/* particle_system.c * * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2007 by Janne Karhu. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Raul Fernandez Hernandez (Farsthary), Stephen Swhitehorn. * * ***** END GPL LICENSE BLOCK ***** */ #include "BLI_storage.h" /* _LARGEFILE_SOURCE */ #include #include #include #include "MEM_guardedalloc.h" #include "DNA_anim_types.h" #include "DNA_boid_types.h" #include "DNA_particle_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_object_force.h" #include "DNA_object_types.h" #include "DNA_material_types.h" #include "DNA_curve_types.h" #include "DNA_group_types.h" #include "DNA_scene_types.h" #include "DNA_texture_types.h" #include "DNA_ipo_types.h" // XXX old animation system stuff... to be removed! #include "DNA_listBase.h" #include "BLI_rand.h" #include "BLI_jitter.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_kdtree.h" #include "BLI_kdopbvh.h" #include "BLI_listbase.h" #include "BLI_threads.h" #include "BKE_animsys.h" #include "BKE_boids.h" #include "BKE_cdderivedmesh.h" #include "BKE_collision.h" #include "BKE_displist.h" #include "BKE_effect.h" #include "BKE_particle.h" #include "BKE_global.h" #include "BKE_utildefines.h" #include "BKE_DerivedMesh.h" #include "BKE_object.h" #include "BKE_material.h" #include "BKE_cloth.h" #include "BKE_depsgraph.h" #include "BKE_lattice.h" #include "BKE_pointcache.h" #include "BKE_mesh.h" #include "BKE_modifier.h" #include "BKE_scene.h" #include "BKE_bvhutils.h" #include "PIL_time.h" #include "RE_shader_ext.h" /* fluid sim particle import */ #ifndef DISABLE_ELBEEM #include "DNA_object_fluidsim.h" #include "LBM_fluidsim.h" #include #include #ifdef WIN32 #ifndef snprintf #define snprintf _snprintf #endif #endif #endif // DISABLE_ELBEEM /************************************************/ /* Reacting to system events */ /************************************************/ static int get_current_display_percentage(ParticleSystem *psys) { ParticleSettings *part=psys->part; if(psys->renderdata || (part->child_nbr && part->childtype) || (psys->pointcache->flag & PTCACHE_BAKING)) return 100; if(part->phystype==PART_PHYS_KEYED){ return psys->part->disp; } else return psys->part->disp; } void psys_reset(ParticleSystem *psys, int mode) { PARTICLE_P; if(ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) { if(mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) { psys_free_particles(psys); psys->totpart= 0; psys->totkeyed= 0; psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED); if(psys->edit && psys->free_edit) { psys->free_edit(psys->edit); psys->edit = NULL; psys->free_edit = NULL; } } } else if(mode == PSYS_RESET_CACHE_MISS) { /* set all particles to be skipped */ LOOP_PARTICLES pa->flag |= PARS_NO_DISP; } /* reset children */ if(psys->child) { MEM_freeN(psys->child); psys->child= 0; } psys->totchild= 0; /* reset path cache */ psys_free_path_cache(psys, psys->edit); /* reset point cache */ BKE_ptcache_invalidate(psys->pointcache); } static void realloc_particles(ParticleSimulationData *sim, int new_totpart) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleData *newpars = NULL; BoidParticle *newboids = NULL; PARTICLE_P; int totpart, totsaved = 0; if(new_totpart<0) { if(part->distr==PART_DISTR_GRID && part->from != PART_FROM_VERT) { totpart= part->grid_res; totpart*=totpart*totpart; } else totpart=part->totpart; } else totpart=new_totpart; if(totpart != psys->totpart) { if(psys->edit && psys->free_edit) { psys->free_edit(psys->edit); psys->edit = NULL; psys->free_edit = NULL; } newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles"); if(psys->part->phystype == PART_PHYS_BOIDS) newboids= MEM_callocN(totpart*sizeof(BoidParticle), "boid