/* particle_system.c * * * $Id: particle_system.c $ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2007 by Janne Karhu. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ #include #include #include #include "MEM_guardedalloc.h" #include "DNA_particle_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_object_force.h" #include "DNA_object_types.h" #include "DNA_material_types.h" #include "DNA_ipo_types.h" #include "DNA_curve_types.h" #include "DNA_group_types.h" #include "DNA_scene_types.h" #include "DNA_texture_types.h" #include "BLI_rand.h" #include "BLI_jitter.h" #include "BLI_arithb.h" #include "BLI_blenlib.h" #include "BLI_kdtree.h" #include "BLI_kdopbvh.h" #include "BLI_linklist.h" #include "BLI_threads.h" #include "BKE_anim.h" #include "BKE_bad_level_calls.h" #include "BKE_cdderivedmesh.h" #include "BKE_collision.h" #include "BKE_displist.h" #include "BKE_effect.h" #include "BKE_particle.h" #include "BKE_global.h" #include "BKE_utildefines.h" #include "BKE_DerivedMesh.h" #include "BKE_object.h" #include "BKE_material.h" #include "BKE_ipo.h" #include "BKE_softbody.h" #include "BKE_depsgraph.h" #include "BKE_lattice.h" #include "BKE_pointcache.h" #include "BKE_mesh.h" #include "BKE_modifier.h" #include "BKE_scene.h" #include "PIL_time.h" #include "BSE_headerbuttons.h" #include "blendef.h" #include "RE_shader_ext.h" /* fluid sim particle import */ #ifndef DISABLE_ELBEEM #include "DNA_object_fluidsim.h" #include "LBM_fluidsim.h" #include "elbeem.h" #include #include #ifdef WIN32 #ifndef snprintf #define snprintf _snprintf #endif #endif #endif // DISABLE_ELBEEM /************************************************/ /* Reacting to system events */ /************************************************/ static int get_current_display_percentage(ParticleSystem *psys) { ParticleSettings *part=psys->part; if(psys->renderdata || (part->child_nbr && part->childtype)) return 100; if(part->phystype==PART_PHYS_KEYED){ if(psys->flag & PSYS_FIRST_KEYED) return psys->part->disp; else return 100; } else return psys->part->disp; } void psys_reset(ParticleSystem *psys, int mode) { ParticleSettings *part= psys->part; ParticleData *pa; int i; if(ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) { if(mode == PSYS_RESET_ALL || !(part->type == PART_HAIR && (psys->flag & PSYS_EDITED))) { if(psys->particles) { if(psys->particles->keys) MEM_freeN(psys->particles->keys); for(i=0, pa=psys->particles; itotpart; i++, pa++) if(pa->hair) MEM_freeN(pa->hair); MEM_freeN(psys->particles); psys->particles= NULL; } psys->totpart= 0; psys->totkeyed= 0; psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED); if(psys->reactevents.first) BLI_freelistN(&psys->reactevents); } } else if(mode == PSYS_RESET_CACHE_MISS) { /* set all particles to be skipped */ ParticleData *pa = psys->particles; int p=0; for(; ptotpart; p++, pa++) pa->flag |= PARS_NO_DISP; } /* reset children */ if(psys->child) { MEM_freeN(psys->child); psys->child= 0; } psys->totchild= 0; /* reset path cache */ psys_free_path_cache(psys); /* reset point cache */ psys->pointcache->flag &= ~PTCACHE_SIMULATION_VALID; psys->pointcache->simframe= 0; } static void realloc_particles(Object *ob, ParticleSystem *psys, int new_totpart) { ParticleData *newpars = 0, *pa; int i, totpart, totsaved = 0; if(new_totpart<0) { if(psys->part->distr==PART_DISTR_GRID && psys->part->from != PART_FROM_VERT) { totpart= psys->part->grid_res; totpart*=totpart*totpart; } else totpart=psys->part->totpart; } else totpart=new_totpart; if(totpart) newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles"); if(psys->particles) { totsaved=MIN2(psys->totpart,totpart); /*save old pars*/ if(totsaved) memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData)); if(psys->particles->keys) MEM_freeN(psys->particles->keys); for(i=0, pa=psys->particles; ikeys) pa->keys= NULL; for(i=totsaved, pa=psys->particles+totsaved; itotpart; i++, pa++) if(pa->hair) MEM_freeN(pa->hair); MEM_freeN(psys->particles); } psys->particles=newpars; if(psys->child) { MEM_freeN(psys->child); psys->child=0; psys->totchild=0; } psys->totpart=totpart; } static int get_psys_child_number(ParticleSystem *psys) { int nbr; if(!psys->part->childtype) return 0; if(psys->renderdata) { nbr= psys->part->ren_child_nbr; return get_render_child_particle_number(&G.scene->r, nbr); } else return psys->part->child_nbr; } static int get_psys_tot_child(ParticleSystem *psys) { return psys->totpart*get_psys_child_number(psys); } static void alloc_child_particles(ParticleSystem *psys, int tot) { if(psys->child){ MEM_freeN(psys->child); psys->child=0; psys->totchild=0; } if(psys->part->childtype) { psys->totchild= tot; if(psys->totchild) psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles"); } } void psys_calc_dmcache(Object *ob, DerivedMesh *dm, ParticleSystem *psys) { /* use for building derived mesh mapping info: node: the allocated links - total derived mesh element count nodearray: the array of nodes aligned with the base mesh's elements, so each original elements can reference its derived elements */ Mesh *me= (Mesh*)ob->data; ParticleData *pa= 0; int p; /* CACHE LOCATIONS */ if(!dm->deformedOnly) { /* Will use later to speed up subsurf/derivedmesh */ LinkNode *node, *nodedmelem, **nodearray; int totdmelem, totelem, i, *origindex; if(psys->part->from == PART_FROM_VERT) { totdmelem= dm->getNumVerts(dm); totelem= me->totvert; origindex= DM_get_vert_data_layer(dm, CD_ORIGINDEX); } else { /* FROM_FACE/FROM_VOLUME */ totdmelem= dm->getNumFaces(dm); totelem= me->totface; origindex= DM_get_face_data_layer(dm, CD_ORIGINDEX); } nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems"); nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array"); for(i=0, node=nodedmelem; ilink= SET_INT_IN_POINTER(i); if(*origindex != -1) { if(nodearray[*origindex]) { /* prepend */ node->next = nodearray[*origindex]; nodearray[*origindex]= node; } else nodearray[*origindex]= node; } } /* cache the verts/faces! */ for(p=0,pa=psys->particles; ptotpart; p++,pa++) { if(psys->part->from == PART_FROM_VERT) { if(nodearray[pa->num]) pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link); } else { /* FROM_FACE/FROM_VOLUME */ /* Note that somtimes the pa->num is over the nodearray size, this is bad, maybe there is a better place to fix this, * but for now passing NULL is OK. every face will be searched for the particle so its slower - Campbell */ pa->num_dmcache= psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, pa->num < totelem ? nodearray[pa->num] : NULL); } } MEM_freeN(nodearray); MEM_freeN(nodedmelem); } else { /* TODO PARTICLE, make the following line unnecessary, each function * should know to use the num or num_dmcache, set the num_dmcache to * an invalid value, just incase */ for(p=0,pa=psys->particles; ptotpart; p++,pa++) pa->num_dmcache = -1; } } static void distribute_particles_in_grid(DerivedMesh *dm, ParticleSystem *psys) { ParticleData *pa=0; float min[3], max[3], delta[3], d; MVert *mv, *mvert = dm->getVertDataArray(dm,0); int totvert=dm->getNumVerts(dm), from=psys->part->from; int i, j, k, p, res=psys->part->grid_res, size[3], axis; mv=mvert; /* find bounding box of dm */ VECCOPY(min,mv->co); VECCOPY(max,mv->co); mv++; for(i=1; ico[0]); min[1]=MIN2(min[1],mv->co[1]); min[2]=MIN2(min[2],mv->co[2]); max[0]=MAX2(max[0],mv->co[0]); max[1]=MAX2(max[1],mv->co[1]); max[2]=MAX2(max[2],mv->co[2]); } VECSUB(delta,max,min); /* determine major axis */ axis = (delta[0]>=delta[1])?0:((delta[1]>=delta[2])?1:2); d = delta[axis]/(float)res; size[axis]=res; size[(axis+1)%3]=(int)ceil(delta[(axis+1)%3]/d); size[(axis+2)%3]=(int)ceil(delta[(axis+2)%3]/d); /* float errors grrr.. */ size[(axis+1)%3] = MIN2(size[(axis+1)%3],res); size[(axis+2)%3] = MIN2(size[(axis+2)%3],res); min[0]+=d/2.0f; min[1]+=d/2.0f; min[2]+=d/2.0f; for(i=0,p=0,pa=psys->particles; ifuv[0]=min[0]+(float)i*d; pa->fuv[1]=min[1]+(float)j*d; pa->fuv[2]=min[2]+(float)k*d; pa->flag |= PARS_UNEXIST; pa->loop=0; /* abused in volume calculation */ } } } /* enable particles near verts/edges/faces/inside surface */ if(from==PART_FROM_VERT){ float vec[3]; pa=psys->particles; min[0]-=d/2.0f; min[1]-=d/2.0f; min[2]-=d/2.0f; for(i=0,mv=mvert; ico,min); vec[0]/=delta[0]; vec[1]/=delta[1]; vec[2]/=delta[2]; (pa +((int)(vec[0]*(size[0]-1))*res +(int)(vec[1]*(size[1]-1)))*res +(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST; } } else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){ float co1[3], co2[3]; MFace *mface=0; float v1[3], v2[3], v3[3], v4[4], lambda; int a, a1, a2, a0mul, a1mul, a2mul, totface; int amax= from==PART_FROM_FACE ? 3 : 1; totface=dm->getNumFaces(dm); mface=dm->getFaceDataArray(dm,CD_MFACE); for(a=0; agetFaceDataArray(dm,CD_MFACE); pa=psys->particles + a1*a1mul + a2*a2mul; VECCOPY(co1,pa->fuv); co1[a]-=d/2.0f; VECCOPY(co2,co1); co2[a]+=delta[a] + 0.001f*d; co1[a]-=0.001f*d; /* lets intersect the faces */ for(i=0; iv1].co); VECCOPY(v2,mvert[mface->v2].co); VECCOPY(v3,mvert[mface->v3].co); if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){ if(from==PART_FROM_FACE) (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST; else /* store number of intersections */ (pa+(int)(lambda*size[a])*a0mul)->loop++; } if(mface->v4){ VECCOPY(v4,mvert[mface->v4].co); if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){ if(from==PART_FROM_FACE) (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST; else (pa+(int)(lambda*size[a])*a0mul)->loop++; } } } if(from==PART_FROM_VOLUME){ int in=pa->loop%2; if(in) pa->loop++; for(i=0; iloop%2) (pa+i*a0mul)->flag &= ~PARS_UNEXIST; /* odd intersections == in->out / out->in */ /* even intersections -> in stays same */ in=(in + (pa+i*a0mul)->loop) % 2; } } } } } } if(psys->part->flag & PART_GRID_INVERT){ for(i=0,pa=psys->particles; iparticles + res*(i*res + j); for(k=0; kflag ^= PARS_UNEXIST; } } } } } /* modified copy from rayshade.c */ static void hammersley_create(float *out, int n, int seed, float amount) { RNG *rng; double p, t, offs[2]; int k, kk; rng = rng_new(31415926 + n + seed); offs[0]= rng_getDouble(rng) + amount; offs[1]= rng_getDouble(rng) + amount; rng_free(rng); for (k = 0; k < n; k++) { t = 0; for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1) if (kk & 1) /* kk mod 2 = 1 */ t += p; out[2*k + 0]= fmod((double)k/(double)n + offs[0], 1.0); out[2*k + 1]= fmod(t + offs[1], 1.0); } } /* modified copy from effect.c */ static void init_mv_jit(float *jit, int num, int seed2, float amount) { RNG *rng; float *jit2, x, rad1, rad2, rad3; int i, num2; if(num==0) return; rad1= (float)(1.0/sqrt((float)num)); rad2= (float)(1.0/((float)num)); rad3= (float)sqrt((float)num)/((float)num); rng = rng_new(31415926 + num + seed2); x= 0; num2 = 2 * num; for(i=0; i 1.0f) v= 1.0f-v; else u= 1.0f-u; } vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f; vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f; vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f; co[0]= u; co[1]= v; co[2]= 0.0f; if(quad) { vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f; MeanValueWeights(vert, 4, co, w); } else { MeanValueWeights(vert, 3, co, w); w[3]= 0.0f; } } static int binary_search_distribution(float *sum, int n, float value) { int mid, low=0, high=n; while(low <= high) { mid= (low + high)/2; if(sum[mid] <= value && value <= sum[mid+1]) return mid; else if(sum[mid] > value) high= mid - 1; else if(sum[mid] < value) low= mid + 1; else return mid; } return low; } /* note: this function must be thread safe, for from == PART_FROM_CHILD */ #define ONLY_WORKING_WITH_PA_VERTS 0 void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p) { ParticleThreadContext *ctx= thread->ctx; Object *ob= ctx->ob; DerivedMesh *dm= ctx->dm; ParticleData *tpa; ParticleSettings *part= ctx->psys->part; float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3], ornor1[3]; float cur_d, min_d, randu, randv; int from= ctx->from; int cfrom= ctx->cfrom; int distr= ctx->distr; int i, intersect, tot; if(from == PART_FROM_VERT) { /* TODO_PARTICLE - use original index */ pa->num= ctx->index[p]; pa->fuv[0] = 1.0f; pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0; //pa->verts[0] = pa->verts[1] = pa->verts[2] = 0; #if ONLY_WORKING_WITH_PA_VERTS if(ctx->tree){ KDTreeNearest ptn[3]; int w, maxw; psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0); transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1); maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn); for(w=0; wverts[w]=ptn->num; } } #endif } else if(from == PART_FROM_FACE || from == PART_FROM_VOLUME) { MFace *mface; pa->num = i = ctx->index[p]; mface = dm->getFaceData(dm,i,CD_MFACE); switch(distr){ case PART_DISTR_JIT: ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel); psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv); ctx->jitoff[i]++; //ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel); break; case PART_DISTR_RAND: randu= rng_getFloat(thread->rng); randv= rng_getFloat(thread->rng); psys_uv_to_w(randu, randv, mface->v4, pa->fuv); break; } pa->foffset= 0.0f; /* pa->verts[0] = mface->v1; pa->verts[1] = mface->v2; pa->verts[2] = mface->v3; */ /* experimental */ if(from==PART_FROM_VOLUME){ MVert *mvert=dm->getVertDataArray(dm,CD_MVERT); tot=dm->getNumFaces(dm); psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0); Normalize(nor); VecMulf(nor,-100.0); VECADD(co2,co1,nor); min_d=2.0; intersect=0; for(i=0,mface=dm->getFaceDataArray(dm,CD_MFACE); inum) continue; v1=mvert[mface->v1].co; v2=mvert[mface->v2].co; v3=mvert[mface->v3].co; if(LineIntersectsTriangle(co1, co2, v2, v3, v1, &cur_d, 0)){ if(cur_dfoffset=cur_d*50.0f; /* to the middle of volume */ intersect=1; } } if(mface->v4){ v4=mvert[mface->v4].co; if(LineIntersectsTriangle(co1, co2, v4, v1, v3, &cur_d, 0)){ if(cur_dfoffset=cur_d*50.0f; /* to the middle of volume */ intersect=1; } } } } if(intersect==0) pa->foffset=0.0; else switch(distr){ case PART_DISTR_JIT: pa->foffset*= ctx->jit[2*(int)ctx->jitoff[i]]; break; case PART_DISTR_RAND: pa->foffset*=BLI_frand(); break; } } } else if(from == PART_FROM_PARTICLE) { //pa->verts[0]=0; /* not applicable */ //pa->verts[1]=0; //pa->verts[2]=0; tpa=ctx->tpars+ctx->index[p]; pa->num=ctx->index[p]; pa->fuv[0]=tpa->fuv[0]; pa->fuv[1]=tpa->fuv[1]; /* abusing foffset a little for timing in near reaction */ pa->foffset=ctx->weight[ctx->index[p]]; ctx->weight[ctx->index[p]]+=ctx->maxweight; } else if(from == PART_FROM_CHILD) { MFace *mf; if(ctx->index[p] < 0) { cpa->num=0; cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f; cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0; cpa->rand[0]=cpa->rand[1]=cpa->rand[2]=0.0f; return; } mf= dm->getFaceData(dm, ctx->index[p], CD_MFACE); //switch(distr){ // case PART_DISTR_JIT: // i=index[p]; // psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mf->v4, cpa->fuv); // ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel); // break; // case PART_DISTR_RAND: randu= rng_getFloat(thread->rng); randv= rng_getFloat(thread->rng); psys_uv_to_w(randu, randv, mf->v4, cpa->fuv); // break; //} cpa->rand[0] = rng_getFloat(thread->rng); cpa->rand[1] = rng_getFloat(thread->rng); cpa->rand[2] = rng_getFloat(thread->rng); cpa->num = ctx->index[p]; if(ctx->tree){ KDTreeNearest ptn[10]; int w,maxw, do_seams; float maxd,mind,dd,totw=0.0; int parent[10]; float pweight[10]; do_seams= (part->flag&PART_CHILD_SEAMS && ctx->seams); psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1); transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1); maxw = BLI_kdtree_find_n_nearest(ctx->tree,(do_seams)?10:4,orco1,ornor1,ptn); maxd=ptn[maxw-1].dist; mind=ptn[0].dist; dd=maxd-mind; /* the weights here could be done better */ for(w=0; wseams; float temp[3],temp2[3],tan[3]; float inp,cur_len,min_len=10000.0f; int min_seam=0, near_vert=0; /* find closest seam */ for(i=0; itotseam; i++, seam++){ VecSubf(temp,co1,seam->v0); inp=Inpf(temp,seam->dir)/seam->length2; if(inp<0.0f){ cur_len=VecLenf(co1,seam->v0); } else if(inp>1.0f){ cur_len=VecLenf(co1,seam->v1); } else{ VecCopyf(temp2,seam->dir); VecMulf(temp2,inp); cur_len=VecLenf(temp,temp2); } if(cur_len1.0f) near_vert=1; else near_vert=0; } } seam=ctx->seams+min_seam; VecCopyf(temp,seam->v0); if(near_vert){ if(near_vert==-1) VecSubf(tan,co1,seam->v0); else{ VecSubf(tan,co1,seam->v1); VecCopyf(temp,seam->v1); } Normalize(tan); } else{ VecCopyf(tan,seam->tan); VecSubf(temp2,co1,temp); if(Inpf(tan,temp2)<0.0f) VecMulf(tan,-1.0f); } for(w=0; w=0){ cpa->pa[i]=parent[w]; cpa->w[i]=pweight[w]; totw+=pweight[w]; i++; } } for(;i<4; i++){ cpa->pa[i]=-1; cpa->w[i]=0.0f; } if(totw>0.0f) for(w=0; w<4; w++) cpa->w[w]/=totw; cpa->parent=cpa->pa[0]; } } } static void *exec_distribution(void *data) { ParticleThread *thread= (ParticleThread*)data; ParticleSystem *psys= thread->ctx->psys; ParticleData *pa; ChildParticle *cpa; int p, totpart; if(thread->ctx->from == PART_FROM_CHILD) { totpart= psys->totchild; cpa= psys->child; for(p=0; pctx->skip) /* simplification skip */ rng_skip(thread->rng, 5*thread->ctx->skip[p]); if((p+thread->num) % thread->tot == 0) psys_thread_distribute_particle(thread, NULL, cpa, p); else /* thread skip */ rng_skip(thread->rng, 5); } } else { totpart= psys->totpart; pa= psys->particles + thread->num; for(p=thread->num; ptot, pa+=thread->tot) psys_thread_distribute_particle(thread, pa, NULL, p); } return 0; } /* not thread safe, but qsort doesn't take userdata argument */ static int *COMPARE_ORIG_INDEX = NULL; static int compare_orig_index(const void *p1, const void *p2) { int index1 = COMPARE_ORIG_INDEX[*(const int*)p1]; int index2 = COMPARE_ORIG_INDEX[*(const int*)p2]; if(index1 < index2) return -1; else if(index1 == index2) { /* this pointer comparison appears to make qsort stable for glibc, * and apparently on solaris too, makes the renders reproducable */ if(p1 < p2) return -1; else if(p1 == p2) return 0; else return 1; } else return 1; } /* creates a distribution of coordinates on a DerivedMesh */ /* */ /* 1. lets check from what we are emitting */ /* 2. now we know that we have something to emit from so */ /* let's calculate some weights */ /* 2.1 from even distribution */ /* 2.2 and from vertex groups */ /* 3. next we determine the indexes of emitting thing that */ /* the particles will have */ /* 4. let's do jitter if we need it */ /* 5. now we're ready to set the indexes & distributions to */ /* the particles */ /* 6. and we're done! */ /* This is to denote functionality that does not yet work with mesh - only derived mesh */ int psys_threads_init_distribution(ParticleThread *threads, DerivedMesh *finaldm, int from) { ParticleThreadContext *ctx= threads[0].ctx; Object *ob= ctx->ob; ParticleSystem *psys= ctx->psys; Object *tob; ParticleData *pa=0, *tpars= 0; ParticleSettings *part; ParticleSystem *tpsys; ParticleSeam *seams= 0; ChildParticle *cpa=0; KDTree *tree=0; DerivedMesh *dm= NULL; float *jit= NULL; int i, seed, p=0, totthread= threads[0].tot; int no_distr=0, cfrom=0; int tot=0, totpart, *index=0, children=0, totseam=0; //int *vertpart=0; int jitlevel= 1, distr; float *weight=0,*sum=0,*jitoff=0; float cur, maxweight=0.0, tweight, totweight, co[3], nor[3], orco[3], ornor[3]; if(ob==0 || psys==0 || psys->part==0) return 0; part=psys->part; totpart=psys->totpart; if(totpart==0) return 0; if (!finaldm->deformedOnly && !CustomData_has_layer( &finaldm->faceData, CD_ORIGINDEX ) ) { error("Can't paint with the current modifier stack, disable destructive modifiers"); return 0; } BLI_srandom(31415926 + psys->seed); if(from==PART_FROM_CHILD){ distr=PART_DISTR_RAND; if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){ dm= finaldm; children=1; tree=BLI_kdtree_new(totpart); for(p=0,pa=psys->particles; pfrom,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor); transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1); BLI_kdtree_insert(tree, p, orco, ornor); } BLI_kdtree_balance(tree); totpart=get_psys_tot_child(psys); cfrom=from=PART_FROM_FACE; if(part->flag&PART_CHILD_SEAMS){ MEdge *ed, *medge=dm->getEdgeDataArray(dm,CD_MEDGE); MVert *mvert=dm->getVertDataArray(dm,CD_MVERT); int totedge=dm->getNumEdges(dm); for(p=0, ed=medge; pflag&ME_SEAM) totseam++; if(totseam){ ParticleSeam *cur_seam=seams=MEM_callocN(totseam*sizeof(ParticleSeam),"Child Distribution Seams"); float temp[3],temp2[3]; for(p=0, ed=medge; pflag&ME_SEAM){ VecCopyf(cur_seam->v0,(mvert+ed->v1)->co); VecCopyf(cur_seam->v1,(mvert+ed->v2)->co); VecSubf(cur_seam->dir,cur_seam->v1,cur_seam->v0); cur_seam->length2=VecLength(cur_seam->dir); cur_seam->length2*=cur_seam->length2; temp[0]=(float)((mvert+ed->v1)->no[0]); temp[1]=(float)((mvert+ed->v1)->no[1]); temp[2]=(float)((mvert+ed->v1)->no[2]); temp2[0]=(float)((mvert+ed->v2)->no[0]); temp2[1]=(float)((mvert+ed->v2)->no[1]); temp2[2]=(float)((mvert+ed->v2)->no[2]); VecAddf(cur_seam->nor,temp,temp2); Normalize(cur_seam->nor); Crossf(cur_seam->tan,cur_seam->dir,cur_seam->nor); Normalize(cur_seam->tan); cur_seam++; } } } } } else{ /* no need to figure out distribution */ int child_nbr= get_psys_child_number(psys); totpart= get_psys_tot_child(psys); alloc_child_particles(psys, totpart); cpa=psys->child; for(i=0; itotpart; p++,cpa++){ float length=2.0; cpa->parent=p; /* create even spherical distribution inside unit sphere */ while(length>=1.0f){ cpa->fuv[0]=2.0f*BLI_frand()-1.0f; cpa->fuv[1]=2.0f*BLI_frand()-1.0f; cpa->fuv[2]=2.0f*BLI_frand()-1.0f; length=VecLength(cpa->fuv); } cpa->rand[0]=BLI_frand(); cpa->rand[1]=BLI_frand(); cpa->rand[2]=BLI_frand(); cpa->num=-1; } } return 0; } } else{ dm= CDDM_from_mesh((Mesh*)ob->data, ob); /* special handling of grid distribution */ if(part->distr==PART_DISTR_GRID && from != PART_FROM_VERT){ distribute_particles_in_grid(dm,psys); dm->release(dm); return 0; } /* we need orco for consistent distributions */ DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, get_mesh_orco_verts(ob)); distr=part->distr; pa=psys->particles; if(from==PART_FROM_VERT){ MVert *mv= dm->getVertDataArray(dm, CD_MVERT); float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO); int totvert = dm->getNumVerts(dm); tree=BLI_kdtree_new(totvert); for(p=0; pdata, &co, 1, 1); } else VECCOPY(co,mv[p].co) BLI_kdtree_insert(tree,p,co,NULL); } BLI_kdtree_balance(tree); } } /* 1. */ switch(from){ case PART_FROM_VERT: tot = dm->getNumVerts(dm); break; case PART_FROM_VOLUME: case PART_FROM_FACE: tot = dm->getNumFaces(dm); break; case PART_FROM_PARTICLE: if(psys->target_ob) tob=psys->target_ob; else tob=ob; if((tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1))){ tpars=tpsys->particles; tot=tpsys->totpart; } break; } if(tot==0){ no_distr=1; if(children){ if(G.f & G_DEBUG) fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n"); if(psys->child) { for(p=0,cpa=psys->child; pfuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0; cpa->foffset= 0.0f; cpa->parent=0; cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0; cpa->num= -1; } } } else { if(G.f & G_DEBUG) fprintf(stderr,"Particle distribution error: Nothing to emit from!\n"); for(p=0,pa=psys->particles; pfuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0; pa->foffset= 0.0f; pa->num= -1; } } if(dm != finaldm) dm->release(dm); return 0; } /* 2. */ weight=MEM_callocN(sizeof(float)*tot, "particle_distribution_weights"); index=MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes"); sum=MEM_callocN(sizeof(float)*(tot+1), "particle_distribution_sum"); jitoff=MEM_callocN(sizeof(float)*tot, "particle_distribution_jitoff"); /* 2.1 */ if((part->flag&PART_EDISTR || children) && ELEM(from,PART_FROM_PARTICLE,PART_FROM_VERT)==0){ MVert *v1, *v2, *v3, *v4; float totarea=0.0, co1[3], co2[3], co3[3], co4[3]; float (*orcodata)[3]; orcodata= dm->getVertDataArray(dm, CD_ORCO); for(i=0; igetFaceData(dm,i,CD_MFACE); if(orcodata) { VECCOPY(co1, orcodata[mf->v1]); VECCOPY(co2, orcodata[mf->v2]); VECCOPY(co3, orcodata[mf->v3]); transform_mesh_orco_verts((Mesh*)ob->data, &co1, 1, 1); transform_mesh_orco_verts((Mesh*)ob->data, &co2, 1, 1); transform_mesh_orco_verts((Mesh*)ob->data, &co3, 1, 1); } else { v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT); v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT); v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT); VECCOPY(co1, v1->co); VECCOPY(co2, v2->co); VECCOPY(co3, v3->co); } if (mf->v4){ if(orcodata) { VECCOPY(co4, orcodata[mf->v4]); transform_mesh_orco_verts((Mesh*)ob->data, &co4, 1, 1); } else { v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT); VECCOPY(co4, v4->co); } cur= AreaQ3Dfl(co1, co2, co3, co4); } else cur= AreaT3Dfl(co1, co2, co3); if(cur>maxweight) maxweight=cur; weight[i]= cur; totarea+=cur; } for(i=0; igetFaceData(dm,i,CD_MFACE); tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3]; if(mf->v4) { tweight += vweight[mf->v4]; tweight /= 4.0; } else { tweight /= 3.0; } weight[i]*=tweight; } } MEM_freeN(vweight); } } /* 3. */ totweight= 0.0f; for(i=0;i 0.0f) totweight= 1.0f/totweight; sum[0]= 0.0f; for(i=0;iflag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) { float pos; for(p=0; p sum[i+1])) i++; index[p]= MIN2(tot-1, i); /* avoid zero weight face */ if(p == totpart-1 && weight[index[p]] == 0.0f) index[p]= index[p-1]; jitoff[index[p]]= pos; } } MEM_freeN(sum); /* for hair, sort by origindex, allows optimizations in rendering */ if(part->type == PART_HAIR) { COMPARE_ORIG_INDEX= dm->getFaceDataArray(dm, CD_ORIGINDEX); if(COMPARE_ORIG_INDEX) qsort(index, totpart, sizeof(int), compare_orig_index); } /* weights are no longer used except for FROM_PARTICLE, which needs them zeroed for indexing */ if(from==PART_FROM_PARTICLE){ for(i=0; iuserjit; if(jitlevel == 0) { jitlevel= totpart/tot; if(part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */ if(jitlevel<3) jitlevel= 3; //if(jitlevel>100) jitlevel= 100; } jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit"); /* for small amounts of particles we use regular jitter since it looks * a bit better, for larger amounts we switch to hammersley sequence * because it is much faster */ if(jitlevel < 25) init_mv_jit(jit, jitlevel, psys->seed, part->jitfac); else hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac); BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */ } /* 5. */ ctx->tree= tree; ctx->seams= seams; ctx->totseam= totseam; ctx->psys= psys; ctx->index= index; ctx->jit= jit; ctx->jitlevel= jitlevel; ctx->jitoff= jitoff; ctx->weight= weight; ctx->maxweight= maxweight; ctx->from= (children)? PART_FROM_CHILD: from; ctx->cfrom= cfrom; ctx->distr= distr; ctx->dm= dm; ctx->tpars= tpars; if(children) { totpart= psys_render_simplify_distribution(ctx, totpart); alloc_child_particles(psys, totpart); } if(!children || psys->totchild < 10000) totthread= 1; seed= 31415926 + ctx->psys->seed; for(i=0; i 1) { BLI_init_threads(&threads, exec_distribution, totthread); for(i=0; idm != finaldm) ctx->dm->release(ctx->dm); psys_threads_free(pthreads); } /* ready for future use, to emit particles without geometry */ static void distribute_particles_on_shape(Object *ob, ParticleSystem *psys, int from) { ParticleData *pa; int totpart=psys->totpart, p; fprintf(stderr,"Shape emission not yet possible!