int)(totchild * part->parents * 0.3f); if (use_render_params && part->child_percent && part->child_render_percent) { totparent *= (float)part->child_percent / (float)part->child_render_percent; } /* part->parents could still be 0 so we can't test with totparent */ between = 1; } if (use_render_params) { segments = 1 << part->ren_step; } else { totchild = (int)((float)totchild * (float)part->disp / 100.0f); } totparent = MIN2(totparent, totchild); if (totchild == 0) { return false; } /* fill context values */ ctx->between = between; ctx->segments = segments; if (ELEM(part->kink, PART_KINK_SPIRAL)) { ctx->extra_segments = max_ii(part->kink_extra_steps, 1); } else { ctx->extra_segments = 0; } ctx->totchild = totchild; ctx->totparent = totparent; ctx->parent_pass = 0; ctx->cfra = cfra; ctx->editupdate = editupdate; psys_sim_data_init(&ctx->sim); /* cache all relevant vertex groups if they exist */ ctx->vg_length = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_LENGTH); ctx->vg_clump = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_CLUMP); ctx->vg_kink = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_KINK); ctx->vg_rough1 = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_ROUGH1); ctx->vg_rough2 = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_ROUGH2); ctx->vg_roughe = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_ROUGHE); ctx->vg_twist = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_TWIST); if (psys->part->flag & PART_CHILD_EFFECT) { ctx->vg_effector = psys_cache_vgroup(ctx->mesh, psys, PSYS_VG_EFFECTOR); } /* prepare curvemapping tables */ if ((part->child_flag & PART_CHILD_USE_CLUMP_CURVE) && part->clumpcurve) { ctx->clumpcurve = BKE_curvemapping_copy(part->clumpcurve); BKE_curvemapping_changed_all(ctx->clumpcurve); } else { ctx->clumpcurve = NULL; } if ((part->child_flag & PART_CHILD_USE_ROUGH_CURVE) && part->roughcurve) { ctx->roughcurve = BKE_curvemapping_copy(part->roughcurve); BKE_curvemapping_changed_all(ctx->roughcurve); } else { ctx->roughcurve = NULL; } if ((part->child_flag & PART_CHILD_USE_TWIST_CURVE) && part->twistcurve) { ctx->twistcurve = BKE_curvemapping_copy(part->twistcurve); BKE_curvemapping_changed_all(ctx->twistcurve); } else { ctx->twistcurve = NULL; } return true; } static void psys_task_init_path(ParticleTask *task, ParticleSimulationData *sim) { /* init random number generator */ int seed = 31415926 + sim->psys->seed; task->rng_path = BLI_rng_new(seed); } /* NOTE: this function must be thread safe, except for branching! */ static void psys_thread_create_path(ParticleTask *task, struct ChildParticle *cpa, ParticleCacheKey *child_keys, int i) { ParticleThreadContext *ctx = task->ctx; Object *ob = ctx->sim.ob; ParticleSystem *psys = ctx->sim.psys; ParticleSettings *part = psys->part; ParticleCacheKey **cache = psys->childcache; PTCacheEdit *edit = psys_orig_edit_get(psys); ParticleCacheKey **pcache = psys_in_edit_mode(ctx->sim.depsgraph, psys) && edit ? edit->pathcache : psys->pathcache; ParticleCacheKey *child, *key[4]; ParticleTexture ptex; float *cpa_fuv = 0, *par_rot = 0, rot[4]; float orco[3], hairmat[4][4], dvec[3], off1[4][3], off2[4][3]; float eff_length, eff_vec[3], weight[4]; int k, cpa_num; short cpa_from; if (!pcache) { return; } if (ctx->between) { ParticleData *pa = psys->particles + cpa->pa[0]; int w, needupdate; float foffset, wsum = 0.0f; float co[3]; float p_min = part->parting_min; float p_max = part->parting_max; /* Virtual parents don't work nicely with parting. */ float p_fac = part->parents > 0.0f ? 0.0f : part->parting_fac; if (ctx->editupdate) { needupdate = 0; w = 0; while (w < 4 && cpa->pa[w] >= 0) { if (edit->points[cpa->pa[w]].flag & PEP_EDIT_RECALC) { needupdate = 1; break; } w++; } if (!needupdate) { return; } memset(child_keys, 0, sizeof(*child_keys) * (ctx->segments + 1)); } /* get parent paths */ for (w = 0; w < 4; w++) { if (cpa->pa[w] >= 0) { key[w] = pcache[cpa->pa[w]]; weight[w] = cpa->w[w]; } else { key[w] = pcache[0]; weight[w] = 0.0f; } } /* modify weights to create parting */ if (p_fac > 0.0f) { const ParticleCacheKey *key_0_last = pcache_key_segment_endpoint_safe(key[0]); for (w = 0; w < 4; w++) { if (w && (weight[w] > 0.0f)) { const ParticleCacheKey *key_w_last = pcache_key_segment_endpoint_safe(key[w]); float d; if (part->flag & PART_CHILD_LONG_HAIR) { /* For long hair use tip distance/root distance as parting * factor instead of root to tip angle. */ float d1 = len_v3v3(key[0]->co, key[w]->co); float d2 = len_v3v3(key_0_last->co, key_w_last->co); d = d1 > 0.0f ? d2 / d1 - 1.0f : 10000.0f; } else { float v1[3], v2[3]; sub_v3_v3v3(v1, key_0_last->co, key[0]->co); sub_v3_v3v3(v2, key_w_last->co, key[w]->co); normalize_v3(v1); normalize_v3(v2); d = RAD2DEGF(saacos(dot_v3v3(v1, v2))); } if (p_max > p_min) { d = (d - p_min) / (p_max - p_min); } else { d = (d - p_min) <= 0.0f ? 0.0f : 1.0f; } CLAMP(d, 0.0f, 1.0f); if (d > 0.0f) { weight[w] *= (1.0f - d); } } wsum += weight[w]; } for (w = 0; w < 4; w++) { weight[w] /= wsum; } interp_v4_v4v4(weight, cpa->w, weight, p_fac); } /* get the original coordinates (orco) for texture usage */ cpa_num = cpa->num; foffset = cpa->foffset; cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter( ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, 0, 0, 0, orco); mul_m4_v3(ob->object_to_world, co); for (w = 0; w < 4; w++) { sub_v3_v3v3(off1[w], co, key[w]->co); } psys_mat_hair_to_global(ob, ctx->sim.psmd->mesh_final, psys->part->from, pa, hairmat); } else { ParticleData *pa = psys->particles + cpa->parent; float co[3]; if (ctx->editupdate) { if (!(edit->points[cpa->parent].flag & PEP_EDIT_RECALC)) { return; } memset(child_keys, 0, sizeof(*child_keys) * (ctx->segments + 1)); } /* get the parent path */ key[0] = pcache[cpa->parent]; /* get the original coordinates (orco) for texture usage */ cpa_from = part->from; /* * NOTE: Should in theory be the same as: * cpa_num = psys_particle_dm_face_lookup( * ctx->sim.psmd->dm_final, * ctx->sim.psmd->dm_deformed, * pa->num, pa->fuv, * NULL); */ cpa_num = ELEM(pa->num_dmcache, DMCACHE_ISCHILD, DMCACHE_NOTFOUND) ? pa->num : pa->num_dmcache; /* XXX hack to avoid messed up particle num and subsequent crash (T40733) */ if (cpa_num > ctx->sim.psmd->mesh_final->totface) { cpa_num = 0; } cpa_fuv = pa->fuv; psys_particle_on_emitter(ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, 0, 0, 0, orco); psys_mat_hair_to_global(ob, ctx->sim.psmd->mesh_final, psys->part->from, pa, hairmat); } child_keys->segments = ctx->segments; /* get different child parameters from textures & vgroups */ get_child_modifier_parameters(part, ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex); if (ptex.exist < psys_frand(psys, i + 24)) { child_keys->segments = -1; return; } /* create the child path */ for (k = 0, child = child_keys; k <= ctx->segments; k++, child++) { if (ctx->between) { int w = 0; zero_v3(child->co); zero_v3(child->vel); unit_qt(child->rot); for (w = 0; w < 4; w++) { copy_v3_v3(off2[w], off1[w]); if (part->flag & PART_CHILD_LONG_HAIR) { /* Use parent rotation (in addition to emission location) to determine child offset. */ if (k) { mul_qt_v3((key[w] + k)->rot, off2[w]); } /* Fade the effect of rotation for even lengths in the end */ project_v3_v3v3(dvec, off2[w], (key[w] + k)->vel); madd_v3_v3fl(off2[w], dvec, -(float)k / (float)ctx->segments); } add_v3_v3(off2[w], (key[w] + k)->co); } /* child position is the weighted sum of parent positions */ interp_v3_v3v3v3v3(child->co, off2[0], off2[1], off2[2], off2[3], weight); interp_v3_v3v3v3v3(child->vel, (key[0] + k)->vel, (key[1] + k)->vel, (key[2] + k)->vel, (key[3] + k)->vel, weight); copy_qt_qt(child->rot, (key[0] + k)->rot); } else { if (k) { mul_qt_qtqt(rot, (key[0] + k)->rot, key[0]->rot); par_rot = rot; } else { par_rot = key[0]->rot; } /* offset the child from the parent position */ offset_child(cpa, (ParticleKey *)(key[0] + k), par_rot, (ParticleKey *)child, part->childflat, part->childrad); } child->time = (float)k / (float)ctx->segments; } /* apply effectors */ if (part->flag & PART_CHILD_EFFECT) { for (k = 0, child = child_keys; k <= ctx->segments; k++, child++) { if (k) { do_path_effectors(&ctx->sim, cpa->pa[0], child, k, ctx->segments, child_keys->co, ptex.effector, 0.0f, ctx->cfra, &eff_length, eff_vec); } else { sub_v3_v3v3(eff_vec, (child + 1)->co, child->co); eff_length = len_v3(eff_vec); } } } { ParticleData *pa = NULL; ParticleCacheKey *par = NULL; float par_co[3]; float par_orco[3]; if (ctx->totparent) { if (i >= ctx->totparent) { pa = &psys->particles[cpa->parent]; /* this is now threadsafe, virtual parents are calculated before rest of children */ BLI_assert(cpa->parent < psys->totchildcache); par = cache[cpa->parent]; } } else if (cpa->parent >= 0) { pa = &psys->particles[cpa->parent]; par = pcache[cpa->parent]; /* If particle is non-existing, try to pick a viable parent from particles * used for interpolation. */ for (k = 0; k < 4 && pa && (pa->flag & PARS_UNEXIST); k++) { if (cpa->pa[k] >= 0) { pa = &psys->particles[cpa->pa[k]]; par = pcache[cpa->pa[k]]; } } if (pa->flag & PARS_UNEXIST) { pa = NULL; } } if (pa) { ListBase modifiers; BLI_listbase_clear(&modifiers); psys_particle_on_emitter(ctx->sim.psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, par_co, NULL, NULL, NULL, par_orco); psys_apply_child_modifiers( ctx, &modifiers, cpa, &ptex, orco, hairmat, child_keys, par, par_orco); } else { zero_v3(par_orco); } } /* Hide virtual parents */ if (i < ctx->totparent) { child_keys->segments = -1; } } static void exec_child_path_cache(TaskPool *__restrict UNUSED(pool), void *taskdata) { ParticleTask *task = taskdata; ParticleThreadContext *ctx = task->ctx; ParticleSystem *psys = ctx->sim.psys; ParticleCacheKey **cache = psys->childcache; ChildParticle *cpa; int i; cpa = psys->child + task->begin; for (i = task->begin; i < task->end; i++, cpa++) { BLI_assert(i < psys->totchildcache); psys_thread_create_path(task, cpa, cache[i], i); } } void psys_cache_child_paths(ParticleSimulationData *sim, float cfra, const bool editupdate, const bool use_render_params) { TaskPool *task_pool; ParticleThreadContext ctx; ParticleTask *tasks_parent, *tasks_child; int numtasks_parent, numtasks_child; int i, totchild, totparent; if (sim->psys->flag & PSYS_GLOBAL_HAIR) { return; } /* create a task pool for child path tasks */ if (!psys_thread_context_init_path(&ctx, sim, sim->scene, cfra, editupdate, use_render_params)) { return; } task_pool = BLI_task_pool_create(&ctx, TASK_PRIORITY_HIGH); totchild = ctx.totchild; totparent = ctx.totparent; if (editupdate && sim->psys->childcache && totchild == sim->psys->totchildcache) { /* just overwrite the existing cache */ } else { /* clear out old and create new empty path cache */ free_child_path_cache(sim->psys); sim->psys->childcache = psys_alloc_path_cache_buffers( &sim->psys->childcachebufs, totchild, ctx.segments + ctx.extra_segments + 1); sim->psys->totchildcache = totchild; } /* cache parent paths */ ctx.parent_pass = 1; psys_tasks_create(&ctx, 0, totparent, &tasks_parent, &numtasks_parent); for (i = 0; i < numtasks_parent; i++) { ParticleTask *task = &tasks_parent[i]; psys_task_init_path(task, sim); BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, NULL); } BLI_task_pool_work_and_wait(task_pool); /* cache child paths */ ctx.parent_pass = 0; psys_tasks_create(&ctx, totparent, totchild, &tasks_child, &numtasks_child); for (i = 0; i < numtasks_child; i++) { ParticleTask *task = &tasks_child[i]; psys_task_init_path(task, sim); BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, NULL); } BLI_task_pool_work_and_wait(task_pool); BLI_task_pool_free(task_pool); psys_tasks_free(tasks_parent, numtasks_parent); psys_tasks_free(tasks_child, numtasks_child); psys_thread_context_free(&ctx); } /* figure out incremental rotations along path starting from unit quat */ static void cache_key_incremental_rotation(ParticleCacheKey *key0, ParticleCacheKey *key1, ParticleCacheKey *key2, float *prev_tangent, int i) { float cosangle, angle, tangent[3], normal[3], q[4]; switch (i) { case 0: /* start from second key */ break; case 1: /* calculate initial tangent for incremental rotations */ sub_v3_v3v3(prev_tangent, key0->co, key1->co); normalize_v3(prev_tangent); unit_qt(key1->rot); break; default: sub_v3_v3v3(tangent, key0->co, key1->co); normalize_v3(tangent); cosangle = dot_v3v3(tangent, prev_tangent); /* note we do the comparison on cosangle instead of * angle, since floating point accuracy makes it give * different results across platforms */ if (cosangle > 0.999999f) { copy_v4_v4(key1->rot, key2->rot); } else { angle = saacos(cosangle); cross_v3_v3v3(normal, prev_tangent, tangent); axis_angle_to_quat(q, normal, angle); mul_qt_qtqt(key1->rot, q, key2->rot); } copy_v3_v3(prev_tangent, tangent); } } void psys_cache_paths(ParticleSimulationData *sim, float cfra, const bool use_render_params) { PARTICLE_PSMD; ParticleEditSettings *pset = &sim->scene->toolsettings->particle; ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleCacheKey *ca, **cache; Mesh *hair_mesh = (psys->part->type == PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) ? psys->hair_out_mesh : NULL; ParticleKey result; Material *ma; ParticleInterpolationData pind; ParticleTexture ptex; PARTICLE_P; float birthtime = 0.0, dietime = 0.0; float t, time = 0.0, dfra = 1.0 /* , frs_sec = sim->scene->r.frs_sec*/ /*UNUSED*/; float col[4] = {0.5f, 0.5f, 0.5f, 1.0f}; float prev_tangent[3] = {0.0f, 0.0f, 0.0f}, hairmat[4][4]; float rotmat[3][3]; int k; int segments = (int)pow(2.0, (double)((use_render_params) ? part->ren_step : part->draw_step)); int totpart = psys->totpart; float length, vec[3]; float *vg_effector = NULL; float *vg_length = NULL, pa_length = 1.0f; int keyed, baked; /* we don't have anything valid to create paths from so let's quit here */ if ((psys->flag & PSYS_HAIR_DONE || psys->flag & PSYS_KEYED || psys->pointcache) == 0) { return; } if (psys_in_edit_mode(sim->depsgraph, psys)) { if ((psys->edit == NULL || pset->flag & PE_DRAW_PART) == 0) { return; } } keyed = psys->flag & PSYS_KEYED; baked = psys->pointcache->mem_cache.first && psys->part->type != PART_HAIR; /* clear out old and create new empty path cache */ psys_free_path_cache(psys, psys->edit); cache = psys->pathcache = psys_alloc_path_cache_buffers( &psys->pathcachebufs, totpart, segments + 1); psys_sim_data_init(sim); ma = BKE_object_material_get(sim->ob, psys->part->omat); if (ma && (psys->part->draw_col == PART_DRAW_COL_MAT)) { copy_v3_v3(col, &ma->r); } if ((psys->flag & PSYS_GLOBAL_HAIR) == 0) { if ((psys->part->flag & PART_CHILD_EFFECT) == 0) { vg_effector = psys_cache_vgroup(psmd->mesh_final, psys, PSYS_VG_EFFECTOR); } if (!psys->totchild) { vg_length = psys_cache_vgroup(psmd->mesh_final, psys, PSYS_VG_LENGTH); } } /* ensure we have tessfaces to be used for mapping */ if (part->from != PART_FROM_VERT) { BKE_mesh_tessface_ensure(psmd->mesh_final); } /*---first main loop: create all actual particles' paths---*/ LOOP_PARTICLES { if (!psys->totchild) { psys_get_texture(sim, pa, &ptex, PAMAP_LENGTH, 0.0f); pa_length = ptex.length * (1.0f - part->randlength * psys_frand(psys, psys->seed + p)); if (vg_length) { pa_length *= psys_particle_value_from_verts(psmd->mesh_final, part->from, pa, vg_length); } } pind.keyed = keyed; pind.cache = baked ? psys->pointcache : NULL; pind.epoint = NULL; pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE); pind.mesh = hair_mesh; memset(cache[p], 0, sizeof(*cache[p]) * (segments + 1)); cache[p]->segments = segments; /*--get the first data points--*/ init_particle_interpolation(sim->ob, sim->psys, pa, &pind); /* 'hairmat' is needed for non-hair particle too so we get proper rotations. */ psys_mat_hair_to_global(sim->ob, psmd->mesh_final, psys->part->from, pa, hairmat); copy_v3_v3(rotmat[0], hairmat[2]); copy_v3_v3(rotmat[1], hairmat[1]); copy_v3_v3(rotmat[2], hairmat[0]); if (part->draw & PART_ABS_PATH_TIME) { birthtime = MAX2(pind.birthtime, part->path_start); dietime = MIN2(pind.dietime, part->path_end); } else { float tb = pind.birthtime; birthtime = tb + part->path_start * (pind.dietime - tb); dietime = tb + part->path_end * (pind.dietime - tb); } if (birthtime >= dietime) { cache[p]->segments = -1; continue; } dietime = birthtime + pa_length * (dietime - birthtime); /*--interpolate actual path from data points--*/ for (k = 0, ca = cache[p]; k <= segments; k++, ca++) { time = (float)k / (float)segments; t = birthtime + time * (dietime - birthtime); result.time = -t; do_particle_interpolation(psys, p, pa, t, &pind, &result); copy_v3_v3(ca->co, result.co); /* dynamic hair is in object space */ /* keyed and baked are already in global space */ if (hair_mesh) { mul_m4_v3(sim->ob->object_to_world, ca->co); } else if (!keyed && !baked && !