particles"); if(psys->particles) { totsaved=MIN2(psys->totpart,totpart); /*save old pars*/ if(totsaved) { memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData)); if(psys->particles->boid) memcpy(newboids, psys->particles->boid, totsaved*sizeof(BoidParticle)); } if(psys->particles->keys) MEM_freeN(psys->particles->keys); if(psys->particles->boid) MEM_freeN(psys->particles->boid); for(p=0, pa=newpars; pkeys) { pa->keys= NULL; pa->totkey= 0; } } for(p=totsaved, pa=psys->particles+totsaved; ptotpart; p++, pa++) if(pa->hair) MEM_freeN(pa->hair); MEM_freeN(psys->particles); psys_free_pdd(psys); } psys->particles=newpars; psys->totpart=totpart; if(newboids) { LOOP_PARTICLES pa->boid = newboids++; } } if(psys->child) { MEM_freeN(psys->child); psys->child=0; psys->totchild=0; } } static int get_psys_child_number(struct Scene *scene, ParticleSystem *psys) { int nbr; if(!psys->part->childtype) return 0; if(psys->renderdata) nbr= psys->part->ren_child_nbr; else nbr= psys->part->child_nbr; return get_render_child_particle_number(&scene->r, nbr); } static int get_psys_tot_child(struct Scene *scene, ParticleSystem *psys) { return psys->totpart*get_psys_child_number(scene, psys); } static void alloc_child_particles(ParticleSystem *psys, int tot) { if(psys->child){ /* only re-allocate if we have to */ if(psys->part->childtype && psys->totchild == tot) { memset(psys->child, 0, tot*sizeof(ChildParticle)); return; } MEM_freeN(psys->child); psys->child=0; psys->totchild=0; } if(psys->part->childtype) { psys->totchild= tot; if(psys->totchild) psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles"); } } void psys_calc_dmcache(Object *ob, DerivedMesh *dm, ParticleSystem *psys) { /* use for building derived mesh mapping info: node: the allocated links - total derived mesh element count nodearray: the array of nodes aligned with the base mesh's elements, so each original elements can reference its derived elements */ Mesh *me= (Mesh*)ob->data; PARTICLE_P; /* CACHE LOCATIONS */ if(!dm->deformedOnly) { /* Will use later to speed up subsurf/derivedmesh */ LinkNode *node, *nodedmelem, **nodearray; int totdmelem, totelem, i, *origindex; if(psys->part->from == PART_FROM_VERT) { totdmelem= dm->getNumVerts(dm); totelem= me->totvert; origindex= dm->getVertDataArray(dm, CD_ORIGINDEX); } else { /* FROM_FACE/FROM_VOLUME */ totdmelem= dm->getNumFaces(dm); totelem= me->totface; origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX); } nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems"); nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array"); for(i=0, node=nodedmelem; ilink= SET_INT_IN_POINTER(i); if(*origindex != -1) { if(nodearray[*origindex]) { /* prepend */ node->next = nodearray[*origindex]; nodearray[*origindex]= node; } else nodearray[*origindex]= node; } } /* cache the verts/faces! */ LOOP_PARTICLES { if(psys->part->from == PART_FROM_VERT) { if(nodearray[pa->num]) pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link); } else { /* FROM_FACE/FROM_VOLUME */ /* Note that somtimes the pa->num is over the nodearray size, this is bad, maybe there is a better place to fix this, * but for now passing NULL is OK. every face will be searched for the particle so its slower - Campbell */ pa->num_dmcache= psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, pa->num < totelem ? nodearray[pa->num] : NULL); } } MEM_freeN(nodearray); MEM_freeN(nodedmelem); } else { /* TODO PARTICLE, make the following line unnecessary, each function * should know to use the num or num_dmcache, set the num_dmcache to * an invalid value, just incase */ LOOP_PARTICLES pa->num_dmcache = -1; } } static void distribute_particles_in_grid(DerivedMesh *dm, ParticleSystem *psys) { ParticleData *pa=0; float min[3], max[3], delta[3], d; MVert *mv, *mvert = dm->getVertDataArray(dm,0); int totvert=dm->getNumVerts(dm), from=psys->part->from; int i, j, k, p, res=psys->part->grid_res, size[3], axis; mv=mvert; /* find bounding box of dm */ VECCOPY(min,mv->co); VECCOPY(max,mv->co); mv++; for(i=1; ico[0]); min[1]=MIN2(min[1],mv->co[1]); min[2]=MIN2(min[2],mv->co[2]); max[0]=MAX2(max[0],mv->co[0]); max[1]=MAX2(max[1],mv->co[1]); max[2]=MAX2(max[2],mv->co[2]); } VECSUB(delta,max,min); /* determine major axis */ axis = (delta[0]>=delta[1])?0:((delta[1]>=delta[2])?1:2); d = delta[axis]/(float)res; size[axis]=res; size[(axis+1)%3]=(int)ceil(delta[(axis+1)%3]/d); size[(axis+2)%3]=(int)ceil(delta[(axis+2)%3]/d); /* float errors grrr.. */ size[(axis+1)%3] = MIN2(size[(axis+1)%3],res); size[(axis+2)%3] = MIN2(size[(axis+2)%3],res); min[0]+=d/2.0f; min[1]+=d/2.0f; min[2]+=d/2.0f; for(i=0,p=0,pa=psys->particles; ifuv[0]=min[0]+(float)i*d; pa->fuv[1]=min[1]+(float)j*d; pa->fuv[2]=min[2]+(float)k*d; pa->flag |= PARS_UNEXIST; pa->hair_index=0; /* abused in volume calculation */ } } } /* enable particles near verts/edges/faces/inside surface */ if(from==PART_FROM_VERT){ float vec[3]; pa=psys->particles; min[0]-=d/2.0f; min[1]-=d/2.0f; min[2]-=d/2.0f; for(i=0,mv=mvert; ico,min); vec[0]/=delta[0]; vec[1]/=delta[1]; vec[2]/=delta[2]; (pa +((int)(vec[0]*(size[0]-1))*res +(int)(vec[1]*(size[1]-1)))*res +(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST; } } else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){ float co1[3], co2[3]; MFace *mface=0; float v1[3], v2[3], v3[3], v4[4], lambda; int a, a1, a2, a0mul, a1mul, a2mul, totface; int amax= from==PART_FROM_FACE ? 3 : 1; totface=dm->getNumFaces(dm); mface=dm->getFaceDataArray(dm,CD_MFACE); for(a=0; agetFaceDataArray(dm,CD_MFACE); pa=psys->particles + a1*a1mul + a2*a2mul; VECCOPY(co1,pa->fuv); co1[a]-=d/2.0f; VECCOPY(co2,co1); co2[a]+=delta[a] + 0.001f*d; co1[a]-=0.001f*d; /* lets intersect the faces */ for(i=0; iv1].co); VECCOPY(v2,mvert[mface->v2].co); VECCOPY(v3,mvert[mface->v3].co); if(isect_axial_line_tri_v3(a,co1, co2, v2, v3, v1, &lambda)){ if(from==PART_FROM_FACE) (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST; else /* store number of intersections */ (pa+(int)(lambda*size[a])*a0mul)->hair_index++; } if(mface->v4){ VECCOPY(v4,mvert[mface->v4].co); if(isect_axial_line_tri_v3(a,co1, co2, v4, v1, v3, &lambda)){ if(from==PART_FROM_FACE) (pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST; else (pa+(int)(lambda*size[a])*a0mul)->hair_index++; } } } if(from==PART_FROM_VOLUME){ int in=pa->hair_index%2; if(in) pa->hair_index++; for(i=0; ihair_index%2) (pa+i*a0mul)->flag &= ~PARS_UNEXIST; /* odd intersections == in->out / out->in */ /* even intersections -> in stays same */ in=(in + (pa+i*a0mul)->hair_index) % 2; } } } } } } if(psys->part->flag & PART_GRID_INVERT){ for(i=0,pa=psys->particles; iparticles + res*(i*res + j); for(k=0; kflag ^= PARS_UNEXIST; } } } } } /* modified copy from rayshade.c */ static void hammersley_create(float *out, int n, int seed, float amount) { RNG *rng; double p, t, offs[2]; int k, kk; rng = rng_new(31415926 + n + seed); offs[0]= rng_getDouble(rng) + amount; offs[1]= rng_getDouble(rng) + amount; rng_free(rng); for (k = 0; k < n; k++) { t = 0; for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1) if (kk & 1) /* kk mod 2 = 1 */ t += p; out[2*k + 0]= fmod((double)k/(double)n + offs[0], 1.0); out[2*k + 1]= fmod(t + offs[1], 1.0); } } /* modified copy from effect.c */ static void init_mv_jit(float *jit, int num, int seed2, float amount) { RNG *rng; float *jit2, x, rad1, rad2, rad3; int