\n"); for(p=0,pa=psys->particles; pfuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0; pa->foffset= 0.0f; pa->num= -1; } } static void distribute_particles(Object *ob, ParticleSystem *psys, int from) { ParticleSystemModifierData *psmd=0; int distr_error=0; psmd=psys_get_modifier(ob,psys); if(psmd){ if(psmd->dm) distribute_particles_on_dm(psmd->dm,ob,psys,from); else distr_error=1; } else distribute_particles_on_shape(ob,psys,from); if(distr_error){ ParticleData *pa; int totpart=psys->totpart, p; fprintf(stderr,"Particle distribution error!\n"); for(p=0,pa=psys->particles; pfuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0; pa->foffset= 0.0f; pa->num= -1; } } } /* threaded child particle distribution and path caching */ ParticleThread *psys_threads_create(struct Object *ob, struct ParticleSystem *psys) { ParticleThread *threads; ParticleThreadContext *ctx; int i, totthread; if(G.scene->r.mode & R_FIXED_THREADS) totthread= G.scene->r.threads; else totthread= BLI_system_thread_count(); threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread"); ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext"); ctx->ob= ob; ctx->psys= psys; ctx->psmd= psys_get_modifier(ob, psys); ctx->dm= ctx->psmd->dm; ctx->ma= give_current_material(ob, psys->part->omat); memset(threads, 0, sizeof(ParticleThread)*totthread); for(i=0; ivg_length) MEM_freeN(ctx->vg_length); if(ctx->vg_clump) MEM_freeN(ctx->vg_clump); if(ctx->vg_kink) MEM_freeN(ctx->vg_kink); if(ctx->vg_rough1) MEM_freeN(ctx->vg_rough1); if(ctx->vg_rough2) MEM_freeN(ctx->vg_rough2); if(ctx->vg_roughe) MEM_freeN(ctx->vg_roughe); if(ctx->psys->lattice){ end_latt_deform(); ctx->psys->lattice=0; } /* distribution */ if(ctx->jit) MEM_freeN(ctx->jit); if(ctx->jitoff) MEM_freeN(ctx->jitoff); if(ctx->weight) MEM_freeN(ctx->weight); if(ctx->index) MEM_freeN(ctx->index); if(ctx->skip) MEM_freeN(ctx->skip); if(ctx->seams) MEM_freeN(ctx->seams); //if(ctx->vertpart) MEM_freeN(ctx->vertpart); BLI_kdtree_free(ctx->tree); /* threads */ for(i=0; ipart; totpart=psys->totpart; ptex.life=ptex.size=ptex.exist=ptex.length=1.0; ptex.time=(float)p/(float)totpart; BLI_srandom(psys->seed+p); if(part->from!=PART_FROM_PARTICLE && part->type!=PART_FLUID){ ma=give_current_material(ob,part->omat); /* TODO: needs some work to make most blendtypes generally usefull */ psys_get_texture(ob,ma,psmd,psys,pa,&ptex,MAP_PA_INIT); } pa->lifetime= part->lifetime*ptex.life; if(part->type==PART_HAIR) pa->time=0.0f; else if(part->type==PART_REACTOR && (part->flag&PART_REACT_STA_END)==0) pa->time=MAXFRAMEF; else{ //icu=find_ipocurve(psys->part->ipo,PART_EMIT_TIME); //if(icu){ // calc_icu(icu,100*ptex.time); // ptex.time=icu->curval; //} pa->time= part->sta + (part->end - part->sta)*ptex.time; } if(part->type==PART_HAIR){ pa->lifetime=100.0f; } else{ icu=find_ipocurve(psys->part->ipo,PART_EMIT_LIFE); if(icu){ calc_icu(icu,100*ptex.time); pa->lifetime*=icu->curval; } /* need to get every rand even if we don't use them so that randoms don't affect eachother */ rand= BLI_frand(); if(part->randlife!=0.0) pa->lifetime*= 1.0f - part->randlife*rand; } pa->dietime= pa->time+pa->lifetime; pa->sizemul= BLI_frand(); rand= BLI_frand(); /* while loops are to have a spherical distribution (avoid cubic distribution) */ length=2.0f; while(length>1.0){ pa->r_ve[0]=2.0f*(BLI_frand()-0.5f); pa->r_ve[1]=2.0f*(BLI_frand()-0.5f); pa->r_ve[2]=2.0f*(BLI_frand()-0.5f); length=VecLength(pa->r_ve); } length=2.0f; while(length>1.0){ pa->r_ave[0]=2.0f*(BLI_frand()-0.5f); pa->r_ave[1]=2.0f*(BLI_frand()-0.5f); pa->r_ave[2]=2.0f*(BLI_frand()-0.5f); length=VecLength(pa->r_ave); } pa->r_rot[0]=2.0f*(BLI_frand()-0.5f); pa->r_rot[1]=2.0f*(BLI_frand()-0.5f); pa->r_rot[2]=2.0f*(BLI_frand()-0.5f); pa->r_rot[3]=2.0f*(BLI_frand()-0.5f); NormalQuat(pa->r_rot); if(part->distr!=PART_DISTR_GRID && part->from != PART_FROM_VERT){ /* any unique random number will do (r_ave[0]) */ if(ptex.exist < 0.5*(1.0+pa->r_ave[0])) pa->flag |= PARS_UNEXIST; else pa->flag &= ~PARS_UNEXIST; } pa->loop=0; /* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */ /* usage other than straight after distribute has to handle this index by itself - jahka*/ //pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */ } static void initialize_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd) { IpoCurve *icu=0; ParticleData *pa; int p, totpart=psys->totpart; for(p=0, pa=psys->particles; ppart->type != PART_FLUID) { icu=find_ipocurve(psys->part->ipo,PART_EMIT_FREQ); if(icu){ float time=psys->part->sta, end=psys->part->end; float v1, v2, a=0.0f, t1,t2, d; p=0; pa=psys->particles; calc_icu(icu,time); v1=icu->curval; if(v1<0.0f) v1=0.0f; calc_icu(icu,time+1.0f); v2=icu->curval; if(v2<0.0f) v2=0.0f; for(p=0, pa=psys->particles; pcurval; } if(timetime=time+((float)(p+1)-a)/v1; } else{ d=(float)sqrt(v1*v1-2.0f*(v2-v1)*(a-(float)(p+1))); t1=(-v1+d)/(v2-v1); t2=(-v1-d)/(v2-v1); /* the root between 0-1 is the correct one */ if(t1>0.0f && t1<=1.0f) pa->time=time+t1; else pa->time=time+t2; } } pa->dietime = pa->time+pa->lifetime; pa->flag &= ~PARS_UNEXIST; } for(; pflag |= PARS_UNEXIST; } } } } /* sets particle to the emitter surface with initial velocity & rotation */ void reset_particle(ParticleData *pa, ParticleSystem *psys, ParticleSystemModifierData *psmd, Object *ob, float dtime, float cfra, float *vg_vel, float *vg_tan, float *vg_rot) { ParticleSettings *part; ParticleTexture ptex; ParticleKey state; IpoCurve *icu=0; float fac, phasefac, nor[3]={0,0,0},loc[3],tloc[3],vel[3]={0.0,0.0,0.0},rot[4],q2[4]; float r_vel[3],r_ave[3],r_rot[4],p_vel[3]={0.0,0.0,0.0}; float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0}, rot_vec[3]={0.0,0.0,0.0}; float q_phase[4]; part=psys->part; ptex.ivel=1.0; if(part->from==PART_FROM_PARTICLE){ Object *tob; ParticleSystem *tpsys=0; float speed; tob=psys->target_ob; if(tob==0) tob=ob; tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1); state.time = pa->time; if(pa->num == -1) memset(&state, 0, sizeof(state)); else psys_get_particle_state(tob,tpsys,pa->num,&state,1); psys_get_from_key(&state,loc,nor,rot,0); QuatMulVecf(rot,vtan); QuatMulVecf(rot,utan); VECCOPY(r_vel,pa->r_ve); VECCOPY(r_rot,pa->r_rot); VECCOPY(r_ave,pa->r_ave); VECCOPY(p_vel,state.vel); speed=Normalize(p_vel); VecMulf(p_vel,Inpf(pa->r_ve,p_vel)); VECSUB(p_vel,pa->r_ve,p_vel); Normalize(p_vel); VecMulf(p_vel,speed); } else{ /* get precise emitter matrix if particle is born */ if(part->type!=PART_HAIR && pa->time < cfra && pa->time >= psys->cfra) where_is_object_time(ob,pa->time); /* get birth location from object */ psys_particle_on_emitter(psmd,part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0); /* save local coordinates for later */ VECCOPY(tloc,loc); /* get possible textural influence */ psys_get_texture(ob,give_current_material(ob,part->omat),psmd,psys,pa,&ptex,MAP_PA_IVEL); if(vg_vel && pa->num != -1) ptex.ivel*=psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_vel); /* particles live in global space so */ /* let's convert: */ /* -location */ Mat4MulVecfl(ob->obmat,loc); /* -normal */ VECADD(nor,tloc,nor); Mat4MulVecfl(ob->obmat,nor); VECSUB(nor,nor,loc); Normalize(nor); /* -tangent */ if(part->tanfac!=0.0){ float phase=vg_rot?2.0f*(psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f; VecMulf(vtan,-(float)cos(M_PI*(part->tanphase+phase))); fac=-(float)sin(M_PI*(part->tanphase+phase)); VECADDFAC(vtan,vtan,utan,fac); VECADD(vtan,tloc,vtan); Mat4MulVecfl(ob->obmat,vtan); VECSUB(vtan,vtan,loc); VECCOPY(utan,nor); VecMulf(utan,Inpf(vtan,nor)); VECSUB(vtan,vtan,utan); Normalize(vtan); } /* -velocity */ if(part->randfac!=0.0){ VECADD(r_vel,tloc,pa->r_ve); Mat4MulVecfl(ob->obmat,r_vel); VECSUB(r_vel,r_vel,loc); Normalize(r_vel); } /* -angular velocity */ if(part->avemode==PART_AVE_RAND){ VECADD(r_ave,tloc,pa->r_ave); Mat4MulVecfl(ob->obmat,r_ave); VECSUB(r_ave,r_ave,loc); Normalize(r_ave); } /* -rotation */ if(part->randrotfac != 0.0f){ QUATCOPY(r_rot,pa->r_rot); Mat4ToQuat(ob->obmat,rot); QuatMul(r_rot,r_rot,rot); } } /* conversion done so now we apply new: */ /* -velocity from: */ /* *reactions */ if(dtime>0.0f){ VECSUB(vel,pa->state.vel,pa->prev_state.vel); } /* *emitter velocity */ if(dtime!=0.0 && part->obfac!=0.0){ VECSUB(vel,loc,pa->state.co); VecMulf(vel,part->obfac/dtime); } /* *emitter normal */ if(part->normfac!=0.0) VECADDFAC(vel,vel,nor,part->normfac); /* *emitter tangent */ if(part->tanfac!=0.0) VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_tan):1.0f)); /* *texture */ /* TODO */ /* *random */ if(part->randfac!=0.0) VECADDFAC(vel,vel,r_vel,part->randfac); /* *particle */ if(part->partfac!=0.0) VECADDFAC(vel,vel,p_vel,part->partfac); icu=find_ipocurve(psys->part->ipo,PART_EMIT_VEL); if(icu){ calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta))); ptex.ivel*=icu->curval; } VecMulf(vel,ptex.ivel); VECCOPY(pa->state.vel,vel); /* -location from emitter */ VECCOPY(pa->state.co,loc); /* -rotation */ pa->state.rot[0]=1.0; pa->state.rot[1]=pa->state.rot[2]=pa->state.rot[3]=0.0; if(part->rotmode){ /* create vector into which rotation is aligned */ switch(part->rotmode){ case PART_ROT_NOR: VecCopyf(rot_vec, nor); break; case PART_ROT_VEL: VecCopyf(rot_vec, vel); break; case PART_ROT_GLOB_X: case PART_ROT_GLOB_Y: case PART_ROT_GLOB_Z: rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f; break; case PART_ROT_OB_X: case PART_ROT_OB_Y: case PART_ROT_OB_Z: VecCopyf(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]); break; } /* create rotation quat */ VecMulf(rot_vec,-1.0); vectoquat(rot_vec, OB_POSX, OB_POSZ, q2); /* randomize rotation quat */ if(part->randrotfac!=0.0f) QuatInterpol(rot, q2, r_rot, part->randrotfac); else QuatCopy(rot,q2); /* rotation phase */ phasefac = part->phasefac; if(part->randphasefac != 0.0f) /* abuse r_ave[0] as a random number */ phasefac += part->randphasefac * pa->r_ave[0]; VecRotToQuat(x_vec, phasefac*(float)M_PI, q_phase); /* combine base rotation & phase */ QuatMul(pa->state.rot, rot, q_phase); } /* -angular velocity */ pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0; if(part->avemode){ switch(part->avemode){ case PART_AVE_SPIN: VECCOPY(pa->state.ave,vel); break; case PART_AVE_RAND: VECCOPY(pa->state.ave,r_ave); break; } Normalize(pa->state.ave); VecMulf(pa->state.ave,part->avefac); icu=find_ipocurve(psys->part->ipo,PART_EMIT_AVE); if(icu){ calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta))); VecMulf(pa->state.ave,icu->curval); } } pa->dietime = pa->time + pa->lifetime; if(pa->time >= cfra) pa->alive = PARS_UNBORN; pa->state.time = cfra; pa->stick_ob = 0; pa->flag &= ~PARS_STICKY; } static void reset_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float dtime, float cfra, int from) { ParticleData *pa; int p, totpart=psys->totpart; float *vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL); float *vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN); float *vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT); for(p=from, pa=psys->particles+from; pflag&SELECT; short totkeyed=0; Base *base; ListBase lb; lb.first=lb.last=0; tob=psys->keyed_ob; while(tob){ if((tpsys=BLI_findlink(&tob->particlesystem,kpsys->keyed_psys-1))){ tpart=tpsys->part; if(tpart->phystype==PART_PHYS_KEYED){ if(lb.first){ for(base=lb.first;base;base=base->next){ if(tob==base->object){ fprintf(stderr,"Error: loop in keyed chain!