(psys->flag & PSYS_GLOBAL_HAIR)) { mul_m4_v3(hairmat, ca->co); } copy_v3_v3(ca->col, col); } if (part->type == PART_HAIR) { HairKey *hkey; for (k = 0, hkey = pa->hair; k < pa->totkey; k++, hkey++) { mul_v3_m4v3(hkey->world_co, hairmat, hkey->co); } } /*--modify paths and calculate rotation & velocity--*/ if (!(psys->flag & PSYS_GLOBAL_HAIR)) { /* apply effectors */ if ((psys->part->flag & PART_CHILD_EFFECT) == 0) { float effector = 1.0f; if (vg_effector) { effector *= psys_particle_value_from_verts( psmd->mesh_final, psys->part->from, pa, vg_effector); } sub_v3_v3v3(vec, (cache[p] + 1)->co, cache[p]->co); length = len_v3(vec); for (k = 1, ca = cache[p] + 1; k <= segments; k++, ca++) { do_path_effectors( sim, p, ca, k, segments, cache[p]->co, effector, dfra, cfra, &length, vec); } } /* apply guide curves to path data */ if (sim->psys->effectors && (psys->part->flag & PART_CHILD_EFFECT) == 0) { for (k = 0, ca = cache[p]; k <= segments; k++, ca++) { /* ca is safe to cast, since only co and vel are used */ do_guides(sim->depsgraph, sim->psys->part, sim->psys->effectors, (ParticleKey *)ca, p, (float)k / (float)segments); } } /* lattices have to be calculated separately to avoid mixups between effector calculations */ if (psys->lattice_deform_data) { for (k = 0, ca = cache[p]; k <= segments; k++, ca++) { BKE_lattice_deform_data_eval_co( psys->lattice_deform_data, ca->co, psys->lattice_strength); } } } /* finally do rotation & velocity */ for (k = 1, ca = cache[p] + 1; k <= segments; k++, ca++) { cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k); if (k == segments) { copy_qt_qt(ca->rot, (ca - 1)->rot); } /* set velocity */ sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co); if (k == 1) { copy_v3_v3((ca - 1)->vel, ca->vel); } ca->time = (float)k / (float)segments; } /* First rotation is based on emitting face orientation. * This is way better than having flipping rotations resulting * from using a global axis as a rotation pole (vec_to_quat()). * It's not an ideal solution though since it disregards the * initial tangent, but taking that in to account will allow * the possibility of flipping again. -jahka */ mat3_to_quat_legacy(cache[p]->rot, rotmat); } psys->totcached = totpart; psys_sim_data_free(sim); if (vg_effector) { MEM_freeN(vg_effector); } if (vg_length) { MEM_freeN(vg_length); } } typedef struct CacheEditrPathsIterData { Object *object; PTCacheEdit *edit; ParticleSystemModifierData *psmd; ParticleData *pa; int segments; bool use_weight; } CacheEditrPathsIterData; static void psys_cache_edit_paths_iter(void *__restrict iter_data_v, const int iter, const TaskParallelTLS *__restrict UNUSED(tls)) { CacheEditrPathsIterData *iter_data = (CacheEditrPathsIterData *)iter_data_v; PTCacheEdit *edit = iter_data->edit; PTCacheEditPoint *point = &edit->points[iter]; if (edit->totcached && !(point->flag & PEP_EDIT_RECALC)) { return; } if (point->totkey == 0) { return; } Object *ob = iter_data->object; ParticleSystem *psys = edit->psys; ParticleCacheKey **cache = edit->pathcache; ParticleSystemModifierData *psmd = iter_data->psmd; ParticleData *pa = iter_data->pa ? iter_data->pa + iter : NULL; PTCacheEditKey *ekey = point->keys; const int segments = iter_data->segments; const bool use_weight = iter_data->use_weight; float birthtime = 0.0f, dietime = 0.0f; float hairmat[4][4], rotmat[3][3], prev_tangent[3] = {0.0f, 0.0f, 0.0f}; ParticleInterpolationData pind; pind.keyed = 0; pind.cache = NULL; pind.epoint = point; pind.bspline = psys ? (psys->part->flag & PART_HAIR_BSPLINE) : 0; pind.mesh = NULL; /* should init_particle_interpolation set this ? */ if (use_weight) { pind.hkey[0] = NULL; /* pa != NULL since the weight brush is only available for hair */ pind.hkey[0] = pa->hair; pind.hkey[1] = pa->hair + 1; } memset(cache[iter], 0, sizeof(*cache[iter]) * (segments + 1)); cache[iter]->segments = segments; /*--get the first data points--*/ init_particle_interpolation(ob, psys, pa, &pind); if (psys) { psys_mat_hair_to_global(ob, psmd->mesh_final, psys->part->from, pa, hairmat); copy_v3_v3(rotmat[0], hairmat[2]); copy_v3_v3(rotmat[1], hairmat[1]); copy_v3_v3(rotmat[2], hairmat[0]); } birthtime = pind.birthtime; dietime = pind.dietime; if (birthtime >= dietime) { cache[iter]->segments = -1; return; } /*--interpolate actual path from data points--*/ ParticleCacheKey *ca; int k; float t, time = 0.0f, keytime = 0.0f; for (k = 0, ca = cache[iter]; k <= segments; k++, ca++) { time = (float)k / (float)segments; t = birthtime + time * (dietime - birthtime); ParticleKey result; result.time = -t; do_particle_interpolation(psys, iter, pa, t, &pind, &result); copy_v3_v3(ca->co, result.co); /* non-hair points are already in global space */ if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) { mul_m4_v3(hairmat, ca->co); if (k) { cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k); if (k == segments) { copy_qt_qt(ca->rot, (ca - 1)->rot); } /* set velocity */ sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co); if (k == 1) { copy_v3_v3((ca - 1)->vel, ca->vel); } } } else { ca->vel[0] = ca->vel[1] = 0.0f; ca->vel[2] = 1.0f; } /* selection coloring in edit mode */ if (use_weight) { if (k == 0) { BKE_defvert_weight_to_rgb(ca->col, pind.hkey[1]->weight); } else { /* WARNING: copied from 'do_particle_interpolation' (without 'vertex' array stepping) */ float real_t; if (result.time < 0.0f) { real_t = -result.time; } else { real_t = pind.hkey[0]->time + t * (pind.hkey[0][pa->totkey - 1].time - pind.hkey[0]->time); } while (pind.hkey[1]->time < real_t) { pind.hkey[1]++; } pind.hkey[0] = pind.hkey[1] - 1; /* end copy */ float w1[3], w2[3]; keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); BKE_defvert_weight_to_rgb(w1, pind.hkey[0]->weight); BKE_defvert_weight_to_rgb(w2, pind.hkey[1]->weight); interp_v3_v3v3(ca->col, w1, w2, keytime); } } else { /* HACK(fclem): Instead of setting the color we pass the select state in the red channel. * This is then picked up in DRW and the gpu shader will do the color interpolation. */ if ((ekey + (pind.ekey[0] - point->keys))->flag & PEK_SELECT) { if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) { ca->col[0] = 1.0f; } else { keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); ca->col[0] = 1.0f - keytime; } } else { if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) { keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time)); ca->col[0] = keytime; } else { ca->col[0] = 0.0f; } } } ca->time = t; } if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) { /* First rotation is based on emitting face orientation. * This is way better than having flipping rotations resulting * from using a global axis as a rotation pole (vec_to_quat()). * It's not an ideal solution though since it disregards the * initial tangent, but taking that in to account will allow * the possibility of flipping again. -jahka */ mat3_to_quat_legacy(cache[iter]->rot, rotmat); } } void psys_cache_edit_paths(Depsgraph *depsgraph, Scene *scene, Object *ob, PTCacheEdit *edit, float cfra, const bool use_render_params) { ParticleCacheKey **cache = edit->pathcache; ParticleEditSettings *pset = &scene->toolsettings->particle; ParticleSystem *psys = edit->psys; ParticleData *pa = psys ? psys->particles : NULL; int segments = 1 << pset->draw_step; int totpart = edit->totpoint, recalc_set = 0; if (edit->psmd_eval == NULL) { return; } segments = MAX2(segments, 4); if (!cache || edit->totpoint != edit->totcached) { /* Clear out old and create new empty path cache. */ psys_free_path_cache(edit->psys, edit); cache = edit->pathcache = psys_alloc_path_cache_buffers( &edit->pathcachebufs, totpart, segments + 1); /* Set flag for update (child particles check this too). */ int i; PTCacheEditPoint *point; for (i = 0, point = edit->points; i < totpart; i++, point++) { point->flag |= PEP_EDIT_RECALC; } recalc_set = 1; } const bool use_weight = (pset->brushtype == PE_BRUSH_WEIGHT) && (psys != NULL) && (psys->particles != NULL); CacheEditrPathsIterData iter_data; iter_data.object = ob; iter_data.edit = edit; iter_data.psmd = edit->psmd_eval; iter_data.pa = pa; iter_data.segments = segments; iter_data.use_weight = use_weight; TaskParallelSettings settings; BLI_parallel_range_settings_defaults(&settings); BLI_task_parallel_range(0, edit->totpoint, &iter_data, psys_cache_edit_paths_iter, &settings); edit->totcached = totpart; if (psys) { ParticleSimulationData sim = {0}; sim.depsgraph = depsgraph; sim.scene = scene; sim.ob = ob; sim.psys = psys; sim.psmd = edit->psmd_eval; psys_cache_child_paths(&sim, cfra, true, use_render_params); } /* clear recalc flag if set here */ if (recalc_set) { PTCacheEditPoint *point; int i; for (i = 0, point = edit->points; i < totpart; i++, point++) { point->flag &= ~PEP_EDIT_RECALC; } } } /************************************************/ /* Particle Key handling */ /************************************************/ void copy_particle_key(ParticleKey *to, ParticleKey *from, int time) { if (time) { memcpy(to, from, sizeof(ParticleKey)); } else { float to_time = to->time; memcpy(to, from, sizeof(ParticleKey)); to->time = to_time; } } void psys_get_from_key(ParticleKey *key, float loc[3], float vel[3], float rot[4], float *time) { if (loc) { copy_v3_v3(loc, key->co); } if (vel) { copy_v3_v3(vel, key->vel); } if (rot) { copy_qt_qt(rot, key->rot); } if (time) { *time = key->time; } } static void triatomat(float *v1, float *v2, float *v3, const float (*uv)[2], float mat[4][4]) { float det, w1, w2, d1[2], d2[2]; memset(mat, 0, sizeof(float[4][4])); mat[3][3] = 1.0f; /* first axis is the normal */ normal_tri_v3(mat[2], v1, v2, v3); /* second axis along (1, 0) in uv space */ if (uv) { d1[0] = uv[1][0] - uv[0][0]; d1[1] = uv[1][1] - uv[0][1]; d2[0] = uv[2][0] - uv[0][0]; d2[1] = uv[2][1] - uv[0][1]; det = d2[0] * d1[1] - d2[1] * d1[0]; if (det != 0.0f) { det = 1.0f / det; w1 = -d2[1] * det; w2 = d1[1] * det; mat[1][0] = w1 * (v2[0] - v1[0]) + w2 * (v3[0] - v1[0]); mat[1][1] = w1 * (v2[1] - v1[1]) + w2 * (v3[1] - v1[1]); mat[1][2] = w1 * (v2[2] - v1[2]) + w2 * (v3[2] - v1[2]); normalize_v3(mat[1]); } else { mat[1][0] = mat[1][1] = mat[1][2] = 0.0f; } } else { sub_v3_v3v3(mat[1], v2, v1); normalize_v3(mat[1]); } /* third as a cross product */ cross_v3_v3v3(mat[0], mat[1], mat[2]); } static void psys_face_mat(Object *ob, Mesh *mesh, ParticleData *pa, float mat[4][4], int orco) { float v[3][3]; MFace *mface; const float(*orcodata)[3]; int i = ELEM(pa->num_dmcache, DMCACHE_ISCHILD, DMCACHE_NOTFOUND) ? pa->num : pa->num_dmcache; if (i == -1 || i >= mesh->totface) { unit_m4(mat); return; } MFace *mfaces = CustomData_get_layer(&mesh->fdata, CD_MFACE); mface = &mfaces[i]; const OrigSpaceFace *osface = CustomData_get(&mesh->fdata, i, CD_ORIGSPACE); if (orco && (orcodata = CustomData_get_layer(&mesh->vdata, CD_ORCO))) { copy_v3_v3(v[0], orcodata[mface->v1]); copy_v3_v3(v[1], orcodata[mface->v2]); copy_v3_v3(v[2], orcodata[mface->v3]); /* ugly hack to use non-transformed orcos, since only those * give symmetric results for mirroring in particle mode */ if (CustomData_get_layer(&mesh->vdata, CD_ORIGINDEX)) { BKE_mesh_orco_verts_transform(ob->data, v, 3, 1); } } else { const float(*positions)[3] = BKE_mesh_positions(mesh); copy_v3_v3(v[0], positions[mface->v1]); copy_v3_v3(v[1], positions[mface->v2]); copy_v3_v3(v[2], positions[mface->v3]); } triatomat(v[0], v[1], v[2], (osface) ? osface->uv : NULL, mat); } void psys_mat_hair_to_object( Object *UNUSED(ob), Mesh *mesh, short from, ParticleData *pa, float hairmat[4][4]) { float vec[3]; /* can happen when called from a different object's modifier */ if (!mesh) { unit_m4(hairmat); return; } psys_face_mat(0, mesh, pa, hairmat, 0); psys_particle_on_dm(mesh, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0); copy_v3_v3(hairmat[3], vec); } void psys_mat_hair_to_orco( Object *ob, Mesh *mesh, short from, ParticleData *pa, float hairmat[4][4]) { float vec[3], orco[3]; psys_face_mat(ob, mesh, pa, hairmat, 1); psys_particle_on_dm( mesh, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco); /* see psys_face_mat for why this function is called */ if (CustomData_get_layer(&mesh->vdata, CD_ORIGINDEX)) { BKE_mesh_orco_verts_transform(ob->data, &orco, 1, 1); } copy_v3_v3(hairmat[3], orco); } void psys_vec_rot_to_face(Mesh *mesh, ParticleData *pa, float vec[3]) { float mat[4][4]; psys_face_mat(0, mesh, pa, mat, 0); transpose_m4(mat); /* cheap inverse for rotation matrix */ mul_mat3_m4_v3(mat, vec); } void psys_mat_hair_to_global( Object *ob, Mesh *mesh, short from, ParticleData *pa, float hairmat[4][4]) { float facemat[4][4]; psys_mat_hair_to_object(ob, mesh, from, pa, facemat); mul_m4_m4m4(hairmat, ob->object_to_world, facemat); } /************************************************/ /* ParticleSettings handling */ /************************************************/ static ModifierData *object_add_or_copy_particle_system( Main *bmain, Scene *scene, Object *ob, const char *name, const ParticleSystem *psys_orig) { ParticleSystem *psys; ModifierData *md; ParticleSystemModifierData *psmd; if (!ob || ob->type != OB_MESH) { return NULL; } if (name == NULL) { name = (psys_orig != NULL) ? psys_orig->name : DATA_("ParticleSystem"); } psys = ob->particlesystem.first; for (; psys; psys = psys->next) { psys->flag &= ~PSYS_CURRENT; } psys = MEM_callocN(sizeof(ParticleSystem), "particle_system"); psys->pointcache = BKE_ptcache_add(&psys->ptcaches); BLI_addtail(&ob->particlesystem, psys); psys_unique_name(ob, psys, name); if (psys_orig != NULL) { psys->part = psys_orig->part; id_us_plus(&psys->part->id); } else { psys->part = BKE_particlesettings_add(bmain, DATA_("ParticleSettings")); } md = BKE_modifier_new(eModifierType_ParticleSystem); BLI_strncpy(md->name, psys->name, sizeof(md->name)); BKE_modifier_unique_name(&ob->modifiers, md); psmd = (ParticleSystemModifierData *)md; psmd->psys = psys; BLI_addtail(&ob->modifiers, md); BKE_object_modifier_set_active(ob, md); psys->totpart = 0; psys->flag = PSYS_CURRENT; if (scene != NULL) { psys->cfra = BKE_scene_frame_to_ctime(scene, scene->r.cfra + 1); } DEG_relations_tag_update(bmain); DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY); return md; } ModifierData *object_add_particle_system(Main *bmain, Scene *scene, Object *ob, const char *name) { return object_add_or_copy_particle_system(bmain, scene, ob, name, NULL); } ModifierData *object_copy_particle_system(Main *bmain, Scene *scene, Object *ob, const ParticleSystem *psys_orig) { return object_add_or_copy_particle_system(bmain, scene, ob, NULL, psys_orig); } void object_remove_particle_system(Main *bmain, Scene *UNUSED(scene), Object *ob, ParticleSystem *psys) { if (!ob || !psys) { return; } ParticleSystemModifierData *psmd; ModifierData *md; /* Clear particle system in fluid modifier. */ if ((md = BKE_modifiers_findby_type(ob, eModifierType_Fluid))) { FluidModifierData *fmd = (FluidModifierData *)md; /* Clear particle system pointer in flow settings. */ if ((fmd->type == MOD_FLUID_TYPE_FLOW) && fmd->flow && fmd->flow->psys) { if (fmd->flow->psys == psys) { fmd->flow->psys = NULL; } } /* Clear particle flag in domain settings when removing particle system manually. */ if (fmd->type == MOD_FLUID_TYPE_DOMAIN) { if (psys->part->type == PART_FLUID_FLIP) { fmd->domain->particle_type &= ~FLUID_DOMAIN_PARTICLE_FLIP; } if (ELEM(psys->part->type, PART_FLUID_SPRAY, PART_FLUID_SPRAYFOAM, PART_FLUID_SPRAYBUBBLE, PART_FLUID_SPRAYFOAMBUBBLE)) { fmd->domain->particle_type &= ~FLUID_DOMAIN_PARTICLE_SPRAY; } if (ELEM(psys->part->type, PART_FLUID_FOAM, PART_FLUID_SPRAYFOAM, PART_FLUID_FOAMBUBBLE, PART_FLUID_SPRAYFOAMBUBBLE)) { fmd->domain->particle_type &= ~FLUID_DOMAIN_PARTICLE_FOAM; } if (ELEM(psys->part->type, PART_FLUID_BUBBLE, PART_FLUID_FOAMBUBBLE, PART_FLUID_SPRAYBUBBLE, PART_FLUID_SPRAYFOAMBUBBLE)) { fmd->domain->particle_type &= ~FLUID_DOMAIN_PARTICLE_BUBBLE; } if (psys->part->type == PART_FLUID_TRACER) { fmd->domain->particle_type &= ~FLUID_DOMAIN_PARTICLE_TRACER; } /* Disable combined export if combined particle system was deleted. */ if (ELEM(psys->part->type, PART_FLUID_SPRAYFOAM, PART_FLUID_SPRAYBUBBLE, PART_FLUID_FOAMBUBBLE, PART_FLUID_SPRAYFOAMBUBBLE)) { fmd->domain->sndparticle_combined_export = SNDPARTICLE_COMBINED_EXPORT_OFF; } } } if ((md = BKE_modifiers_findby_type(ob, eModifierType_DynamicPaint))) { DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)md; if (pmd->brush && pmd->brush->psys) { if (pmd->brush->psys == psys) { pmd->brush->psys = NULL; } } } /* Clear modifier, skip empty ones. */ psmd = psys_get_modifier(ob, psys); if (psmd) { BKE_modifier_remove_from_list(ob, (ModifierData *)psmd); BKE_modifier_free((ModifierData *)psmd); } /* Clear particle system. */ BLI_remlink(&ob->particlesystem, psys); if (psys->part) { id_us_min(&psys->part->id); } psys_free(ob, psys); if (ob->particlesystem.first) { ((ParticleSystem *)ob->particlesystem.first)->flag |= PSYS_CURRENT; } else { ob->mode &= ~OB_MODE_PARTICLE_EDIT; } DEG_relations_tag_update(bmain); DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY); /* Flush object mode. */ DEG_id_tag_update(&ob->id, ID_RECALC_COPY_ON_WRITE); } ParticleSettings *BKE_particlesettings_add(Main *bmain, const char *name) { ParticleSettings *part; part = BKE_id_new(bmain, ID_PA, name); return part; } void BKE_particlesettings_clump_curve_init(ParticleSettings *part) { CurveMapping *cumap = BKE_curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f); cumap->cm[0].curve[0].x = 0.0f; cumap->cm[0].curve[0].y = 1.0f; cumap->cm[0].curve[1].x = 1.0f; cumap->cm[0].curve[1].y = 1.0f; BKE_curvemapping_init(cumap); part->clumpcurve = cumap; } void BKE_particlesettings_rough_curve_init(ParticleSettings *part) { CurveMapping *cumap = BKE_curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f); cumap->cm[0].curve[0].x = 0.0f; cumap->cm[0].curve[0].y = 1.0f; cumap->cm[0].curve[1].x = 1.0f; cumap->cm[0].curve[1].y = 1.0f; BKE_curvemapping_init(cumap); part->roughcurve = cumap; } void BKE_particlesettings_twist_curve_init(ParticleSettings *part) { CurveMapping *cumap = BKE_curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f); cumap->cm[0].curve[0].x = 0.0f; cumap->cm[0].curve[0].y = 1.0f; cumap->cm[0].curve[1].x = 1.0f; cumap->cm[0].curve[1].y = 1.0f; BKE_curvemapping_init(cumap); part->twistcurve = cumap; } /************************************************/ /* Textures */ /************************************************/ static int get_particle_uv(Mesh *mesh, ParticleData *pa, int index, const float fuv[4], char *name, float *texco, bool from_vert) { MFace *mfaces = (MFace *)CustomData_get_layer(&mesh->fdata, CD_MFACE); MFace *mf; const MTFace *tf; int i; tf = CustomData_get_layer_named(&mesh->fdata, CD_MTFACE, name); if (tf == NULL) { return 0; } if (pa) { i = ELEM(pa->num_dmcache, DMCACHE_NOTFOUND, DMCACHE_ISCHILD) ? pa->num : pa->num_dmcache; if ((!from_vert && i >= mesh->totface) || (from_vert && i >= mesh->totvert)) { i = -1; } } else { i = index; } if (i == -1) { texco[0] = 0.0f; texco[1] = 0.0f; texco[2] = 0.0f; } else { if (from_vert) { mf = mfaces; /* This finds the first face to contain the emitting vertex, * this is not ideal, but is mostly fine as UV seams generally * map to equal-colored parts of a texture */ for (int j = 0; j < mesh->totface; j++, mf++) { if (ELEM(i, mf->v1, mf->v2, mf->v3, mf->v4)) { i = j; break; } } } else { mf = &mfaces[i]; } psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco); texco[0] = texco[0] * 2.0f - 1.0f; texco[1] = texco[1] * 2.0f - 1.0f; texco[2] = 0.0f; } return 1; } #define SET_PARTICLE_TEXTURE(type, pvalue, texfac) \ if ((event & mtex->mapto) & type) { \ pvalue = texture_value_blend(def, pvalue, value, texfac, blend); \ } \ (void)0 #define CLAMP_PARTICLE_TEXTURE_POS(type, pvalue) \ if (event & type) { \ CLAMP(pvalue, 0.0f, 1.0f); \ } \ (void)0 #define CLAMP_WARP_PARTICLE_TEXTURE_POS(type, pvalue) \ if (event & type) { \ if (pvalue < 0.0f) { \ pvalue = 1.0f + pvalue; \ } \ CLAMP(pvalue, 0.0f, 1.0f); \ } \ (void)0 #define CLAMP_PARTICLE_TEXTURE_POSNEG(type, pvalue) \ if (event & type) { \ CLAMP(pvalue, -1.0f, 1.0f); \ } \ (void)0 static void get_cpa_texture(Mesh *mesh, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, const float fw[4], float *orco, ParticleTexture *ptex, int event, float cfra) { MTex *mtex, **mtexp = part->mtex; int m; float value, rgba[4], texvec[3]; ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp = ptex->gravity = ptex->field = ptex->time = ptex->clump = ptex->kink_freq = ptex->kink_amp = ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f; ptex->twist = 1.0f; ptex->length = 1.0f - part->randlength * psys_frand(psys, child_index + 26); ptex->length *= part->clength_thres < psys_frand(psys, child_index + 27) ? part->clength : 1.0f; for (m = 0; m < MAX_MTEX; m++, mtexp++) { mtex = *mtexp; if (mtex && mtex->tex && mtex->mapto) { float def = mtex->def_var; short blend = mtex->blendtype; short texco = mtex->texco; if (ELEM(texco, TEXCO_UV, TEXCO_ORCO) && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID)) { texco = TEXCO_GLOB; } switch (texco) { case TEXCO_GLOB: copy_v3_v3(texvec, par->state.co); break; case TEXCO_OBJECT: copy_v3_v3(texvec, par->state.co); if (mtex->object) { mul_m4_v3(mtex->object->world_to_object, texvec); } break; case TEXCO_UV: if (fw && get_particle_uv(mesh, NULL, face_index, fw, mtex->uvname, texvec, (part->from == PART_FROM_VERT))) { break; } /* no break, failed to get uv's, so let's try orco's */ ATTR_FALLTHROUGH; case TEXCO_ORCO: copy_v3_v3(texvec, orco); break; case TEXCO_PARTICLE: /* texture coordinates in range [-1, 1] */ texvec[0] = 2.0f * (cfra - par->time) / (par->dietime - par->time) - 1.0f; texvec[1] = 0.0f; texvec[2] = 0.0f; break; } RE_texture_evaluate(mtex, texvec, 0, NULL, false, false, &value, rgba); if ((event & mtex->mapto) & PAMAP_ROUGH) { ptex->rough1 = ptex->rough2 = ptex->roughe = texture_value_blend( def, ptex->rough1, value, mtex->roughfac, blend); } SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac); SET_PARTICLE_TEXTURE(PAMAP_CLUMP, ptex->clump, mtex->clumpfac); SET_PARTICLE_TEXTURE(PAMAP_KINK_AMP, ptex->kink_amp, mtex->kinkampfac); SET_PARTICLE_TEXTURE(PAMAP_KINK_FREQ, ptex->kink_freq, mtex->kinkfac); SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac); SET_PARTICLE_TEXTURE(PAMAP_TWIST, ptex->twist, mtex->twistfac); } } CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_CLUMP, ptex->clump); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_KINK_AMP, ptex->kink_amp); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_KINK_FREQ, ptex->kink_freq); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_ROUGH, ptex->rough1); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist); } void psys_get_texture( ParticleSimulationData *sim, ParticleData *pa, ParticleTexture *ptex, int event, float cfra) { Object *ob = sim->ob; Mesh *me = (Mesh *)ob->data; ParticleSettings *part = sim->psys->part; MTex **mtexp = part->mtex; MTex *mtex; int m; float value, rgba[4], co[3], texvec[3]; int setvars = 0; /* initialize ptex */ ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp = ptex->gravity = ptex->field = ptex->length = ptex->clump = ptex->kink_freq = ptex->kink_amp = ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f; ptex->twist = 1.0f; ptex->time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart; for (m = 0; m < MAX_MTEX; m++, mtexp++) { mtex = *mtexp; if (mtex && mtex->tex && mtex->mapto) { float def = mtex->def_var; short blend = mtex->blendtype; short texco = mtex->texco; if (texco == TEXCO_UV && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID)) { texco = TEXCO_GLOB; } switch (texco) { case TEXCO_GLOB: copy_v3_v3(texvec, pa->state.co); break; case TEXCO_OBJECT: copy_v3_v3(texvec, pa->state.co); if (mtex->object) { mul_m4_v3(mtex->object->world_to_object, texvec); } break; case TEXCO_UV: if (get_particle_uv(sim->psmd->mesh_final, pa, 0, pa->fuv, mtex->uvname, texvec, (part->from == PART_FROM_VERT))) { break; } /* no break, failed to get uv's, so let's try orco's */ ATTR_FALLTHROUGH; case TEXCO_ORCO: psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, 0, 0, 0, texvec); BKE_mesh_texspace_ensure(me); sub_v3_v3(texvec, me->loc); if (me->size[0] != 0.0f) { texvec[0] /= me->size[0]; } if (me->size[1] != 0.0f) { texvec[1] /= me->size[1]; } if (me->size[2] != 0.0f) { texvec[2] /= me->size[2]; } break; case TEXCO_PARTICLE: /* texture coordinates in range [-1, 1] */ texvec[0] = 2.0f * (cfra - pa->time) / (pa->dietime - pa->time) - 1.0f; if (sim->psys->totpart > 0) { texvec[1] = 2.0f * (float)(pa - sim->psys->particles) / (float)sim->psys->totpart - 1.0f; } else { texvec[1] = 0.0f; } texvec[2] = 0.0f; break; } RE_texture_evaluate(mtex, texvec, 0, NULL, false, false, &value, rgba); if ((event & mtex->mapto) & PAMAP_TIME) { /* the first time has to set the base value for time regardless of blend mode */ if ((setvars & PAMAP_TIME) == 0) { int flip = (mtex->timefac < 0.0f); float timefac = fabsf(mtex->timefac); ptex->time *= 1.0f - timefac; ptex->time += timefac * ((flip) ? 