i, num2; if(num==0) return; rad1= (float)(1.0/sqrt((float)num)); rad2= (float)(1.0/((float)num)); rad3= (float)sqrt((float)num)/((float)num); rng = rng_new(31415926 + num + seed2); x= 0; num2 = 2 * num; for(i=0; i 1.0f) v= 1.0f-v; else u= 1.0f-u; } vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f; vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f; vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f; co[0]= u; co[1]= v; co[2]= 0.0f; if(quad) { vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f; interp_weights_poly_v3( w,vert, 4, co); } else { interp_weights_poly_v3( w,vert, 3, co); w[3]= 0.0f; } } static int binary_search_distribution(float *sum, int n, float value) { int mid, low=0, high=n; while(low <= high) { mid= (low + high)/2; if(sum[mid] <= value && value <= sum[mid+1]) return mid; else if(sum[mid] > value) high= mid - 1; else if(sum[mid] < value) low= mid + 1; else return mid; } return low; } /* the max number if calls to rng_* funcs within psys_thread_distribute_particle * be sure to keep up to date if this changes */ #define PSYS_RND_DIST_SKIP 2 /* note: this function must be thread safe, for from == PART_FROM_CHILD */ #define ONLY_WORKING_WITH_PA_VERTS 0 static void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p) { ParticleThreadContext *ctx= thread->ctx; Object *ob= ctx->sim.ob; DerivedMesh *dm= ctx->dm; ParticleData *tpa; /* ParticleSettings *part= ctx->sim.psys->part; */ float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3], ornor1[3]; float cur_d, min_d, randu, randv; int from= ctx->from; int cfrom= ctx->cfrom; int distr= ctx->distr; int i, intersect, tot; int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */ if(from == PART_FROM_VERT) { /* TODO_PARTICLE - use original index */ pa->num= ctx->index[p]; pa->fuv[0] = 1.0f; pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0; #if ONLY_WORKING_WITH_PA_VERTS if(ctx->tree){ KDTreeNearest ptn[3]; int w, maxw; psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0); transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1); maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn); for(w=0; wverts[w]=ptn->num; } } #endif } else if(from == PART_FROM_FACE || from == PART_FROM_VOLUME) { MFace *mface; pa->num = i = ctx->index[p]; mface = dm->getFaceData(dm,i,CD_MFACE); switch(distr){ case PART_DISTR_JIT: ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel); psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv); ctx->jitoff[i]++; break; case PART_DISTR_RAND: randu= rng_getFloat(thread->rng); randv= rng_getFloat(thread->rng); rng_skip_tot -= 2; psys_uv_to_w(randu, randv, mface->v4, pa->fuv); break; } pa->foffset= 0.0f; /* experimental */ if(from==PART_FROM_VOLUME){ MVert *mvert=dm->getVertDataArray(dm,CD_MVERT); tot=dm->getNumFaces(dm); psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0); normalize_v3(nor); mul_v3_fl(nor,-100.0); VECADD(co2,co1,nor); min_d=2.0; intersect=0; for(i=0,mface=dm->getFaceDataArray(dm,CD_MFACE); inum) continue; v1=mvert[mface->v1].co; v2=mvert[mface->v2].co; v3=mvert[mface->v3].co; if(isect_line_tri_v3(co1, co2, v2, v3, v1, &cur_d, 0)){ if(cur_dfoffset=cur_d*50.0f; /* to the middle of volume */ intersect=1; } } if(mface->v4){ v4=mvert[mface->v4].co; if(isect_line_tri_v3(co1, co2, v4, v1, v3, &cur_d, 0)){ if(cur_dfoffset=cur_d*50.0f; /* to the middle of volume */ intersect=1; } } } } if(intersect==0) pa->foffset=0.0; else switch(distr){ case PART_DISTR_JIT: pa->foffset*= ctx->jit[p%(2*ctx->jitlevel)]; break; case PART_DISTR_RAND: pa->foffset*=BLI_frand(); break; } } } else if(from == PART_FROM_PARTICLE) { tpa=ctx->tpars+ctx->index[p]; pa->num=ctx->index[p]; pa->fuv[0]=tpa->fuv[0]; pa->fuv[1]=tpa->fuv[1]; /* abusing