\n"); BLI_freelistN(&lb); return select; } } } base=MEM_callocN(sizeof(Base), "keyed base"); base->object=tob; BLI_addtail(&lb,base); if(tob->flag&SELECT) select++; kob=tob; kpsys=tpsys; tob=tpsys->keyed_ob; totkeyed++; } else{ tob=0; totkeyed++; } } else tob=0; } psys->totkeyed=totkeyed; BLI_freelistN(&lb); return select; } static void set_keyed_keys(Object *ob, ParticleSystem *psys) { Object *kob = ob; ParticleSystem *kpsys = psys; ParticleData *pa; ParticleKey state; int totpart = psys->totpart, i, k, totkeys = psys->totkeyed + 1; float prevtime, nexttime, keyedtime; /* no proper targets so let's clear and bail out */ if(psys->totkeyed==0) { free_keyed_keys(psys); psys->flag &= ~PSYS_KEYED; return; } if(totpart && psys->particles->totkey != totkeys) { free_keyed_keys(psys); psys->particles->keys = MEM_callocN(psys->totpart*totkeys*sizeof(ParticleKey), "Keyed keys"); psys->particles->totkey = totkeys; for(i=1, pa=psys->particles+1; ikeys = (pa-1)->keys + totkeys; pa->totkey = totkeys; } } psys->flag &= ~PSYS_KEYED; state.time=-1.0; for(k=0; kparticles; itotpart > 0) psys_get_particle_state(kob, kpsys, i%kpsys->totpart, pa->keys + k, 1); if(k==0) pa->keys->time = pa->time; else if(k==totkeys-1) (pa->keys + k)->time = pa->time + pa->lifetime; else{ if(psys->flag & PSYS_KEYED_TIME){ prevtime = (pa->keys + k - 1)->time; nexttime = pa->time + pa->lifetime; keyedtime = kpsys->part->keyed_time; (pa->keys + k)->time = (1.0f - keyedtime) * prevtime + keyedtime * nexttime; } else (pa->keys+k)->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime; } } if(kpsys->keyed_ob){ kob = kpsys->keyed_ob; kpsys = BLI_findlink(&kob->particlesystem, kpsys->keyed_psys - 1); } } psys->flag |= PSYS_KEYED; } /************************************************/ /* Reactors */ /************************************************/ static void push_reaction(Object* ob, ParticleSystem *psys, int pa_num, int event, ParticleKey *state) { Object *rob; ParticleSystem *rpsys; ParticleSettings *rpart; ParticleData *pa; ListBase *lb=&psys->effectors; ParticleEffectorCache *ec; ParticleReactEvent *re; if(lb->first) for(ec = lb->first; ec; ec= ec->next){ if(ec->type & PSYS_EC_REACTOR){ /* all validity checks already done in add_to_effectors */ rob=ec->ob; rpsys=BLI_findlink(&rob->particlesystem,ec->psys_nbr); rpart=rpsys->part; if(rpsys->part->reactevent==event){ pa=psys->particles+pa_num; re= MEM_callocN(sizeof(ParticleReactEvent), "react event"); re->event=event; re->pa_num = pa_num; re->ob = ob; re->psys = psys; re->size = pa->size; copy_particle_key(&re->state,state,1); switch(event){ case PART_EVENT_DEATH: re->time=pa->dietime; break; case PART_EVENT_COLLIDE: re->time=state->time; break; case PART_EVENT_NEAR: re->time=state->time; break; } BLI_addtail(&rpsys->reactevents, re); } } } } static void react_to_events(ParticleSystem *psys, int pa_num) { ParticleSettings *part=psys->part; ParticleData *pa=psys->particles+pa_num; ParticleReactEvent *re=psys->reactevents.first; int birth=0; float dist=0.0f; for(re=psys->reactevents.first; re; re=re->next){ birth=0; if(part->from==PART_FROM_PARTICLE){ if(pa->num==re->pa_num && pa->alive==PARS_UNBORN){ if(re->event==PART_EVENT_NEAR){ ParticleData *tpa = re->psys->particles+re->pa_num; float pa_time=tpa->time + pa->foffset*tpa->lifetime; if(re->time >= pa_time){ pa->time=pa_time; pa->dietime=pa->time+pa->lifetime; } } else{ pa->time=re->time; pa->dietime=pa->time+pa->lifetime; } } } else{ dist=VecLenf(pa->state.co, re->state.co); if(dist <= re->size){ if(pa->alive==PARS_UNBORN){ pa->time=re->time; pa->dietime=pa->time+pa->lifetime; birth=1; } if(birth || part->flag&PART_REACT_MULTIPLE){ float vec[3]; VECSUB(vec,pa->state.co, re->state.co); if(birth==0) VecMulf(vec,(float)pow(1.0f-dist/re->size,part->reactshape)); VECADDFAC(pa->state.vel,pa->state.vel,vec,part->reactfac); VECADDFAC(pa->state.vel,pa->state.vel,re->state.vel,part->partfac); } if(birth) VecMulf(pa->state.vel,(float)pow(1.0f-dist/re->size,part->reactshape)); } } } } void psys_get_reactor_target(Object *ob, ParticleSystem *psys, Object **target_ob, ParticleSystem **target_psys) { Object *tob; tob=psys->target_ob; if(tob==0) tob=ob; *target_psys=BLI_findlink(&tob->particlesystem,psys->target_psys-1); if(*target_psys) *target_ob=tob; else *target_ob=0; } /************************************************/ /* Point Cache */ /************************************************/ static void write_particles_to_cache(Object *ob, ParticleSystem *psys, int cfra) { PTCacheID pid; PTCacheFile *pf; ParticleData *pa; int i, totpart= psys->totpart; if(totpart == 0) return; BKE_ptcache_id_from_particles(&pid, ob, psys); pf= BKE_ptcache_file_open(&pid, PTCACHE_FILE_WRITE, cfra); if(!pf) return; /* assuming struct consists of tightly packed floats */ for(i=0, pa=psys->particles; istate, sizeof(ParticleKey)/sizeof(float)); BKE_ptcache_file_close(pf); } static int get_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra) { PTCacheID pid; PTCacheFile *pf; ParticleData *pa; int i, totpart= psys->totpart; if(totpart == 0) return 0; BKE_ptcache_id_from_particles(&pid, ob, psys); pf= BKE_ptcache_file_open(&pid, PTCACHE_FILE_READ, cfra); if(!pf) return 0; /* assuming struct consists of tightly packed floats */ for(i=0, pa=psys->particles; istate.time) copy_particle_key(&pa->prev_state,&pa->state,1); if(!BKE_ptcache_file_read_floats(pf, (float*)&pa->state, sizeof(ParticleKey)/sizeof(float))) { BKE_ptcache_file_close(pf); return 0; } } BKE_ptcache_file_close(pf); return 1; } /************************************************/ /* Effectors */ /************************************************/ static void do_texture_effector(Tex *tex, short mode, short is_2d, float nabla, short object, float *pa_co, float obmat[4][4], float force_val, float falloff, float *field) { TexResult result[4]; float tex_co[3], strength, mag_vec[3]; int hasrgb; if(tex==NULL) return; result[0].nor = result[1].nor = result[2].nor = result[3].nor = 0; strength= force_val*falloff;///(float)pow((double)distance,(double)power); VECCOPY(tex_co,pa_co); if(is_2d){ float fac=-Inpf(tex_co,obmat[2]); VECADDFAC(tex_co,tex_co,obmat[2],fac); } if(object){ VecSubf(tex_co,tex_co,obmat[3]); Mat4Mul3Vecfl(obmat,tex_co); } hasrgb = multitex_ext(tex, tex_co, NULL,NULL, 1, result); if(hasrgb && mode==PFIELD_TEX_RGB){ mag_vec[0]= (0.5f-result->tr)*strength; mag_vec[1]= (0.5f-result->tg)*strength; mag_vec[2]= (0.5f-result->tb)*strength; } else{ strength/=nabla; tex_co[0]+= nabla; multitex_ext(tex, tex_co, NULL,NULL, 1, result+1); tex_co[0]-= nabla; tex_co[1]+= nabla; multitex_ext(tex, tex_co, NULL,NULL, 1, result+2); tex_co[1]-= nabla; tex_co[2]+= nabla; multitex_ext(tex, tex_co, NULL,NULL, 1, result+3); if(mode==PFIELD_TEX_GRAD || !hasrgb){ /* if we dont have rgb fall back to grad */ mag_vec[0]= (result[0].tin-result[1].tin)*strength; mag_vec[1]= (result[0].tin-result[2].tin)*strength; mag_vec[2]= (result[0].tin-result[3].tin)*strength; } else{ /*PFIELD_TEX_CURL*/ float dbdy,dgdz,drdz,dbdx,dgdx,drdy; dbdy= result[2].tb-result[0].tb; dgdz= result[3].tg-result[0].tg; drdz= result[3].tr-result[0].tr; dbdx= result[1].tb-result[0].tb; dgdx= result[1].tg-result[0].tg; drdy= result[2].tr-result[0].tr; mag_vec[0]=(dbdy-dgdz)*strength; mag_vec[1]=(drdz-dbdx)*strength; mag_vec[2]=(dgdx-drdy)*strength; } } if(is_2d){ float fac=-Inpf(mag_vec,obmat[2]); VECADDFAC(mag_vec,mag_vec,obmat[2],fac); } VecAddf(field,field,mag_vec); } static void add_to_effectors(ListBase *lb, Object *ob, Object *obsrc, ParticleSystem *psys) { ParticleEffectorCache *ec; PartDeflect *pd= ob->pd; short type=0,i; if(pd && ob != obsrc){ if(pd->forcefield == PFIELD_GUIDE) { if(ob->type==OB_CURVE) { Curve *cu= ob->data; if(cu->flag & CU_PATH) { if(cu->path==NULL || cu->path->data==NULL) makeDispListCurveTypes(ob, 0); if(cu->path && cu->path->data) { type |= PSYS_EC_EFFECTOR; } } } } else if(pd->forcefield) { type |= PSYS_EC_EFFECTOR; } } if(pd && pd->deflect) type |= PSYS_EC_DEFLECT; if(type){ ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache"); ec->ob= ob; ec->type=type; ec->distances=0; ec->locations=0; ec->rng = rng_new(1); rng_srandom(ec->rng, (unsigned int)(ceil(PIL_check_seconds_timer()))); // use better seed BLI_addtail(lb, ec); } type=0; /* add particles as different effectors */ if(ob->particlesystem.first){ ParticleSystem *epsys=ob->particlesystem.first; ParticleSettings *epart=0; Object *tob; for(i=0; epsys; epsys=epsys->next,i++){ type=0; if(epsys!=psys || (psys->part->flag & PART_SELF_EFFECT)){ epart=epsys->part; if((epsys->part->pd && epsys->part->pd->forcefield) || (epsys->part->pd2 && epsys->part->pd2->forcefield)) { type=PSYS_EC_PARTICLE; } if(epart->type==PART_REACTOR) { tob=epsys->target_ob; if(tob==0) tob=ob; if(BLI_findlink(&tob->particlesystem,epsys->target_psys-1)==psys) type|=PSYS_EC_REACTOR; } if(type){ ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache"); ec->ob= ob; ec->type=type; ec->psys_nbr=i; ec->rng = rng_new(1); rng_srandom(ec->rng, (unsigned int)(ceil(PIL_check_seconds_timer()))); BLI_addtail(lb, ec); } } } } } static void psys_init_effectors_recurs(Object *ob, Object *obsrc, ParticleSystem *psys, ListBase *listb, int level) { Group *group; GroupObject *go; unsigned int layer= obsrc->lay; if(level>MAX_DUPLI_RECUR) return; if(ob->lay & layer) { if(ob->pd || ob->particlesystem.first) add_to_effectors(listb, ob, obsrc, psys); if(ob->dup_group) { group= ob->dup_group; for(go= group->gobject.first; go; go= go->next) psys_init_effectors_recurs(go->ob, obsrc, psys, listb, level+1); } } } void psys_init_effectors(Object *obsrc, Group *group, ParticleSystem *psys) { ListBase *listb= &psys->effectors; Base *base; listb->first=listb->last=0; if(group) { GroupObject *go; for(go= group->gobject.first; go; go= go->next) psys_init_effectors_recurs(go->ob, obsrc, psys, listb, 0); } else { for(base = G.scene->base.first; base; base= base->next) psys_init_effectors_recurs(base->object, obsrc, psys, listb, 0); } } void psys_end_effectors(ParticleSystem *psys) { /* NOTE: ec->ob is not valid in here anymore! - dg */ ListBase *lb=&psys->effectors; if(lb->first) { ParticleEffectorCache *ec; for(ec= lb->first; ec; ec= ec->next){ if(ec->distances) MEM_freeN(ec->distances); if(ec->locations) MEM_freeN(ec->locations); if(ec->face_minmax) MEM_freeN(ec->face_minmax); if(ec->vert_cos) MEM_freeN(ec->vert_cos); if(ec->tree) BLI_kdtree_free(ec->tree); if(ec->rng) rng_free(ec->rng); } BLI_freelistN(lb); } } static void precalc_effectors(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra) { ListBase *lb=&psys->effectors; ParticleEffectorCache *ec; ParticleSettings *part=psys->part; ParticleData *pa; float vec2[3],loc[3],*co=0; int p,totpart; for(ec= lb->first; ec; ec= ec->next) { PartDeflect *pd= ec->ob->pd; co = NULL; if(ec->type==PSYS_EC_EFFECTOR && pd->forcefield==PFIELD_GUIDE && ec->ob->type==OB_CURVE && part->phystype!=PART_PHYS_BOIDS) { float vec[4]; where_on_path(ec->ob, 0.0, vec, vec2); Mat4MulVecfl(ec->ob->obmat,vec); Mat4Mul3Vecfl(ec->ob->obmat,vec2); QUATCOPY(ec->firstloc,vec); VECCOPY(ec->firstdir,vec2); totpart=psys->totpart; if(totpart){ ec->distances=MEM_callocN(totpart*sizeof(float),"particle distances"); ec->locations=MEM_callocN(totpart*3*sizeof(float),"particle locations"); for(p=0,pa=psys->particles; pfrom,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,0,0); Mat4MulVecfl(ob->obmat,loc); ec->distances[p]=VecLenf(loc,vec); VECSUB(loc,loc,vec); VECCOPY(ec->locations+3*p,loc); } } } else if(ec->type==PSYS_EC_PARTICLE){ Object *eob = ec->ob; ParticleSystem *epsys = BLI_findlink(&eob->particlesystem,ec->psys_nbr); ParticleSettings *epart = epsys->part; ParticleData *epa; int p, totepart = epsys->totpart; if(psys->part->phystype==PART_PHYS_BOIDS){ ParticleKey state; PartDeflect *pd; pd= epart->pd; if(pd->forcefield==PFIELD_FORCE && totepart){ KDTree *tree; tree=BLI_kdtree_new(totepart); ec->tree=tree; for(p=0, epa=epsys->particles; palive==PARS_ALIVE && psys_get_particle_state(eob,epsys,p,&state,0)) BLI_kdtree_insert(tree, p, state.co, NULL); BLI_kdtree_balance(tree); } } } else if(ec->type==PSYS_EC_DEFLECT) { CollisionModifierData *collmd = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) ); if(collmd) collision_move_object(collmd, 1.0, 0.0); } } } /* calculate forces that all effectors apply to a particle*/ void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Object *ob, ParticleSystem *psys, float *rootco, float *force_field, float *vel,float framestep, float cfra) { Object *eob; ParticleSystem *epsys; ParticleSettings *epart; ParticleData *epa; ParticleKey estate; PartDeflect *pd; ListBase *lb=&psys->effectors; ParticleEffectorCache *ec; float distance, vec_to_part[3]; float falloff, charge = 0.0f; int p; /* check all effector objects for interaction */ if(lb->first){ if(psys->part->pd && psys->part->pd->forcefield==PFIELD_CHARGE){ /* Only the charge of the effected particle is used for interaction, not fall-offs. If the fall-offs aren't the same this will be unphysical, but for animation this could be the wanted behavior. If you want physical correctness the fall-off should be spherical 2.0 anyways. */ charge = psys->part->pd->f_strength; } if(psys->part->pd2 && psys->part->pd2->forcefield==PFIELD_CHARGE){ charge += psys->part->pd2->f_strength; } for(ec = lb->first; ec; ec= ec->next){ eob= ec->ob; if(ec->type & PSYS_EC_EFFECTOR){ pd=eob->pd; if(psys->part->type!