1.0f - value : value); setvars |= PAMAP_TIME; } else { ptex->time = texture_value_blend(def, ptex->time, value, mtex->timefac, blend); } } SET_PARTICLE_TEXTURE(PAMAP_LIFE, ptex->life, mtex->lifefac); SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac); SET_PARTICLE_TEXTURE(PAMAP_SIZE, ptex->size, mtex->sizefac); SET_PARTICLE_TEXTURE(PAMAP_IVEL, ptex->ivel, mtex->ivelfac); SET_PARTICLE_TEXTURE(PAMAP_FIELD, ptex->field, mtex->fieldfac); SET_PARTICLE_TEXTURE(PAMAP_GRAVITY, ptex->gravity, mtex->gravityfac); SET_PARTICLE_TEXTURE(PAMAP_DAMP, ptex->damp, mtex->dampfac); SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac); SET_PARTICLE_TEXTURE(PAMAP_TWIST, ptex->twist, mtex->twistfac); } } CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_TIME, ptex->time); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_LIFE, ptex->life); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_SIZE, ptex->size); CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_IVEL, ptex->ivel); CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_FIELD, ptex->field); CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_GRAVITY, ptex->gravity); CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DAMP, ptex->damp); CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length); } /************************************************/ /* Particle State */ /************************************************/ float psys_get_timestep(ParticleSimulationData *sim) { return 0.04f * sim->psys->part->timetweak; } float psys_get_child_time( ParticleSystem *psys, ChildParticle *cpa, float cfra, float *birthtime, float *dietime) { ParticleSettings *part = psys->part; float time, life; if (part->childtype == PART_CHILD_FACES) { int w = 0; time = 0.0; while (w < 4 && cpa->pa[w] >= 0) { time += cpa->w[w] * (psys->particles + cpa->pa[w])->time; w++; } life = part->lifetime * (1.0f - part->randlife * psys_frand(psys, cpa - psys->child + 25)); } else { ParticleData *pa = psys->particles + cpa->parent; time = pa->time; life = pa->lifetime; } if (birthtime) { *birthtime = time; } if (dietime) { *dietime = time + life; } return (cfra - time) / life; } float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float UNUSED(cfra), float *UNUSED(pa_time)) { ParticleSettings *part = psys->part; float size; /* time XXX */ if (part->childtype == PART_CHILD_FACES) { int w = 0; size = 0.0; while (w < 4 && cpa->pa[w] >= 0) { size += cpa->w[w] * (psys->particles + cpa->pa[w])->size; w++; } } else { size = psys->particles[cpa->parent].size; } size *= part->childsize; if (part->childrandsize != 0.0f) { size *= 1.0f - part->childrandsize * psys_frand(psys, cpa - psys->child + 26); } return size; } static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex) { ParticleSystem *psys = ctx->sim.psys; int i = cpa - psys->child; get_cpa_texture(ctx->mesh, psys, part, psys->particles + cpa->pa[0], i, cpa_num, cpa_fuv, orco, ptex, PAMAP_DENS | PAMAP_CHILD, psys->cfra); if (ptex->exist < psys_frand(psys, i + 24)) { return; } if (ctx->vg_length) { ptex->length *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_length); } if (ctx->vg_clump) { ptex->clump *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_clump); } if (ctx->vg_kink) { ptex->kink_freq *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_kink); } if (ctx->vg_rough1) { ptex->rough1 *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough1); } if (ctx->vg_rough2) { ptex->rough2 *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough2); } if (ctx->vg_roughe) { ptex->roughe *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_roughe); } if (ctx->vg_effector) { ptex->effector *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_effector); } if (ctx->vg_twist) { ptex->twist *= psys_interpolate_value_from_verts( ctx->mesh, cpa_from, cpa_num, cpa_fuv, ctx->vg_twist); } } void psys_get_particle_on_path(ParticleSimulationData *sim, int p, ParticleKey *state, const bool vel) { PARTICLE_PSMD; ParticleSystem *psys = sim->psys; ParticleSettings *part = sim->psys->part; Material *ma = BKE_object_material_get(sim->ob, part->omat); ParticleData *pa; ChildParticle *cpa; ParticleTexture ptex; ParticleKey *par = 0, keys[4], tstate; ParticleThreadContext ctx; /* fake thread context for child modifiers */ ParticleInterpolationData pind; float t; float co[3], orco[3]; float hairmat[4][4]; int totpart = psys->totpart; int totchild = psys->totchild; short between = 0, edit = 0; int keyed = part->phystype & PART_PHYS_KEYED && psys->flag & PSYS_KEYED; int cached = !keyed && part->type != PART_HAIR; float *cpa_fuv; int cpa_num; short cpa_from; /* initialize keys to zero */ memset(keys, 0, sizeof(ParticleKey[4])); t = state->time; CLAMP(t, 0.0f, 1.0f); if (p < totpart) { /* interpolate pathcache directly if it exist */ if (psys->pathcache) { ParticleCacheKey result; interpolate_pathcache(psys->pathcache[p], t, &result); copy_v3_v3(state->co, result.co); copy_v3_v3(state->vel, result.vel); copy_qt_qt(state->rot, result.rot); } /* otherwise interpolate with other means */ else { pa = psys->particles + p; pind.keyed = keyed; pind.cache = cached ? psys->pointcache : NULL; pind.epoint = NULL; pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE); /* `pind.dm` disabled in edit-mode means we don't get effectors taken into * account when subdividing for instance. */ pind.mesh = psys_in_edit_mode(sim->depsgraph, psys) ? NULL : psys->hair_out_mesh; /* XXX(@sybren): EEK. */ init_particle_interpolation(sim->ob, psys, pa, &pind); do_particle_interpolation(psys, p, pa, t, &pind, state); if (pind.mesh) { mul_m4_v3(sim->ob->object_to_world, state->co); mul_mat3_m4_v3(sim->ob->object_to_world, state->vel); } else if (!keyed && !cached && !(psys->flag & PSYS_GLOBAL_HAIR)) { if ((pa->flag & PARS_REKEY) == 0) { psys_mat_hair_to_global(sim->ob, sim->psmd->mesh_final, part->from, pa, hairmat); mul_m4_v3(hairmat, state->co); mul_mat3_m4_v3(hairmat, state->vel); if (sim->psys->effectors && (part->flag & PART_CHILD_GUIDE) == 0) { do_guides( sim->depsgraph, sim->psys->part, sim->psys->effectors, state, p, state->time); /* TODO: proper velocity handling */ } if (psys->lattice_deform_data && edit == 0) { BKE_lattice_deform_data_eval_co( psys->lattice_deform_data, state->co, psys->lattice_strength); } } } } } else if (totchild) { // invert_m4_m4(imat, ob->object_to_world); /* interpolate childcache directly if it exists */ if (psys->childcache) { ParticleCacheKey result; interpolate_pathcache(psys->childcache[p - totpart], t, &result); copy_v3_v3(state->co, result.co); copy_v3_v3(state->vel, result.vel); copy_qt_qt(state->rot, result.rot); } else { float par_co[3], par_orco[3]; cpa = psys->child + p - totpart; if (state->time < 0.0f) { t = psys_get_child_time(psys, cpa, -state->time, NULL, NULL); } if (part->childtype == PART_CHILD_FACES) { /* part->parents could still be 0 so we can't test with totparent */ between = 1; } if (between) { int w = 0; float foffset; /* get parent states */ while (w < 4 && cpa->pa[w] >= 0) { keys[w].time = state->time; psys_get_particle_on_path(sim, cpa->pa[w], keys + w, 1); w++; } /* get the original coordinates (orco) for texture usage */ cpa_num = cpa->num; foffset = cpa->foffset; cpa_fuv = cpa->fuv; cpa_from = PART_FROM_FACE; psys_particle_on_emitter( psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, 0, 0, 0, orco); /* We need to save the actual root position of the child for * positioning it accurately to the surface of the emitter. */ // copy_v3_v3(cpa_1st, co); // mul_m4_v3(ob->object_to_world, cpa_1st); pa = psys->particles + cpa->parent; psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, par_co, 0, 0, 0, par_orco); if (part->type == PART_HAIR) { psys_mat_hair_to_global(sim->ob, sim->psmd->mesh_final, psys->part->from, pa, hairmat); } else { unit_m4(hairmat); } pa = 0; } else { /* get the parent state */ keys->time = state->time; psys_get_particle_on_path(sim, cpa->parent, keys, 1); /* get the original coordinates (orco) for texture usage */ pa = psys->particles + cpa->parent; cpa_from = part->from; cpa_num = pa->num; cpa_fuv = pa->fuv; psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, par_co, 0, 0, 0, par_orco); if (part->type == PART_HAIR) { psys_particle_on_emitter( psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, 0, 0, 0, orco); psys_mat_hair_to_global(sim->ob, sim->psmd->mesh_final, psys->part->from, pa, hairmat); } else { copy_v3_v3(orco, cpa->fuv); unit_m4(hairmat); } } /* get different child parameters from textures & vgroups */ memset(&ctx, 0, sizeof(ParticleThreadContext)); ctx.sim = *sim; ctx.mesh = psmd->mesh_final; ctx.ma = ma; /* TODO: assign vertex groups */ get_child_modifier_parameters(part, &ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex); if (between) { int w = 0; state->co[0] = state->co[1] = state->co[2] = 0.0f; state->vel[0] = state->vel[1] = state->vel[2] = 0.0f; /* child position is the weighted sum of parent positions */ while (w < 4 && cpa->pa[w] >= 0) { state->co[0] += cpa->w[w] * keys[w].co[0]; state->co[1] += cpa->w[w] * keys[w].co[1]; state->co[2] += cpa->w[w] * keys[w].co[2]; state->vel[0] += cpa->w[w] * keys[w].vel[0]; state->vel[1] += cpa->w[w] * keys[w].vel[1]; state->vel[2] += cpa->w[w] * keys[w].vel[2]; w++; } /* apply offset for correct positioning */ // add_v3_v3(state->co, cpa_1st); } else { /* offset the child from the parent position */ offset_child(cpa, keys, keys->rot, state, part->childflat, part->childrad); } par = keys; if (vel) { copy_particle_key(&tstate, state, 1); } /* apply different deformations to the child path */ ParticleChildModifierContext modifier_ctx = {NULL}; modifier_ctx.thread_ctx = NULL; modifier_ctx.sim = sim; modifier_ctx.ptex = &ptex; modifier_ctx.cpa = cpa; modifier_ctx.orco = orco; modifier_ctx.par_co = par->co; modifier_ctx.par_vel = par->vel; modifier_ctx.par_rot = par->rot; modifier_ctx.par_orco = par_orco; modifier_ctx.parent_keys = psys->childcache ? psys->childcache[p - totpart] : NULL; do_child_modifiers(&modifier_ctx, hairmat, state, t); /* try to estimate correct velocity */ if (vel) { ParticleKey tstate_tmp; float length = len_v3(state->vel); if (t >= 0.001f) { tstate_tmp.time = t - 0.001f; psys_get_particle_on_path(sim, p, &tstate_tmp, 0); sub_v3_v3v3(state->vel, state->co, tstate_tmp.co); normalize_v3(state->vel); } else { tstate_tmp.time = t + 0.001f; psys_get_particle_on_path(sim, p, &tstate_tmp, 0); sub_v3_v3v3(state->vel, tstate_tmp.co, state->co); normalize_v3(state->vel); } mul_v3_fl(state->vel, length); } } } } bool psys_get_particle_state(ParticleSimulationData *sim, int p, ParticleKey *state, const bool always) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleData *pa = NULL; ChildParticle *cpa = NULL; float cfra; int totpart = psys->totpart; float timestep = psys_get_timestep(sim); /* negative time means "use current time" */ cfra = state->time > 0 ? state->time : DEG_get_ctime(sim->depsgraph); if (p >= totpart) { if (!psys->totchild) { return false; } if (part->childtype == PART_CHILD_FACES) { if (!(psys->flag & PSYS_KEYED)) { return false; } cpa = psys->child + p - totpart; state->time = psys_get_child_time(psys, cpa, cfra, NULL, NULL); if (!always) { if ((state->time < 0.0f && !(part->flag & PART_UNBORN)) || (state->time > 1.0f && !(part->flag & PART_DIED))) { return false; } } state->time = (cfra - (part->sta + (part->end - part->sta) * psys_frand(psys, p + 23))) / (part->lifetime * psys_frand(psys, p + 24)); psys_get_particle_on_path(sim, p, state, 1); return true; } cpa = sim->psys->child + p - totpart; pa = sim->psys->particles + cpa->parent; } else { pa = sim->psys->particles + p; } if (pa) { if (!always) { if ((cfra < pa->time && (part->flag & PART_UNBORN) == 0) || (cfra >= pa->dietime && (part->flag & PART_DIED) == 0)) { return false; } } cfra = MIN2(cfra, pa->dietime); } if (sim->psys->flag & PSYS_KEYED) { state->time = -cfra; psys_get_particle_on_path(sim, p, state, 1); return true; } if (cpa) { float mat[4][4]; ParticleKey *key1; float t = (cfra - pa->time) / pa->lifetime; const float par_orco[3] = {0.0f, 0.0f, 0.0f}; key1 = &pa->state; offset_child(cpa, key1, key1->rot, state, part->childflat, part->childrad); CLAMP(t, 0.0f, 1.0f); unit_m4(mat); ParticleChildModifierContext modifier_ctx = {NULL}; modifier_ctx.thread_ctx = NULL; modifier_ctx.sim = sim; modifier_ctx.ptex = NULL; modifier_ctx.cpa = cpa; modifier_ctx.orco = cpa->fuv; modifier_ctx.par_co = key1->co; modifier_ctx.par_vel = key1->vel; modifier_ctx.par_rot = key1->rot; modifier_ctx.par_orco = par_orco; modifier_ctx.parent_keys = psys->childcache ? psys->childcache[p - totpart] : NULL; do_child_modifiers(&modifier_ctx, mat, state, t); if (psys->lattice_deform_data) { BKE_lattice_deform_data_eval_co( psys->lattice_deform_data, state->co, psys->lattice_strength); } } else { if (pa->state.time == cfra || ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) { copy_particle_key(state, &pa->state, 1); } else if (pa->prev_state.time == cfra) { copy_particle_key(state, &pa->prev_state, 1); } else { float dfra, frs_sec = sim->scene->r.frs_sec; /* let's interpolate to try to be as accurate as possible */ if (pa->state.time + 2.0f >= state->time && pa->prev_state.time - 2.0f <= state->time) { if (pa->prev_state.time >= pa->state.time || pa->prev_state.time < 0.0f) { /* prev_state is wrong so let's not use it, * this can happen at frames 1, 0 or particle birth. */ dfra = state->time - pa->state.time; copy_particle_key(state, &pa->state, 1); madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec); } else { ParticleKey keys[4]; float keytime; copy_particle_key(keys + 1, &pa->prev_state, 1); copy_particle_key(keys + 2, &pa->state, 1); dfra = keys[2].time - keys[1].time; keytime = (state->time - keys[1].time) / dfra; /* convert velocity to timestep size */ mul_v3_fl(keys[1].vel, dfra * timestep); mul_v3_fl(keys[2].vel, dfra * timestep); psys_interpolate_particle(-1, keys, keytime, state, 1); /* convert back to real velocity */ mul_v3_fl(state->vel, 1.0f / (dfra * timestep)); interp_v3_v3v3(state->ave, keys[1].ave, keys[2].ave, keytime); interp_qt_qtqt(state->rot, keys[1].rot, keys[2].rot, keytime); } } else if (pa->state.time + 1.0f >= state->time && pa->state.time - 1.0f <= state->time) { /* linear interpolation using only pa->state */ dfra = state->time - pa->state.time; copy_particle_key(state, &pa->state, 1); madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec); } else { /* Extrapolating over big ranges is not accurate * so let's just give something close to reasonable back. */ copy_particle_key(state, &pa->state, 0); } } if (sim->psys->lattice_deform_data) { BKE_lattice_deform_data_eval_co( sim->psys->lattice_deform_data, state->co, psys->lattice_strength); } } return true; } void psys_get_dupli_texture(ParticleSystem *psys, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, float uv[2], float orco[3]) { float loc[3]; int num; /* XXX: on checking '(psmd->dm != NULL)' * This is incorrect but needed for meta-ball evaluation. * Ideally this would be calculated via the depsgraph, however with meta-balls, * the entire scenes dupli's are scanned, which also looks into uncalculated data. * * For now just include this workaround as an alternative to crashing, * but longer term meta-balls should behave in a more manageable way, see: T46622. */ uv[0] = uv[1] = 0.0f; /* Grid distribution doesn't support UV or emit from vertex mode */ bool is_grid = (part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT); if (cpa) { if ((part->childtype == PART_CHILD_FACES) && (psmd->mesh_final != NULL)) { if (!is_grid) { CustomData *mtf_data = &psmd->mesh_final->fdata; const int uv_idx = CustomData_get_render_layer(mtf_data, CD_MTFACE); if (uv_idx >= 0) { const MTFace *mtface = CustomData_get_layer_n(mtf_data, CD_MTFACE, uv_idx); if (mtface != NULL) { const MFace *mface = CustomData_get(&psmd->mesh_final->fdata, cpa->num, CD_MFACE); mtface += cpa->num; psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv); } } } psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, 0, 0, 0, orco); return; } pa = psys->particles + cpa->pa[0]; } if ((part->from == PART_FROM_FACE) && (psmd->mesh_final != NULL) && !is_grid) { num = pa->num_dmcache; if (num == DMCACHE_NOTFOUND) { num = pa->num; } if (num >= psmd->mesh_final->totface) { /* happens when simplify is enabled * gives invalid coords but would crash otherwise */ num = DMCACHE_NOTFOUND; } if (!ELEM(num, DMCACHE_NOTFOUND, DMCACHE_ISCHILD)) { CustomData *mtf_data = &psmd->mesh_final->fdata; const int uv_idx = CustomData_get_render_layer(mtf_data, CD_MTFACE); if (uv_idx >= 0) { const MTFace *mtface = CustomData_get_layer_n(mtf_data, CD_MTFACE, uv_idx); const MFace *mface = CustomData_get(&psmd->mesh_final->fdata, num, CD_MFACE); mtface += num; psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv); } } } psys_particle_on_emitter( psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, 0, 0, 0, orco); } void psys_get_dupli_path_transform(ParticleSimulationData *sim, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[4][4], float *scale) { Object *ob = sim->ob; ParticleSystem *psys = sim->psys; ParticleSystemModifierData *psmd = sim->psmd; float loc[3], nor[3], vec[3], side[3], len; float xvec[3] = {-1.0, 0.0, 0.0}, nmat[3][3]; sub_v3_v3v3(vec, (cache + cache->segments)->co, cache->co); len = normalize_v3(vec); if (pa == NULL && psys->part->childflat != PART_CHILD_FACES) { pa = psys->particles + cpa->pa[0]; } if (pa) { psys_particle_on_emitter(psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, nor, 0, 0, 0); } else { psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, nor, 0, 0, 0); } if (psys->part->rotmode == PART_ROT_VEL) { transpose_m3_m4(nmat, ob->world_to_object); mul_m3_v3(nmat, nor); normalize_v3(nor); /* make sure that we get a proper side vector */ if (fabsf(dot_v3v3(nor, vec)) > 0.999999f) { if (fabsf(dot_v3v3(nor, xvec)) > 0.999999f) { nor[0] = 0.0f; nor[1] = 1.0f; nor[2] = 0.0f; } else { nor[0] = 1.0f; nor[1] = 0.0f; nor[2] = 0.0f; } } cross_v3_v3v3(side, nor, vec); normalize_v3(side); /* rotate side vector around vec */ if (psys->part->phasefac != 0) { float q_phase[4]; float phasefac = psys->part->phasefac; if (psys->part->randphasefac != 0.0f) { phasefac += psys->part->randphasefac * psys_frand(psys, (pa - psys->particles) + 20); } axis_angle_to_quat(q_phase, vec, phasefac * (float)M_PI); mul_qt_v3(q_phase, side); } cross_v3_v3v3(nor, vec, side); unit_m4(mat); copy_v3_v3(mat[0], vec); copy_v3_v3(mat[1], side); copy_v3_v3(mat[2], nor); } else { quat_to_mat4(mat, pa->state.rot); } *scale = len; } void psys_apply_hair_lattice(Depsgraph *depsgraph, Scene *scene, Object *ob, ParticleSystem *psys) { ParticleSimulationData sim = {0}; sim.depsgraph = depsgraph; sim.scene = scene; sim.ob = ob; sim.psys = psys; sim.psmd = psys_get_modifier(ob, psys); psys_sim_data_init(&sim); if (psys->lattice_deform_data) { ParticleData *pa = psys->particles; HairKey *hkey; int p, h; float hairmat[4][4], imat[4][4]; for (p = 0; p < psys->totpart; p++, pa++) { psys_mat_hair_to_global(sim.ob, sim.psmd->mesh_final, psys->part->from, pa, hairmat); invert_m4_m4(imat, hairmat); hkey = pa->hair; for (h = 0; h < pa->totkey; h++, hkey++) { mul_m4_v3(hairmat, hkey->co); BKE_lattice_deform_data_eval_co( psys->lattice_deform_data, hkey->co, psys->lattice_strength); mul_m4_v3(imat, hkey->co); } } /* protect the applied shape */ psys->flag |= PSYS_EDITED; } psys_sim_data_free(&sim); } /* Draw Engine */ void (*BKE_particle_batch_cache_dirty_tag_cb)(ParticleSystem *psys, int mode) = NULL; void (*BKE_particle_batch_cache_free_cb)(ParticleSystem *psys) = NULL; void BKE_particle_batch_cache_dirty_tag(ParticleSystem *psys, int mode) { if (psys->batch_cache) { BKE_particle_batch_cache_dirty_tag_cb(psys, mode); } } void BKE_particle_batch_cache_free(ParticleSystem *psys) { if (psys->batch_cache) { BKE_particle_batch_cache_free_cb(psys); } } void BKE_particle_system_blend_write(BlendWriter *writer, ListBase *particles) { LISTBASE_FOREACH (ParticleSystem *, psys, particles) { BLO_write_struct(writer, ParticleSystem, psys); if (psys->particles) { BLO_write_struct_array(writer, ParticleData, psys->totpart, psys->particles); if (psys->particles->hair) { ParticleData *pa = psys->particles; for (int a = 0; a < psys->totpart; a++, pa++) { BLO_write_struct_array(writer, HairKey, pa->totkey, pa->hair); } } if (psys->particles->boid && (psys->part->phystype == PART_PHYS_BOIDS)) { BLO_write_struct_array(writer, BoidParticle, psys->totpart, psys->particles->boid); } if (psys->part->fluid && (psys->part->phystype == PART_PHYS_FLUID) && (psys->part->fluid->flag & SPH_VISCOELASTIC_SPRINGS)) { BLO_write_struct_array( writer, ParticleSpring, psys->tot_fluidsprings, psys->fluid_springs); } } LISTBASE_FOREACH (ParticleTarget *, pt, &psys->targets) { BLO_write_struct(writer, ParticleTarget, pt); } if (psys->child) { BLO_write_struct_array(writer, ChildParticle, psys->totchild, psys->child); } if (psys->clmd) { BLO_write_struct(writer, ClothModifierData, psys->clmd); BLO_write_struct(writer, ClothSimSettings, psys->clmd->sim_parms); BLO_write_struct(writer, ClothCollSettings, psys->clmd->coll_parms); } BKE_ptcache_blend_write(writer, &psys->ptcaches); } } void BKE_particle_system_blend_read_data(BlendDataReader *reader, ListBase *particles) { ParticleData *pa; int a; LISTBASE_FOREACH (ParticleSystem *, psys, particles) { BLO_read_data_address(reader, &psys->particles); if (psys->particles && psys->particles->hair) { for (a = 0, pa = psys->particles; a < psys->totpart; a++, pa++) { BLO_read_data_address(reader, &pa->hair); } } if (psys->particles && psys->particles->keys) { for (a = 0, pa = psys->particles; a < psys->totpart; a++, pa++) { pa->keys = NULL; pa->totkey = 0; } psys->flag &= ~PSYS_KEYED; } if (psys->particles && psys->particles->boid) { pa = psys->particles; BLO_read_data_address(reader, &pa->boid); /* This is purely runtime data, but still can be an issue if left dangling. */ pa->boid->ground = NULL; for (a = 1, pa++; a < psys->totpart; a++, pa++) { pa->boid = (pa - 1)->boid + 1; pa->boid->ground = NULL; } } else if (psys->particles) { for (a = 0, pa = psys->particles; a < psys->totpart; a++, pa++) { pa->boid = NULL; } } BLO_read_data_address(reader, &psys->fluid_springs); BLO_read_data_address(reader, &psys->child); psys->effectors = NULL; BLO_read_list(reader, &psys->targets); psys->edit = NULL; psys->free_edit = NULL; psys->pathcache = NULL; psys->childcache = NULL; BLI_listbase_clear(&psys->pathcachebufs); BLI_listbase_clear(&psys->childcachebufs); psys->pdd = NULL; if (psys->clmd) { BLO_read_data_address(reader, &psys->clmd); psys->clmd->clothObject = NULL; psys->clmd->hairdata = NULL; BLO_read_data_address(reader, &psys->clmd->sim_parms); BLO_read_data_address(reader, &psys->clmd->coll_parms); if (psys->clmd->sim_parms) { psys->clmd->sim_parms->effector_weights = NULL; if (psys->clmd->sim_parms->presets > 10) { psys->clmd->sim_parms->presets = 0; } } psys->hair_in_mesh = psys->hair_out_mesh = NULL; psys->clmd->solver_result = NULL; } BKE_ptcache_blend_read_data(reader, &psys->ptcaches, &psys->pointcache, 0); if (psys->clmd) { psys->clmd->point_cache = psys->pointcache; } psys->tree = NULL; psys->bvhtree = NULL; psys->orig_psys = NULL; psys->batch_cache = NULL; } } void BKE_particle_system_blend_read_lib(BlendLibReader *reader, Object *ob, ID *id, ListBase *particles) { LISTBASE_FOREACH_MUTABLE (ParticleSystem *, psys, particles) { BLO_read_id_address(reader, id->lib, &psys->part); if (psys->part) { LISTBASE_FOREACH (ParticleTarget *, pt, &psys->targets) { BLO_read_id_address(reader, id->lib, &pt->ob); } BLO_read_id_address(reader, id->lib, &psys->parent); BLO_read_id_address(reader, id->lib, &psys->target_ob); if (psys->clmd) { /* XXX(@campbellbarton): from reading existing code this seems correct but intended usage * of point-cache with cloth should be added in #ParticleSystem. */ psys->clmd->point_cache = psys->pointcache; psys->clmd->ptcaches.first = psys->clmd->ptcaches.last = NULL; BLO_read_id_address(reader, id->lib, &psys->clmd->coll_parms->group); psys->clmd->modifier.error = NULL; } } else { /* Particle modifier must be removed before particle system. */ ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys); BKE_modifier_remove_from_list(ob, (ModifierData *)psmd); BKE_modifier_free((ModifierData *)psmd); BLI_remlink(particles, psys); MEM_freeN(psys); } } }