foffset a little for timing in near reaction */ pa->foffset=ctx->weight[ctx->index[p]]; ctx->weight[ctx->index[p]]+=ctx->maxweight; } else if(from == PART_FROM_CHILD) { MFace *mf; if(ctx->index[p] < 0) { cpa->num=0; cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f; cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0; return; } mf= dm->getFaceData(dm, ctx->index[p], CD_MFACE); randu= rng_getFloat(thread->rng); randv= rng_getFloat(thread->rng); rng_skip_tot -= 2; psys_uv_to_w(randu, randv, mf->v4, cpa->fuv); cpa->num = ctx->index[p]; if(ctx->tree){ KDTreeNearest ptn[10]; int w,maxw;//, do_seams; float maxd,mind,dd,totw=0.0; int parent[10]; float pweight[10]; /*do_seams= (part->flag&PART_CHILD_SEAMS && ctx->seams);*/ psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1); transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1); //maxw = BLI_kdtree_find_n_nearest(ctx->tree,(do_seams)?10:4,orco1,ornor1,ptn); maxw = BLI_kdtree_find_n_nearest(ctx->tree,4,orco1,ornor1,ptn); maxd=ptn[maxw-1].dist; mind=ptn[0].dist; dd=maxd-mind; /* the weights here could be done better */ for(w=0; wseams; // float temp[3],temp2[3],tan[3]; // float inp,cur_len,min_len=10000.0f; // int min_seam=0, near_vert=0; // /* find closest seam */ // for(i=0; itotseam; i++, seam++){ // sub_v3_v3v3(temp,co1,seam->v0); // inp=dot_v3v3(temp,seam->dir)/seam->length2; // if(inp<0.0f){ // cur_len=len_v3v3(co1,seam->v0); // } // else if(inp>1.0f){ // cur_len=len_v3v3(co1,seam->v1); // } // else{ // copy_v3_v3(temp2,seam->dir); // mul_v3_fl(temp2,inp); // cur_len=len_v3v3(temp,temp2); // } // if(cur_len1.0f) near_vert=1; // else near_vert=0; // } // } // seam=ctx->seams+min_seam; // // copy_v3_v3(temp,seam->v0); // // if(near_vert){ // if(near_vert==-1) // sub_v3_v3v3(tan,co1,seam->v0); // else{ // sub_v3_v3v3(tan,co1,seam->v1); // copy_v3_v3(temp,seam->v1); // } // normalize_v3(tan); // } // else{ // copy_v3_v3(tan,seam->tan); // sub_v3_v3v3(temp2,co1,temp); // if(dot_v3v3(tan,temp2)<0.0f) // negate_v3(tan); // } // for(w=0; w=0){ cpa->pa[i]=parent[w]; cpa->w[i]=pweight[w]; totw+=pweight[w]; i++; } } for(;i<4; i++){ cpa->pa[i]=-1; cpa->w[i]=0.0f; } if(totw>0.0f) for(w=0; w<4; w++) cpa->w[w]/=totw; cpa->parent=cpa->pa[0]; } } if(rng_skip_tot > 0) /* should never be below zero */ rng_skip(thread->rng, rng_skip_tot); } static void *exec_distribution(void *data) { ParticleThread *thread= (ParticleThread*)data; ParticleSystem *psys= thread->ctx->sim.psys; ParticleData *pa; ChildParticle *cpa; int p, totpart; if(thread->ctx->from == PART_FROM_CHILD) { totpart= psys->totchild; cpa= psys->child; for(p=0; pctx->skip) /* simplification skip */ rng_skip(thread->rng, PSYS_RND_DIST_SKIP * thread->ctx->skip[p]); if((p+thread->num) % thread->tot == 0) psys_thread_distribute_particle(thread, NULL, cpa, p); else /* thread skip */ rng_skip(thread->rng, PSYS_RND_DIST_SKIP); } } else { totpart= psys->totpart; pa= psys->particles + thread->num; for(p=thread->num; ptot, pa+=thread->tot) psys_thread_distribute_particle(thread, pa, NULL, p); } return 0; } /* not thread safe, but qsort doesn't take userdata argument */ static int *COMPARE_ORIG_INDEX = NULL; static int compare_orig_index(const void *p1, const void *p2) { int index1 = COMPARE_ORIG_INDEX[*(const int*)p1]; int index2 = COMPARE_ORIG_INDEX[*(const int*)p2]; if(index1 < index2) return -1; else if(index1 == index2) { /* this pointer comparison appears to make qsort stable for glibc, * and apparently on solaris too, makes the renders reproducable */ if(p1 < p2) return -1; else if(p1 == p2) return 0; else return 1; } else return 1; } /* creates a distribution of coordinates