=PART_HAIR && psys->part->integrator) where_is_object_time(eob,cfra); /* use center of object for distance calculus */ VecSubf(vec_to_part, state->co, eob->obmat[3]); distance = VecLength(vec_to_part); falloff=effector_falloff(pd,eob->obmat[2],vec_to_part); if(falloff<=0.0f) ; /* don't do anything */ else if(pd->forcefield==PFIELD_TEXTURE) { do_texture_effector(pd->tex, pd->tex_mode, pd->flag&PFIELD_TEX_2D, pd->tex_nabla, pd->flag & PFIELD_TEX_OBJECT, (pd->flag & PFIELD_TEX_ROOTCO) ? rootco : state->co, eob->obmat, pd->f_strength, falloff, force_field); } else { do_physical_effector(eob, state->co, pd->forcefield,pd->f_strength,distance, falloff,0.0,pd->f_damp,eob->obmat[2],vec_to_part, state->vel,force_field,pd->flag&PFIELD_PLANAR,ec->rng,pd->f_noise,charge,pa->size); } } if(ec->type & PSYS_EC_PARTICLE){ int totepart, i; epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr); epart= epsys->part; pd=epart->pd; totepart= epsys->totpart; if(totepart <= 0) continue; if(pd && pd->forcefield==PFIELD_HARMONIC){ /* every particle is mapped to only one harmonic effector particle */ p= pa_no%epsys->totpart; totepart= p+1; } else{ p=0; } epsys->lattice=psys_get_lattice(ob,psys); for(; pparticles + p; estate.time=cfra; if(psys_get_particle_state(eob,epsys,p,&estate,0)){ VECSUB(vec_to_part, state->co, estate.co); distance = VecLength(vec_to_part); for(i=0, pd = epart->pd; i<2; i++,pd = epart->pd2) { if(pd==NULL || pd->forcefield==0) continue; falloff=effector_falloff(pd,estate.vel,vec_to_part); if(falloff<=0.0f) ; /* don't do anything */ else do_physical_effector(eob, state->co, pd->forcefield,pd->f_strength,distance, falloff,epart->size,pd->f_damp,estate.vel,vec_to_part, state->vel,force_field,0, ec->rng, pd->f_noise,charge,pa->size); } } else if(pd && pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){ /* first step after key release */ psys_get_particle_state(eob,epsys,p,&estate,1); VECADD(vel,vel,estate.vel); /* TODO: add rotation handling here too */ } } if(epsys->lattice){ end_latt_deform(); epsys->lattice=0; } } } } } /************************************************/ /* Newtonian physics */ /************************************************/ /* gathers all forces that effect particles and calculates a new state for the particle */ static void apply_particle_forces(int pa_no, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, float timestep, float dfra, float cfra) { ParticleKey states[5], tkey; float force[3],tvel[3],dx[4][3],dv[4][3]; float dtime=dfra*timestep, time, pa_mass=part->mass, fac, fra=psys->cfra; int i, steps=1; /* maintain angular velocity */ VECCOPY(pa->state.ave,pa->prev_state.ave); if(part->flag & PART_SIZEMASS) pa_mass*=pa->size; switch(part->integrator){ case PART_INT_EULER: steps=1; break; case PART_INT_MIDPOINT: steps=2; break; case PART_INT_RK4: steps=4; break; } copy_particle_key(states,&pa->state,1); for(i=0; itype != PART_HAIR) do_effectors(pa_no,pa,states+i,ob,psys,states->co,force,tvel,dfra,fra); /* calculate air-particle interaction */ if(part->dragfac!=0.0f){ fac=-part->dragfac*pa->size*pa->size*VecLength(states[i].vel); VECADDFAC(force,force,states[i].vel,fac); } /* brownian force */ if(part->brownfac!=0.0){ force[0]+=(BLI_frand()-0.5f)*part->brownfac; force[1]+=(BLI_frand()-0.5f)*part->brownfac; force[2]+=(BLI_frand()-0.5f)*part->brownfac; } /* force to acceleration*/ VecMulf(force,1.0f/pa_mass); /* add global acceleration (gravitation) */ VECADD(force,force,part->acc); /* calculate next state */ VECADD(states[i].vel,states[i].vel,tvel); switch(part->integrator){ case PART_INT_EULER: VECADDFAC(pa->state.co,states->co,states->vel,dtime); VECADDFAC(pa->state.vel,states->vel,force,dtime); break; case PART_INT_MIDPOINT: if(i==0){ VECADDFAC(states[1].co,states->co,states->vel,dtime*0.5f); VECADDFAC(states[1].vel,states->vel,force,dtime*0.5f); fra=psys->cfra+0.5f*dfra; } else{ VECADDFAC(pa->state.co,states->co,states[1].vel,dtime); VECADDFAC(pa->state.vel,states->vel,force,dtime); } break; case PART_INT_RK4: switch(i){ case 0: VECCOPY(dx[0],states->vel); VecMulf(dx[0],dtime); VECCOPY(dv[0],force); VecMulf(dv[0],dtime); VECADDFAC(states[1].co,states->co,dx[0],0.5f); VECADDFAC(states[1].vel,states->vel,dv[0],0.5f); fra=psys->cfra+0.5f*dfra; break; case 1: VECADDFAC(dx[1],states->vel,dv[0],0.5f); VecMulf(dx[1],dtime); VECCOPY(dv[1],force); VecMulf(dv[1],dtime); VECADDFAC(states[2].co,states->co,dx[1],0.5f); VECADDFAC(states[2].vel,states->vel,dv[1],0.5f); break; case 2: VECADDFAC(dx[2],states->vel,dv[1],0.5f); VecMulf(dx[2],dtime); VECCOPY(dv[2],force); VecMulf(dv[2],dtime); VECADD(states[3].co,states->co,dx[2]); VECADD(states[3].vel,states->vel,dv[2]); fra=cfra; break; case 3: VECADD(dx[3],states->vel,dv[2]); VecMulf(dx[3],dtime); VECCOPY(dv[3],force); VecMulf(dv[3],dtime); VECADDFAC(pa->state.co,states->co,dx[0],1.0f/6.0f); VECADDFAC(pa->state.co,pa->state.co,dx[1],1.0f/3.0f); VECADDFAC(pa->state.co,pa->state.co,dx[2],1.0f/3.0f); VECADDFAC(pa->state.co,pa->state.co,dx[3],1.0f/6.0f); VECADDFAC(pa->state.vel,states->vel,dv[0],1.0f/6.0f); VECADDFAC(pa->state.vel,pa->state.vel,dv[1],1.0f/3.0f); VECADDFAC(pa->state.vel,pa->state.vel,dv[2],1.0f/3.0f); VECADDFAC(pa->state.vel,pa->state.vel,dv[3],1.0f/6.0f); } break; } } /* damp affects final velocity */ if(part->dampfac!=0.0) VecMulf(pa->state.vel,1.0f-part->dampfac); /* finally we do guides */ time=(cfra-pa->time)/pa->lifetime; CLAMP(time,0.0,1.0); VECCOPY(tkey.co,pa->state.co); VECCOPY(tkey.vel,pa->state.vel); tkey.time=pa->state.time; if(part->type != PART_HAIR) { if(do_guide(&tkey,pa_no,time,&psys->effectors)) { VECCOPY(pa->state.co,tkey.co); /* guides don't produce valid velocity */ VECSUB(pa->state.vel,tkey.co,pa->prev_state.co); VecMulf(pa->state.vel,1.0f/dtime); pa->state.time=tkey.time; } } } static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep) { float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep; if((part->flag & PART_ROT_DYN)==0){ if(part->avemode==PART_AVE_SPIN){ float angle; float len1 = VecLength(pa->prev_state.vel); float len2 = VecLength(pa->state.vel); if(len1==0.0f || len2==0.0f) pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0f; else{ Crossf(pa->state.ave,pa->prev_state.vel,pa->state.vel); Normalize(pa->state.ave); angle=Inpf(pa->prev_state.vel,pa->state.vel)/(len1*len2); VecMulf(pa->state.ave,saacos(angle)/dtime); } VecRotToQuat(pa->state.vel,dtime*part->avefac,rot2); } } rotfac=VecLength(pa->state.ave); if(rotfac==0.0){ /* QuatOne (in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */ rot1[0]=1.0; rot1[1]=rot1[2]=rot1[3]=0; } else{ VecRotToQuat(pa->state.ave,rotfac*dtime,rot1); } QuatMul(pa->state.rot,rot1,pa->prev_state.rot); QuatMul(pa->state.rot,rot2,pa->state.rot); /* keep rotation quat in good health */ NormalQuat(pa->state.rot); } /* convert from triangle barycentric weights to quad mean value weights */ static void intersect_dm_quad_weights(float *v1, float *v2, float *v3, float *v4, float *w) { float co[3], vert[4][3]; VECCOPY(vert[0], v1); VECCOPY(vert[1], v2); VECCOPY(vert[2], v3); VECCOPY(vert[3], v4); co[0]= v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3]; co[1]= v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3]; co[2]= v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3]; MeanValueWeights(vert, 4, co, w); } /* check intersection with a derivedmesh */ int psys_intersect_dm(Object *ob, DerivedMesh *dm, float *vert_cos, float *co1, float* co2, float *min_d, int *min_face, float *min_w, float *face_minmax, float *pa_minmax, float radius, float *ipoint) { MFace *mface=0; MVert *mvert=0; int i, totface, intersect=0; float cur_d, cur_uv[2], v1[3], v2[3], v3[3], v4[3], min[3], max[3], p_min[3],p_max[3]; float cur_ipoint[3]; if(dm==0){ psys_disable_all(ob); dm=mesh_get_derived_final(ob,0); if(dm==0) dm=mesh_get_derived_deform(ob,0); psys_enable_all(ob); if(dm==0) return 0; } if(pa_minmax==0){ INIT_MINMAX(p_min,p_max); DO_MINMAX(co1,p_min,p_max); DO_MINMAX(co2,p_min,p_max); } else{ VECCOPY(p_min,pa_minmax); VECCOPY(p_max,pa_minmax+3); } totface=dm->getNumFaces(dm); mface=dm->getFaceDataArray(dm,CD_MFACE); mvert=dm->getVertDataArray(dm,CD_MVERT); /* lets intersect the faces */ for(i=0; iv1); VECCOPY(v2,vert_cos+3*mface->v2); VECCOPY(v3,vert_cos+3*mface->v3); if(mface->v4) VECCOPY(v4,vert_cos+3*mface->v4) } else{ VECCOPY(v1,mvert[mface->v1].co); VECCOPY(v2,mvert[mface->v2].co); VECCOPY(v3,mvert[mface->v3].co); if(mface->v4) VECCOPY(v4,mvert[mface->v4].co) } if(face_minmax==0){ INIT_MINMAX(min,max); DO_MINMAX(v1,min,max); DO_MINMAX(v2,min,max); DO_MINMAX(v3,min,max); if(mface->v4) DO_MINMAX(v4,min,max) if(AabbIntersectAabb(min,max,p_min,p_max)==0) continue; } else{ VECCOPY(min, face_minmax+6*i); VECCOPY(max, face_minmax+6*i+3); if(AabbIntersectAabb(min,max,p_min,p_max)==0) continue; } if(radius>0.0f){ if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v2, v3, v1, &cur_d, cur_ipoint)){ if(cur_d<*min_d){ *min_d=cur_d; VECCOPY(ipoint,cur_ipoint); *min_face=i; intersect=1; } } if(mface->v4){ if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v4, v1, v3, &cur_d, cur_ipoint)){ if(cur_d<*min_d){ *min_d=cur_d; VECCOPY(ipoint,cur_ipoint); *min_face=i; intersect=1; } } } } else{ if(LineIntersectsTriangle(co1, co2, v1, v2, v3, &cur_d, cur_uv)){ if(cur_d<*min_d){ *min_d=cur_d; min_w[0]= 1.0 - cur_uv[0] - cur_uv[1]; min_w[1]= cur_uv[0]; min_w[2]= cur_uv[1]; min_w[3]= 0.0f; if(mface->v4) intersect_dm_quad_weights(v1, v2, v3, v4, min_w); *min_face=i; intersect=1; } } if(mface->v4){ if(LineIntersectsTriangle(co1, co2, v1, v3, v4, &cur_d, cur_uv)){ if(cur_d<*min_d){ *min_d=cur_d; min_w[0]= 1.0 - cur_uv[0] - cur_uv[1]; min_w[1]= 0.0f; min_w[2]= cur_uv[0]; min_w[3]= cur_uv[1]; intersect_dm_quad_weights(v1, v2, v3, v4, min_w); *min_face=i; intersect=1; } } } } } return intersect; } /* container for moving data between deflet_particle and particle_intersect_face */ typedef struct ParticleCollision { struct Object *ob, *ob_t; // collided and current objects struct CollisionModifierData *md; // collision modifier for ob_t; float nor[3]; // normal at collision point float vel[3]; // velocity of collision point float co1[3], co2[3]; // ray start and end points float ray_len; // original length of co2-co1, needed for collision time evaluation float t; // time of previous collision, needed for substracting face velocity } ParticleCollision; static void particle_intersect_face(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit) { ParticleCollision *col = (ParticleCollision *) userdata; MFace *face = col->md->mfaces + index; MVert *x = col->md->x; MVert *v = col->md->current_v; float vel[3], co1[3], co2[3], uv[2], ipoint[3], temp[3], t; float *t0, *t1, *t2, *t3; t0 = x[ face->v1 ].co; t1 = x[ face->v2 ].co; t2 = x[ face->v3 ].co; t3 = face->v4 ? x[ face->v4].co : NULL; /* calculate average velocity of face */ VECCOPY(vel, v[ face->v1 ].co); VECADD(vel, vel, v[ face->v2 ].co); VECADD(vel, vel, v[ face->v3 ].co); VecMulf(vel, 0.33334f); /* substract face velocity, in other words convert to a coordinate system where only the particle moves */ VECADDFAC(co1, col->co1, vel, -col->t); VECSUB(co2, col->co2, vel); do { if(ray->radius == 0.0f) { if(LineIntersectsTriangle(co1, co2, t0, t1, t2, &t, uv)) { if(t >= 0.0f && t < hit->dist/col->ray_len) { hit->dist = col->ray_len * t; hit->index = index; /* calculate normal that's facing the particle */ CalcNormFloat(t0, t1, t2, col->nor); VECSUB(temp, co2, co1); if(Inpf(col->nor, temp) > 0.0f) VecMulf(col->nor, -1.0f); VECCOPY(col->vel,vel); col->ob = col->ob_t; } } } else { if(SweepingSphereIntersectsTriangleUV(co1, co2, ray->radius, t0, t1, t2, &t, ipoint)) { if(t >=0.0f && t < hit->dist/col->ray_len) { hit->dist = col->ray_len * t; hit->index = index; VecLerpf(temp, co1, co2, t); VECSUB(col->nor, temp, ipoint); Normalize(col->nor); VECCOPY(col->vel,vel); col->ob = col->ob_t; } } } t1 = t2; t2 = t3; t3 = NULL; } while(t2); } /* particle - mesh collision code */ /* in addition to basic point to surface collisions handles friction & damping,*/ /* angular momentum <-> linear momentum and swept sphere - mesh collisions */ /* 1. check for all possible deflectors for closest intersection on particle path */ /* 2. if deflection was found kill the particle or calculate new coordinates */ static void deflect_particle(Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float timestep, float dfra, float cfra){ Object *ob = NULL; ListBase *lb=&psys->effectors; ParticleEffectorCache *ec; ParticleKey reaction_state; ParticleCollision col; BVHTreeRayHit hit; float ray_dir[3], zerovec[3]={0.0,0.0,0.0}; float radius = ((part->flag & PART_SIZE_DEFL)?pa->size:0.0f); int deflections=0, max_deflections=10; VECCOPY(col.co1, pa->prev_state.co); VECCOPY(col.co2, pa->state.co); col.t = 0.0f; /* 10 iterations to catch multiple deflections */ if(lb->first) while(deflections < max_deflections){ /* 1. */ VECSUB(ray_dir, col.co2, col.co1); hit.index = -1; hit.dist = col.ray_len = VecLength(ray_dir); /* even if particle is stationary we want to check for moving colliders */ /* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */ if(hit.dist == 0.0f) hit.dist = col.ray_len = 0.000001f; for(ec=lb->first; ec; ec=ec->next){ if(ec->type & PSYS_EC_DEFLECT){ ob= ec->ob; if(part->type!=PART_HAIR) where_is_object_time(ob,cfra); /* particles should not collide with emitter at birth */ if(ob==pob && pa->time < cfra && pa->time >= psys->cfra) continue; col.md = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) ); col.ob_t = ob; if(col.md && col.md->bvhtree) BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col); } } /* 2. */ if(hit.index>=0) { PartDeflect *pd = col.ob->pd; int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0; float co[3]; /* point of collision */ float vec[3]; /* movement through collision */ float t = hit.dist/col.ray_len; /* time of collision between this iteration */ float dt = col.t + t * (1.0f - col.t); /* time of collision between frame change*/ VecLerpf(co, col.co1, col.co2, t); VECSUB(vec, col.co2, col.co1); VecMulf(col.vel, 1.0f-col.t); /* particle dies in collision */ if(through == 0 && (part->flag & PART_DIE_ON_COL || pd->flag & PDEFLE_KILL_PART)) { pa->alive = PARS_DYING; pa->dietime = pa->state.time + (cfra - pa->state.time) * dt; /* we have to add this for dying particles too so that reactors work correctly */ VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f)); VECCOPY(pa->state.co, co); VecLerpf(pa->state.vel, pa->prev_state.vel, pa->state.vel, dt); QuatInterpol(pa->state.rot, pa->prev_state.rot, pa->state.rot, dt); VecLerpf(pa->state.ave, pa->prev_state.ave, pa->state.ave, dt); /* particle is dead so we don't need to calculate further */ deflections=max_deflections; /* store for reactors */ copy_particle_key(&reaction_state,&pa->state,0); if(part->flag & PART_STICKY){ pa->stick_ob=ob; pa->flag |= PARS_STICKY; } } else { float nor_vec[3], tan_vec[3], tan_vel[3], vel[3]; float damp, frict; float inp, inp_v; /* get damping & friction factors */ damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f); CLAMP(damp,0.0,1.0); frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f); CLAMP(frict,0.0,1.0); /* treat normal & tangent components separately */ inp = Inpf(col.nor, vec); inp_v = Inpf(col.nor, col.vel); VECADDFAC(tan_vec, vec, col.nor, -inp); VECADDFAC(tan_vel, col.vel, col.nor, -inp_v); if((part->flag & PART_ROT_DYN)==0) VecLerpf(tan_vec, tan_vec, tan_vel, frict); VECCOPY(nor_vec, col.nor); inp *= 1.0f - damp; if(through) inp_v *= damp; /* special case for object hitting the particle from behind */ if(through==0 && ((inp_v>0 && inp>0 && inp_v>inp) || (inp_v<0 && inp<0 && inp_v linear velocity - slightly more physical and looks even nicer than before */ if(part->flag & PART_ROT_DYN) { float surface_vel[3], rot_vel[3], friction[3], dave[3], dvel[3]; /* apparent velocity along collision surface */ VECSUB(surface_vel, tan_vec, tan_vel); /* direction of rolling friction */ Crossf(rot_vel, pa->state.ave, col.nor); /* convert to current dt */ VecMulf(rot_vel, (timestep*dfra) * (1.0f - col.t)); VecMulf(rot_vel, pa->size); /* apply sliding friction */ VECSUB(surface_vel, surface_vel, rot_vel); VECCOPY(friction, surface_vel); VecMulf(surface_vel, 1.0 - frict); VecMulf(friction, frict); /* sliding changes angular velocity */ Crossf(dave, col.nor, friction); VecMulf(dave, 1.0f/MAX2(pa->size, 0.001)); /* we assume rolling friction is around 0.01 of sliding friction */ VecMulf(rot_vel, 1.0 - frict*0.01); /* change in angular velocity has to be added to the linear velocity too */ Crossf(dvel, dave, col.nor); VecMulf(dvel, pa->size); VECADD(rot_vel, rot_vel, dvel); VECADD(surface_vel, surface_vel, rot_vel); VECADD(tan_vec, surface_vel, tan_vel); /* convert back to normal time */ VecMulf(dave, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001)); VecMulf(pa->state.ave, 1.0 - frict*0.01); VECADD(pa->state.ave, pa->state.ave, dave); } /* combine components together again */ VECADD(vec, nor_vec, tan_vec); /* calculate velocity from collision vector */ VECCOPY(vel, vec); VecMulf(vel, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001)); /* make sure we don't hit the current face again */ VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f)); /* store state for reactors */ VECCOPY(reaction_state.co, co); VecLerpf(reaction_state.vel, pa->prev_state.vel, pa->state.vel, dt); QuatInterpol(reaction_state.rot, pa->prev_state.rot, pa->state.rot, dt); /* set coordinates for next iteration */ VECCOPY(col.co1, co); VECADDFAC(col.co2, co, vec, 1.0f - t); col.t = dt; if(VecLength(vec) < 0.001 && VecLength(pa->state.vel) < 0.001) { /* kill speed to stop slipping */ VECCOPY(pa->state.vel,zerovec); VECCOPY(pa->state.co, co); if(part->flag & PART_ROT_DYN) { VECCOPY(pa->state.ave,zerovec); } } else { VECCOPY(pa->state.co, col.co2); VECCOPY(pa->state.vel, vel); } } deflections++; reaction_state.time = cfra - (1.0f - dt) * dfra; push_reaction(col.ob, psys, p, PART_EVENT_COLLIDE, &reaction_state); } else return; } } /************************************************/ /* Boid physics */ /************************************************/ static int boid_see_mesh(ListBase *lb, Object *pob, ParticleSystem *psys, float *vec1, float *vec2, float *loc, float *nor, float cfra) { Object *ob, *min_ob; DerivedMesh *dm; MFace *mface; MVert *mvert; ParticleEffectorCache *ec; ParticleSystemModifierData *psmd=psys_get_modifier(pob,psys); float imat[4][4]; float co1[3], co2[3], min_w[4], min_d; int min_face=0, intersect=0; if(lb->first){ intersect=0; min_d=20000.0; min_ob=NULL; for(ec=lb->first; ec; ec=ec->next){ if(ec->type & PSYS_EC_DEFLECT){ ob= ec->ob; if(psys->part->type!=PART_HAIR) where_is_object_time(ob,cfra); if(ob==pob) dm=psmd->dm; else dm=0; VECCOPY(co1,vec1); VECCOPY(co2,vec2); if(ec->vert_cos==0){ /* convert particle coordinates to object coordinates */ Mat4Invert(imat,ob->obmat); Mat4MulVecfl(imat,co1); Mat4MulVecfl(imat,co2); } if(psys_intersect_dm(ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,ec->face_minmax,0,0,0)) min_ob=ob; } } if(min_ob){ ob=min_ob; if(ob==pob){ dm=psmd->dm; } else{ psys_disable_all(ob); dm=mesh_get_derived_final(ob,0); if(dm==0) dm=mesh_get_derived_deform(ob,0); psys_enable_all(ob); } mface=dm->getFaceDataArray(dm,CD_MFACE); mface+=min_face; mvert=dm->getVertDataArray(dm,CD_MVERT); /* get deflection point & normal */ psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0); VECADD(nor,nor,loc); Mat4MulVecfl(ob->obmat,loc); Mat4MulVecfl(ob->obmat,nor); VECSUB(nor,nor,loc); return 1; } } return 0; } /* vector calculus functions in 2d vs. 3d */ static void set_boid_vec_func(BoidVecFunc *bvf, int is_2d) { if(is_2d){ bvf->Addf = Vec2Addf; bvf->Subf = Vec2Subf; bvf->Mulf = Vec2Mulf; bvf->Length = Vec2Length; bvf->Normalize = Normalize2; bvf->Inpf = Inp2f; bvf->Copyf = Vec2Copyf; } else{ bvf->Addf = VecAddf; bvf->Subf = VecSubf; bvf->Mulf = VecMulf; bvf->Length = VecLength; bvf->Normalize = Normalize; bvf->Inpf = Inpf; bvf->Copyf = VecCopyf; } } /* boids have limited processing capability so once there's too much information (acceleration) no more is processed */ static int add_boid_acc(BoidVecFunc *bvf, float lat_max, float tan_max, float *lat_accu, float *tan_accu, float *acc, float *dvec, float *vel) { static float tangent[3]; static float tan_length; if(vel){ bvf->Copyf(tangent,vel); tan_length=bvf->Normalize(tangent); return 1; } else{ float cur_tan, cur_lat; float tan_acc[3], lat_acc[3]; int ret=0; bvf->Copyf(tan_acc,tangent); if(tan_length>0.0){ bvf->Mulf(tan_acc,Inpf(tangent,dvec)); bvf->Subf(lat_acc,dvec,tan_acc); } else{ bvf->Copyf(tan_acc,dvec); lat_acc[0]=lat_acc[1]=lat_acc[2]=0.0f; *lat_accu=lat_max; } cur_tan=bvf->Length(tan_acc); cur_lat=bvf->Length(lat_acc); /* add tangential acceleration */ if(*lat_accu+cur_lat<=lat_max){ bvf->Addf(acc,acc,lat_acc); *lat_accu+=cur_lat; ret=1; } else{ bvf->Mulf(lat_acc,(lat_max-*lat_accu)/cur_lat); bvf->Addf(acc,acc,lat_acc); *lat_accu=lat_max; } /* add lateral acceleration */ if(*tan_accu+cur_tan<=tan_max){ bvf->Addf(acc,acc,tan_acc); *tan_accu+=cur_tan; ret=1; } else{ bvf->Mulf(tan_acc,(tan_max-*tan_accu)/cur_tan); bvf->Addf(acc,acc,tan_acc); *tan_accu=tan_max; } return ret; } } /* determines the acceleration that the boid tries to acchieve */ static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc) { ParticleData *pars=psys->particles; KDTreeNearest ptn[MAX_BOIDNEIGHBOURS+1]; ParticleEffectorCache *ec=0; float dvec[3]={0.0,0.0,0.0}, ob_co[3], ob_nor[3]; float avoid[3]={0.0,0.0,0.0}, velocity[3]={0.0,0.0,0.0}, center[3]={0.0,0.0,0.0}; float cubedist[MAX_BOIDNEIGHBOURS+1]; int i, n, neighbours=0, near, not_finished=1; float cur_vel; float lat_accu=0.0f, max_lat_acc=part->max_vel*part->max_lat_acc; float tan_accu=0.0f, max_tan_acc=part->max_vel*part->max_tan_acc; float avg_vel=part->average_vel*part->max_vel; acc[0]=acc[1]=acc[2]=0.0f; /* the +1 neighbour is because boid itself is in the tree */ neighbours=BLI_kdtree_find_n_nearest(tree,part->boidneighbours+1,pa->state.co,NULL,ptn); for(n=1; nsize),3.0); cubedist[n]=1.0f/MAX2(cubedist[n],1.0f); } /* initialize tangent */ add_boid_acc(bvf,0.0,0.0,0,0,0,0,pa->state.vel); for(i=0; iboidrule[i]){ case BOID_COLLIDE: /* collision avoidance */ bvf->Copyf(dvec,pa->prev_state.vel); bvf->Mulf(dvec,5.0f); bvf->Addf(dvec,dvec,pa->prev_state.co); if(boid_see_mesh(&psys->effectors,ob,psys,pa->prev_state.co,dvec,ob_co,ob_nor,cfra)){ float probelen = bvf->Length(dvec); float proj; float oblen; Normalize(ob_nor); proj = bvf->Inpf(ob_nor,pa->prev_state.vel); bvf->Subf(dvec,pa->prev_state.co,ob_co); oblen=bvf->Length(dvec); bvf->Copyf(dvec,ob_nor); bvf->Mulf(dvec,-proj); bvf->Mulf(dvec,((probelen/oblen)-1.0f)*100.0f*part->boidfac[BOID_COLLIDE]); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } break; case BOID_AVOID: /* predator avoidance */ if(psys->effectors.first){ for(ec=psys->effectors.first; ec; ec=ec->next){ if(ec->type & PSYS_EC_EFFECTOR){ Object *eob = ec->ob; PartDeflect *pd = eob->pd; if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){ float distance; VECSUB(dvec,eob->obmat[3],pa->prev_state.co); distance=Normalize(dvec); if(part->flag & PART_DIE_ON_COL && distance < pd->mindist){ pa->alive = PARS_DYING; pa->dietime=cfra; i=BOID_TOT_RULES; break; } if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist) ; else{ bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power)); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } } } else if(ec->type & PSYS_EC_PARTICLE){ Object *eob = ec->ob; ParticleSystem *epsys; ParticleSettings *epart; ParticleKey state; PartDeflect *pd; KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS]; int totepart, p, count; float distance; epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr); epart= epsys->part; pd= epart->pd; totepart= epsys->totpart; if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0 && ec->tree){ count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->prev_state.co,NULL,ptn2); for(p=0; pprev_state.co); distance = Normalize(dvec); if(part->flag & PART_DIE_ON_COL && distance < (epsys->particles+ptn2[p].index)->size){ pa->alive = PARS_DYING; pa->dietime=cfra; i=BOID_TOT_RULES; break; } if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist) ; else{ bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power)); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } } } } } } } break; case BOID_CROWD: /* crowd avoidance */ near=0; for(n=1; nsize){ if(ptn[n].dist!=0.0f) { bvf->Subf(dvec,pa->prev_state.co,pars[ptn[n].index].state.co); bvf->Mulf(dvec,(2.0f*pa->size-ptn[n].dist)/ptn[n].dist); bvf->Addf(avoid,avoid,dvec); near++; } } /* ptn[] is distance ordered so no need to check others */ else break; } if(near){ bvf->Mulf(avoid,part->boidfac[BOID_CROWD]*2.0f/timestep); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,avoid,0); } break; case BOID_CENTER: /* flock centering */ if(neighbours>1){ for(n=1; nAddf(center,center,pars[ptn[n].index].state.co); } bvf->Mulf(center,1.0f/((float)neighbours-1.0f)); bvf->Subf(dvec,center,pa->prev_state.co); bvf->Mulf(dvec,part->boidfac[BOID_CENTER]*2.0f); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } break; case BOID_AV_VEL: /* average velocity */ cur_vel=bvf->Length(pa->prev_state.vel); if(cur_vel>0.0){ bvf->Copyf(dvec,pa->prev_state.vel); bvf->Mulf(dvec,part->boidfac[BOID_AV_VEL]*(avg_vel-cur_vel)/cur_vel); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } break; case BOID_VEL_MATCH: /* velocity matching */ if(neighbours>1){ for(n=1; nCopyf(dvec,pars[ptn[n].index].state.vel); bvf->Mulf(dvec,cubedist[n]); bvf->Addf(velocity,velocity,dvec); } bvf->Mulf(velocity,1.0f/((float)neighbours-1.0f)); bvf->Subf(dvec,velocity,pa->prev_state.vel); bvf->Mulf(dvec,part->boidfac[BOID_VEL_MATCH]); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } break; case BOID_GOAL: /* goal seeking */ if(psys->effectors.first){ for(ec=psys->effectors.first; ec; ec=ec->next){ if(ec->type & PSYS_EC_EFFECTOR){ Object *eob = ec->ob; PartDeflect *pd = eob->pd; float temp[4]; if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){ float distance; VECSUB(dvec,eob->obmat[3],pa->prev_state.co); distance=Normalize(dvec); if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist) ; else{ VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power)); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } } else if(pd->forcefield==PFIELD_GUIDE){ float distance; where_on_path(eob, (cfra-pa->time)/pa->lifetime, temp, dvec); VECSUB(dvec,temp,pa->prev_state.co); distance=Normalize(dvec); if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist) ; else{ VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power)); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } } } else if(ec->type & PSYS_EC_PARTICLE){ Object *eob = ec->ob; ParticleSystem *epsys; ParticleSettings *epart; ParticleKey state; PartDeflect *pd; KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS]; int totepart, p, count; float distance; epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr); epart= epsys->part; pd= epart->pd; totepart= epsys->totpart; if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0 && ec->tree){ count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->prev_state.co,NULL,ptn2); for(p=0; pprev_state.co); distance = Normalize(dvec); if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist) ; else{ bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power)); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } } } } } } } break; case BOID_LEVEL: /* level flight */ if((part->flag & PART_BOIDS_2D)==0){ dvec[0]=dvec[1]=0.0; dvec[2]=-pa->prev_state.vel[2]; VecMulf(dvec,part->boidfac[BOID_LEVEL]); not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0); } break; } } } /* tries to realize the wanted acceleration */ static void boid_body(BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys, ParticleSettings *part, float timestep, float *acc) { float dvec[3], bvec[3], length, max_vel=part->max_vel; float q2[4], q[4]; float g=9.81f, pa_mass=part->mass; float yvec[3]={0.0,1.0,0.0}, zvec[3]={0.0,0.0,-1.0}, bank; /* apply new velocity, location & rotation */ copy_particle_key(&pa->state,&pa->prev_state,0); if(part->flag & PART_SIZEMASS) pa_mass*=pa->size; /* by regarding the acceleration as a force at this stage we*/ /* can get better controll allthough it's a bit unphysical */ bvf->Mulf(acc,1.0f/pa_mass); bvf->Copyf(dvec,acc); bvf->Mulf(dvec,timestep*timestep*0.5f); bvf->Copyf(bvec,pa->state.vel); bvf->Mulf(bvec,timestep); bvf->Addf(dvec,dvec,bvec); bvf->Addf(pa->state.co,pa->state.co,dvec); /* air speed from wind and vortex effectors */ if(psys->effectors.first) { ParticleEffectorCache *ec; for(ec=psys->effectors.first; ec; ec=ec->next) { if(ec->type & PSYS_EC_EFFECTOR) { Object *eob = ec->ob; PartDeflect *pd = eob->pd; float direction[3], vec_to_part[3]; float falloff; if(pd->f_strength != 0.0f) { VecCopyf(direction, eob->obmat[2]); VecSubf(vec_to_part, pa->state.co, eob->obmat[3]); falloff=effector_falloff(pd, direction, vec_to_part); switch(pd->forcefield) { case PFIELD_WIND: if(falloff <= 0.0f) ; /* don't do anything */ else { Normalize(direction); VecMulf(direction, pd->f_strength * falloff); bvf->Addf(pa->state.co, pa->state.co, direction); } break; case PFIELD_VORTEX: { float distance, mag_vec[3]; Crossf(mag_vec, direction, vec_to_part); Normalize(mag_vec); distance = VecLength(vec_to_part); VecMulf(mag_vec, pd->f_strength * distance * falloff); bvf->Addf(pa->state.co, pa->state.co, mag_vec); break; } } } } } } if((part->flag & PART_BOIDS_2D)==0 && pa->prev_state.vel[0]!=0.0 && pa->prev_state.vel[0]!=0.0 && pa->prev_state.vel[0]!=0.0){ Crossf(yvec,pa->state.vel,zvec); Normalize(yvec); bank=Inpf(yvec,acc); bank=-(float)atan((double)(bank/g)); bank*=part->banking; bank-=pa->bank; if(bank>M_PI*part->max_bank){ bank=pa->bank+(float)M_PI*part->max_bank; } else if(bank<-M_PI*part->max_bank){ bank=pa->bank-(float)M_PI*part->max_bank; } else bank+=pa->bank; pa->bank=bank; } else{ bank=0.0; } VecRotToQuat(pa->state.vel,bank,q); VECCOPY(dvec,pa->state.vel); VecMulf(dvec,-1.0f); vectoquat(dvec, OB_POSX, OB_POSZ, q2); QuatMul(pa->state.rot,q,q2); bvf->Mulf(acc,timestep); bvf->Addf(pa->state.vel,pa->state.vel,acc); if(part->flag & PART_BOIDS_2D){ pa->state.vel[2]=0.0; pa->state.co[2]=part->groundz; if(psys->keyed_ob && (psys->keyed_ob->type == OB_MESH)){ Object *zob=psys->keyed_ob; int min_face; float co1[3],co2[3],min_d=2.0,min_w[4],imat[4][4]; VECCOPY(co1,pa->state.co); VECCOPY(co2,pa->state.co); co1[2]=1000.0f; co2[2]=-1000.0f; Mat4Invert(imat,zob->obmat); Mat4MulVecfl(imat,co1); Mat4MulVecfl(imat,co2); if(psys_intersect_dm(zob,0,0,co1,co2,&min_d,&min_face,min_w,0,0,0,0)){ DerivedMesh *dm; MFace *mface; MVert *mvert; float loc[3],nor[3],q1[4]; psys_disable_all(zob); dm=mesh_get_derived_final(zob,0); psys_enable_all(zob); mface=dm->getFaceDataArray(dm,CD_MFACE); mface+=min_face; mvert=dm->getVertDataArray(dm,CD_MVERT); /* get deflection point & normal */ psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0); Mat4MulVecfl(zob->obmat,loc); Mat4Mul3Vecfl(zob->obmat,nor); Normalize(nor); VECCOPY(pa->state.co,loc); zvec[2]=1.0; Crossf(loc,zvec,nor); bank=VecLength(loc); if(bank>0.0){ bank=saasin(bank); VecRotToQuat(loc,bank,q); QUATCOPY(q1,pa->state.rot); QuatMul(pa->state.rot,q,q1); } } } } length=bvf->Length(pa->state.vel); if(length > max_vel) bvf->Mulf(pa->state.vel,max_vel/length); } /************************************************/ /* Hair */ /************************************************/ static void save_hair(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra){ ParticleData *pa; HairKey *key; int totpart; int i; Mat4Invert(ob->imat,ob->obmat); psys->lattice=psys_get_lattice(ob,psys); if(psys->totpart==0) return; totpart=psys->totpart; /* save new keys for elements if needed */ for(i=0,pa=psys->particles; itotkey==0 || pa->hair==NULL) { pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys"); pa->totkey = 0; } key = pa->hair + pa->totkey; /* convert from global to geometry space */ VecCopyf(key->co, pa->state.co); Mat4MulVecfl(ob->imat, key->co); if(pa->totkey) { VECSUB(key->co, key->co, pa->hair->co); psys_vec_rot_to_face(psmd->dm, pa, key->co); } key->time = pa->state.time; key->weight = 1.0f - key->time / 100.0f; pa->totkey++; /* root is always in the origin of hair space so we set it to be so after the last key is saved*/ if(pa->totkey == psys->part->hair_step + 1) pa->hair->co[0] = pa->hair->co[1] = pa->hair->co[2] = 0.0f; } } /************************************************/ /* System Core */ /************************************************/ /* unbaked particles are calculated dynamically */ static void dynamics_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra, float *vg_vel, float *vg_tan, float *vg_rot, float *vg_size) { ParticleData *pa; ParticleSettings *part=psys->part; KDTree *tree=0; BoidVecFunc bvf; IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE); Material *ma=give_current_material(ob,part->omat); float timestep; int p, totpart; /* current time */ float ctime, ipotime; /* frame & time changes */ float dfra, dtime, pa_dtime, pa_dfra=0.0; float birthtime, dietime; /* where have we gone in time since last time */ dfra= cfra - psys->cfra; totpart=psys->totpart; timestep=psys_get_timestep(part); dtime= dfra*timestep; ctime= cfra*timestep; ipotime= cfra; if(part->flag&PART_ABS_TIME && part->ipo){ calc_ipo(part->ipo, cfra); execute_ipo((ID *)part, part->ipo); } if(dfra<0.0){ float *vg_size=0; if(part->type==PART_REACTOR) vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE); for(p=0, pa=psys->particles; pflag & PARS_UNEXIST) continue; /* set correct ipo timing */ if((part->flag&PART_ABS_TIME)==0 && part->ipo){ ipotime=100.0f*(cfra-pa->time)/pa->lifetime; calc_ipo(part->ipo, ipotime); execute_ipo((ID *)part, part->ipo); } pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size); reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot); if(cfra>pa->time && part->flag & PART_LOOP && part->type!=PART_HAIR){ pa->loop=(short)((cfra-pa->time)/pa->lifetime); pa->alive=PARS_UNBORN; } else{ pa->loop = 0; if(cfra <= pa->time) pa->alive = PARS_UNBORN; /* without dynamics the state is allways known so no need to kill */ else if(ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)){ if(cfra < pa->dietime) pa->alive = PARS_ALIVE; } else pa->alive = PARS_KILLED; } } if(vg_size) MEM_freeN(vg_size); } else{ BLI_srandom(31415926 + (int)cfra + psys->seed); /* update effectors */ if(psys->effectors.first) psys_end_effectors(psys); psys_init_effectors(ob,part->eff_group,psys); if(psys->effectors.first) precalc_effectors(ob,psys,psmd,cfra); if(part->phystype==PART_PHYS_BOIDS){ /* create particle tree for fast inter-particle comparisons */ tree=BLI_kdtree_new(totpart); for(p=0, pa=psys->particles; pflag & (PARS_NO_DISP+PARS_UNEXIST) || pa->alive!=PARS_ALIVE) continue; BLI_kdtree_insert(tree, p, pa->state.co, NULL); } BLI_kdtree_balance(tree); set_boid_vec_func(&bvf,part->flag&PART_BOIDS_2D); } /* main loop: calculate physics for all particles */ for(p=0, pa=psys->particles; pflag & PARS_UNEXIST) continue; copy_particle_key(&pa->prev_state,&pa->state,1); /* set correct ipo timing */ if((part->flag&PART_ABS_TIME)==0 && part->ipo){ ipotime=100.0f*(cfra-pa->time)/pa->lifetime; calc_ipo(part->ipo, ipotime); execute_ipo((ID *)part, part->ipo); } pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size); /* reactions can change birth time so they need to be checked first */ if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0) react_to_events(psys,p); birthtime = pa->time + pa->loop * pa->lifetime; dietime = birthtime + pa->lifetime; /* allways reset particles to emitter before birth */ if(pa->alive==PARS_UNBORN || pa->alive==PARS_KILLED || ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED) || birthtime >= cfra){ reset_particle(pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot); } pa_dfra = dfra; pa_dtime = dtime; if(birthtime <= cfra && birthtime >= psys->cfra){ /* particle is born some time between this and last step*/ pa->alive = PARS_ALIVE; pa_dfra = cfra - birthtime; pa_dtime = pa_dfra*timestep; } else if(dietime <= cfra && psys->cfra < dietime){ /* particle dies some time between this and last step */ pa_dfra = dietime - psys->cfra; pa_dtime = pa_dfra * timestep; pa->alive = PARS_DYING; } else if(dietime < cfra){ /* nothing to be done when particle is dead */ } if(dfra>0.0 && ELEM(pa->alive,PARS_ALIVE,PARS_DYING)){ switch(part->phystype){ case PART_PHYS_NEWTON: /* do global forces & effectors */ apply_particle_forces(p,pa,ob,psys,part,timestep,pa_dfra,cfra); /* deflection */ deflect_particle(ob,psmd,psys,part,pa,p,timestep,pa_dfra,cfra); /* rotations */ rotate_particle(part,pa,pa_dfra,timestep); break; case PART_PHYS_BOIDS: { float acc[3]; boid_brain(&bvf,pa,ob,psys,part,tree,timestep,cfra,acc); if(pa->alive != PARS_DYING) boid_body(&bvf,pa,psys,part,timestep,acc); break; } } if(pa->alive == PARS_DYING){ push_reaction(ob,psys,p,PART_EVENT_DEATH,&pa->state); if(part->flag & PART_LOOP && part->type!=PART_HAIR){ pa->loop++; reset_particle(pa,psys,psmd,ob,0.0,cfra,vg_vel,vg_tan,vg_rot); pa->alive=PARS_ALIVE; } else{ pa->alive=PARS_DEAD; pa->state.time=pa->dietime; if(pa->flag&PARS_STICKY) psys_key_to_object(pa->stick_ob,&pa->state,0); } } else pa->state.time=cfra; push_reaction(ob,psys,p,PART_EVENT_NEAR,&pa->state); } } } if(psys->reactevents.first) BLI_freelistN(&psys->reactevents); if(tree) BLI_kdtree_free(tree); } /* check if path cache or children need updating and do it if needed */ static void psys_update_path_cache(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra) { ParticleSettings *part=psys->part; ParticleEditSettings *pset=&G.scene->toolsettings->particle; int distr=0,alloc=0; if((psys->part->childtype && psys->totchild != get_psys_tot_child(psys)) || psys->recalc&PSYS_ALLOC) alloc=1; if(alloc || psys->recalc&PSYS_DISTR || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT))) distr=1; if(distr){ if(alloc) realloc_particles(ob,psys,psys->totpart); if(get_psys_tot_child(psys)) { /* don't generate children while computing the hair keys */ if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) { distribute_particles(ob,psys,PART_FROM_CHILD); if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES && part->parents!=0.0) psys_find_parents(ob,psmd,psys); } } } if((part->type==PART_HAIR || psys->flag&PSYS_KEYED) && (psys_in_edit_mode(psys) || (part->type==PART_HAIR || part->draw_as==PART_DRAW_PATH))){ psys_cache_paths(ob, psys, cfra, 0); /* for render, child particle paths are computed on the fly */ if(part->childtype) { if(((psys->totchild!=0)) || (psys_in_edit_mode(psys) && (pset->flag&PE_SHOW_CHILD))) if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) psys_cache_child_paths(ob, psys, cfra, 0); } } else if(psys->pathcache) psys_free_path_cache(psys); } static void hair_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra) { ParticleSettings *part = psys->part; ParticleData *pa; int p; float disp = (float)get_current_display_percentage(psys)/50.0f-1.0f; for(p=0, pa=psys->particles; ptotpart; p++,pa++){ if(pa->r_rot[0] > disp) pa->flag |= PARS_NO_DISP; else pa->flag &= ~PARS_NO_DISP; } if(psys->recalc & PSYS_DISTR) /* need this for changing subsurf levels */ psys_calc_dmcache(ob, psmd->dm, psys); if(psys->effectors.first) psys_end_effectors(psys); psys_init_effectors(ob,part->eff_group,psys); if(psys->effectors.first) precalc_effectors(ob,psys,psmd,cfra); if(psys_in_edit_mode(psys)) PE_recalc_world_cos(ob, psys); psys_update_path_cache(ob,psmd,psys,cfra); } /* updates cached particles' alive & other flags etc..*/ static void cached_step(Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra) { ParticleSettings *part=psys->part; ParticleData *pa; ParticleKey state; IpoCurve *icu_esize=find_ipocurve(part->ipo,PART_EMIT_SIZE); Material *ma=give_current_material(ob,part->omat); int p; float ipotime=cfra, disp, birthtime, dietime, *vg_size= NULL; if(part->from!=PART_FROM_PARTICLE) vg_size= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE); if(psys->effectors.first) psys_end_effectors(psys); //if(part->flag & (PART_BAKED_GUIDES+PART_BAKED_DEATHS)){ psys_init_effectors(ob,part->eff_group,psys); if(psys->effectors.first) precalc_effectors(ob,psys,psmd,cfra); //} disp= (float)get_current_display_percentage(psys)/50.0f-1.0f; for(p=0, pa=psys->particles; ptotpart; p++,pa++){ if((part->flag&PART_ABS_TIME)==0 && part->ipo){ ipotime=100.0f*(cfra-pa->time)/pa->lifetime; calc_ipo(part->ipo, ipotime); execute_ipo((ID *)part, part->ipo); } pa->size= psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size); psys->lattice=psys_get_lattice(ob,psys); if(part->flag & PART_LOOP && part->type!=PART_HAIR) pa->loop = (short)((cfra - pa->time) / pa->lifetime); else pa->loop = 0; birthtime = pa->time + pa->loop * pa->lifetime; dietime = birthtime + (1 + pa->loop) * (pa->dietime - pa->time); /* update alive status and push events */ if(pa->time > cfra) pa->alive = PARS_UNBORN; else if(dietime <= cfra){ if(dietime > psys->cfra){ state.time = pa->dietime; psys_get_particle_state(ob,psys,p,&state,1); push_reaction(ob,psys,p,PART_EVENT_DEATH,&state); } pa->alive = PARS_DEAD; } else{ pa->alive = PARS_ALIVE; state.time = cfra; psys_get_particle_state(ob,psys,p,&state,1); state.time = cfra; push_reaction(ob,psys,p,PART_EVENT_NEAR,&state); } if(psys->lattice){ end_latt_deform(); psys->lattice=0; } if(pa->r_rot[0] > disp) pa->flag |= PARS_NO_DISP; else pa->flag &= ~PARS_NO_DISP; } /* make sure that children are up to date */ if(psys->part->childtype && psys->totchild != get_psys_tot_child(psys)) { realloc_particles(ob, psys, psys->totpart); distribute_particles(ob, psys, PART_FROM_CHILD); } if(vg_size) MEM_freeN(vg_size); } void psys_changed_type(ParticleSystem *psys) { ParticleSettings *part; part= psys->part; /* system type has changed so set sensible defaults and clear non applicable flags */ if(part->from == PART_FROM_PARTICLE) { if(part->type != PART_REACTOR) part->from = PART_FROM_FACE; if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT) part->distr = PART_DISTR_JIT; } if(psys->part->phystype != PART_PHYS_KEYED) psys->flag &= ~PSYS_KEYED; if(part->type == PART_HAIR) { part->draw_as = PART_DRAW_PATH; part->rotfrom = PART_ROT_IINCR; } else { free_hair(psys, 1); if(part->draw_as == PART_DRAW_PATH) if(psys->part->phystype != PART_PHYS_KEYED) part->draw_as = PART_DRAW_DOT; } psys->softflag= 0; psys_reset(psys, PSYS_RESET_ALL); } static void particles_fluid_step(Object *ob, ParticleSystem *psys, int cfra) { if(psys->particles){ MEM_freeN(psys->particles); psys->particles = 0; psys->totpart = 0; } /* fluid sim particle import handling, actual loading of particles from file */ #ifndef DISABLE_ELBEEM { FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(ob, eModifierType_Fluidsim); if( fluidmd && fluidmd->fss) { FluidsimSettings *fss= fluidmd->fss; ParticleSettings *part = psys->part; ParticleData *pa=0; char *suffix = "fluidsurface_particles_####"; char *suffix2 = ".gz"; char filename[256]; char debugStrBuffer[256]; int curFrame = G.scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading int p, j, numFileParts, totpart; int readMask, activeParts = 0, fileParts = 0; gzFile gzf; if(ob==G.obedit) // off... return; // ok, start loading strcpy(filename, fss->surfdataPath); strcat(filename, suffix); BLI_convertstringcode(filename, G.sce); BLI_convertstringframe(filename, curFrame); // fixed #frame-no strcat(filename, suffix2); gzf = gzopen(filename, "rb"); if (!gzf) { snprintf(debugStrBuffer,256,"readFsPartData::error - Unable to open file for reading '%s' \n", filename); //elbeemDebugOut(debugStrBuffer); return; } gzread(gzf, &totpart, sizeof(totpart)); numFileParts = totpart; totpart = (G.rendering)?totpart:(part->disp*totpart)/100; part->totpart= totpart; part->sta=part->end = 1.0f; part->lifetime = G.scene->r.efra + 1; /* initialize particles */ realloc_particles(ob, psys, part->totpart); initialize_all_particles(ob, psys, 0); // set up reading mask readMask = fss->typeFlags; for(p=0, pa=psys->particles; psize), sizeof( float )); pa->size /= 10.0f; for(j=0; j<3; j++) { float wrf; gzread(gzf, &wrf, sizeof( wrf )); pa->state.co[j] = wrf; //fprintf(stderr,"Rj%d ",j); } for(j=0; j<3; j++) { float wrf; gzread(gzf, &wrf, sizeof( wrf )); pa->state.vel[j] = wrf; } pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0f; pa->state.rot[0] = 1.0; pa->state.rot[1] = pa->state.rot[2] = pa->state.rot[3] = 0.0; pa->alive = PARS_ALIVE; //if(a<25) fprintf(stderr,"FSPARTICLE debug set %s , a%d = %f,%f,%f , life=%f \n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime ); } else { // skip... for(j=0; j<2*3+1; j++) { float wrf; gzread(gzf, &wrf, sizeof( wrf )); } } fileParts++; } gzclose( gzf ); totpart = psys->totpart = activeParts; snprintf(debugStrBuffer,256,"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d \n", psys->totpart,activeParts,fileParts,readMask); elbeemDebugOut(debugStrBuffer); } // fluid sim particles done } #endif // DISABLE_ELBEEM } /* Calculates the next state for all particles of the system */ /* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)*/ static void system_step(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra) { ParticleSettings *part; ParticleData *pa; PointCache *cache; PTCacheID pid; int totpart, oldtotpart, totchild, oldtotchild, p; float disp, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; int init= 0, distr= 0, alloc= 0, usecache= 0, only_children_changed= 0; int framenr, framedelta, startframe, endframe; part= psys->part; cache= psys->pointcache; framenr= (int)CFRA; framedelta= framenr - cache->simframe; BKE_ptcache_id_from_particles(&pid, ob, psys); BKE_ptcache_id_time(&pid, 0.0f, &startframe, &endframe, NULL); /* update ipo's */ if((part->flag & PART_ABS_TIME) && part->ipo) { calc_ipo(part->ipo, cfra); execute_ipo((ID *)part, part->ipo); } /* hair if it's already done is handled separate */ if(part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE)) { hair_step(ob, psmd, psys, cfra); psys->cfra = cfra; psys->recalc = 0; return; } /* fluid is also handled separate */ else if(part->type == PART_FLUID) { particles_fluid_step(ob, psys, framenr); psys->cfra = cfra; psys->recalc = 0; return; } /* cache shouldn't be used for hair or "none" or "keyed" physics */ if(part->type == PART_HAIR || ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) usecache= 0; else if(BKE_ptcache_get_continue_physics()) usecache= 0; else usecache= 1; if(usecache) { /* frame clamping */ if(framenr < startframe) { psys_reset(psys, PSYS_RESET_CACHE_MISS); psys->cfra = cfra; psys->recalc = 0; return; } else if(framenr > endframe) { framenr= endframe; } } /* verify if we need to reallocate */ oldtotpart = psys->totpart; oldtotchild = psys->totchild; if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT) totpart = part->grid_res*part->grid_res*part->grid_res; else totpart = psys->part->totpart; totchild = get_psys_tot_child(psys); if(oldtotpart != totpart || (psys->part->childtype && oldtotchild != totchild)) { only_children_changed = (oldtotpart == totpart); realloc_particles(ob, psys, totpart); alloc = 1; distr= 1; init= 1; } if(psys->recalc & PSYS_DISTR) { distr= 1; init= 1; } if(init) { if(distr) { if(alloc) realloc_particles(ob, psys, totpart); distribute_particles(ob, psys, part->from); if((psys->part->type == PART_HAIR) && !(psys->flag & PSYS_HAIR_DONE)) /* don't generate children while growing hair - waste of time */ psys_free_children(psys); else if(get_psys_tot_child(psys)) distribute_particles(ob, psys, PART_FROM_CHILD); } if(only_children_changed==0) { initialize_all_particles(ob, psys, psmd); if(alloc) reset_all_particles(ob, psys, psmd, 0.0, cfra, oldtotpart); } /* flag for possible explode modifiers after this system */ psmd->flag |= eParticleSystemFlag_Pars; } /* try to read from the cache */ if(usecache) { if(get_particles_from_cache(ob, psys, framenr)) { if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED) { psys_count_keyed_targets(ob,psys); set_keyed_keys(ob, psys); } cached_step(ob,psmd,psys,cfra); psys->cfra=cfra; psys->recalc = 0; if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED) { psys_update_path_cache(ob,psmd,psys,framenr); } cache->simframe= framenr; cache->flag |= PTCACHE_SIMULATION_VALID; return; } else if(ob->id.lib || (cache->flag & PTCACHE_BAKED)) { psys_reset(psys, PSYS_RESET_CACHE_MISS); psys->cfra=cfra; psys->recalc = 0; return; } if(framenr != startframe && framedelta != 1) { psys_reset(psys, PSYS_RESET_CACHE_MISS); psys->cfra = cfra; psys->recalc = 0; return; } } else { cache->flag &= ~PTCACHE_SIMULATION_VALID; cache->simframe= 0; } /* if on second frame, write cache for first frame */ if(usecache && framenr == startframe+1) write_particles_to_cache(ob, psys, startframe); if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED) psys_count_keyed_targets(ob,psys); /* initialize vertex groups */ if(part->from!=PART_FROM_PARTICLE) { vg_vel= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL); vg_tan= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN); vg_rot= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT); vg_size= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE); } /* set particles to be not calculated TODO: can't work with pointcache */ disp= (float)get_current_display_percentage(psys)/50.0f-1.0f; for(p=0, pa=psys->particles; pr_rot[0] > disp) pa->flag |= PARS_NO_DISP; else pa->flag &= ~PARS_NO_DISP; } if(psys->totpart) { int dframe, totframesback = 0; /* handle negative frame start at the first frame by doing * all the steps before the first frame */ if(framenr == startframe && part->sta < startframe) totframesback = (startframe - (int)part->sta); for(dframe=-totframesback; dframe<=0; dframe++) { /* ok now we're all set so let's go */ dynamics_step(ob,psys,psmd,cfra+dframe,vg_vel,vg_tan,vg_rot,vg_size); psys->cfra = cfra+dframe; } } cache->simframe= framenr; cache->flag |= PTCACHE_SIMULATION_VALID; psys->recalc = 0; psys->cfra = cfra; /* only write cache starting from second frame */ if(usecache && framenr != startframe) write_particles_to_cache(ob, psys, framenr); /* for keyed particles the path is allways known so it can be drawn */ if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED){ set_keyed_keys(ob, psys); psys_update_path_cache(ob,psmd,psys,(int)cfra); } else if(psys->pathcache) psys_free_path_cache(psys); /* cleanup */ if(vg_vel) MEM_freeN(vg_vel); if(vg_tan) MEM_freeN(vg_tan); if(vg_rot) MEM_freeN(vg_rot); if(vg_size) MEM_freeN(vg_size); if(psys->lattice){ end_latt_deform(); psys->lattice=0; } } static void psys_to_softbody(Object *ob, ParticleSystem *psys) { SoftBody *sb; short softflag; if(!(psys->softflag & OB_SB_ENABLE)) return; /* let's replace the object's own softbody with the particle softbody */ /* a temporary solution before cloth simulation is implemented, jahka */ /* save these */ sb= ob->soft; softflag= ob->softflag; /* swich to new ones */ ob->soft= psys->soft; ob->softflag= psys->softflag; /* do softbody */ sbObjectStep(ob, (float)G.scene->r.cfra, NULL, psys_count_keys(psys)); /* return things back to normal */ psys->soft= ob->soft; psys->softflag= ob->softflag; ob->soft= sb; ob->softflag= softflag; } static int hair_needs_recalc(ParticleSystem *psys) { if((psys->flag & PSYS_EDITED)==0 && ((psys->flag & PSYS_HAIR_DONE)==0 || psys->recalc & PSYS_RECALC_HAIR)) { psys->recalc &= ~PSYS_RECALC_HAIR; return 1; } return 0; } /* main particle update call, checks that things are ok on the large scale before actual particle calculations */ void particle_system_update(Object *ob, ParticleSystem *psys) { ParticleSystemModifierData *psmd; float cfra; if(!psys_check_enabled(ob, psys)) return; cfra= bsystem_time(ob, CFRA, 0.0f); psmd= psys_get_modifier(ob, psys); /* system was already updated from modifier stack */ if(psmd->flag & eParticleSystemFlag_psys_updated) { psmd->flag &= ~eParticleSystemFlag_psys_updated; /* make sure it really was updated to cfra */ if(psys->cfra == cfra) return; } if(!psmd->dm) return; /* (re-)create hair */ if(psys->part->type==PART_HAIR && hair_needs_recalc(psys)) { float hcfra=0.0f; int i; free_hair(psys, 0); /* first step is negative so particles get killed and reset */ psys->cfra= 1.0f; for(i=0; i<=psys->part->hair_step; i++){ hcfra=100.0f*(float)i/(float)psys->part->hair_step; system_step(ob, psys, psmd, hcfra); save_hair(ob, psys, psmd, hcfra); } psys->flag |= PSYS_HAIR_DONE; } /* handle softbody hair */ if(psys->part->type==PART_HAIR && psys->soft) psys_to_softbody(ob, psys); /* the main particle system step */ system_step(ob, psys, psmd, cfra); /* save matrix for duplicators */ Mat4Invert(psys->imat, ob->obmat); }