on a DerivedMesh */ /* */ /* 1. lets check from what we are emitting */ /* 2. now we know that we have something to emit from so */ /* let's calculate some weights */ /* 2.1 from even distribution */ /* 2.2 and from vertex groups */ /* 3. next we determine the indexes of emitting thing that */ /* the particles will have */ /* 4. let's do jitter if we need it */ /* 5. now we're ready to set the indexes & distributions to */ /* the particles */ /* 6. and we're done! */ /* This is to denote functionality that does not yet work with mesh - only derived mesh */ static int psys_threads_init_distribution(ParticleThread *threads, Scene *scene, DerivedMesh *finaldm, int from) { ParticleThreadContext *ctx= threads[0].ctx; Object *ob= ctx->sim.ob; ParticleSystem *psys= ctx->sim.psys; Object *tob; ParticleData *pa=0, *tpars= 0; ParticleSettings *part; ParticleSystem *tpsys; ParticleSeam *seams= 0; ChildParticle *cpa=0; KDTree *tree=0; DerivedMesh *dm= NULL; float *jit= NULL; int i, seed, p=0, totthread= threads[0].tot; int no_distr=0, cfrom=0; int tot=0, totpart, *index=0, children=0, totseam=0; //int *vertpart=0; int jitlevel= 1, distr; float *weight=0,*sum=0,*jitoff=0; float cur, maxweight=0.0, tweight, totweight, co[3], nor[3], orco[3], ornor[3]; if(ob==0 || psys==0 || psys->part==0) return 0; part=psys->part; totpart=psys->totpart; if(totpart==0) return 0; if (!finaldm->deformedOnly && !finaldm->getFaceDataArray(finaldm, CD_ORIGINDEX)) { printf("Can't create particles with the current modifier stack, disable destructive modifiers\n"); // XXX error("Can't paint with the current modifier stack, disable destructive modifiers"); return 0; } BLI_srandom(31415926 + psys->seed); if(from==PART_FROM_CHILD){ distr=PART_DISTR_RAND; if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){ dm= finaldm; children=1; tree=BLI_kdtree_new(totpart); for(p=0,pa=psys->particles; pfrom,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor); transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1); BLI_kdtree_insert(tree, p, orco, ornor); } BLI_kdtree_balance(tree); totpart=get_psys_tot_child(scene, psys); cfrom=from=PART_FROM_FACE; //if(part->flag&PART_CHILD_SEAMS){ // MEdge *ed, *medge=dm->getEdgeDataArray(dm,CD_MEDGE); // MVert *mvert=dm->getVertDataArray(dm,CD_MVERT); // int totedge=dm->getNumEdges(dm); // for(p=0, ed=medge; pflag&ME_SEAM) // totseam++; // if(totseam){ // ParticleSeam *cur_seam=seams=MEM_callocN(totseam*sizeof(ParticleSeam),"Child Distribution Seams"); // float temp[3],temp2[3]; // for(p=0, ed=medge; pflag&ME_SEAM){ // copy_v3_v3(cur_seam->v0,(mvert+ed->v1)->co); // copy_v3_v3(cur_seam->v1,(mvert+ed->v2)->co); // sub_v3_v3v3(cur_seam->dir,cur_seam->v1,cur_seam->v0); // cur_seam->length2=len_v3(cur_seam->dir); // cur_seam->length2*=cur_seam->length2; // temp[0]=(float)((mvert+ed->v1)->no[0]); // temp[1]=(float)((mvert+ed->v1)->no[1]); // temp[2]=(float)((mvert+ed->v1)->no[2]); // temp2[0]=(float)((mvert+ed->v2)->no[0]); // temp2[1]=(float)((mvert+ed->v2)->no[1]); // temp2[2]=(float)((mvert+ed->v2)->no[2]); // add_v3_v3v3(cur_seam->nor,temp,temp2); // normalize_v3(cur_seam->nor); // cross_v3_v3v3(cur_seam->tan,cur_seam->dir,cur_seam->nor); // normalize_v3(cur_seam->tan); // cur_seam++; // } // } // } // //} } else{ /* no need to figure out distribution */ int child_nbr= get_psys_child_number(scene, psys); totpart= get_psys_tot_child(scene, psys); alloc_child_particles(psys, totpart); cpa=psys->child; for(i=0; itotpart; p++,cpa++){ float length=2.0; cpa->parent=p; /* create even spherical distribution inside unit sphere */ while(length>=1.0f){ cpa->fuv[0]=2.0f*BLI_frand()-1.0f; cpa->fuv[1]=2.0f*BLI_frand()-1.0f; cpa->fuv[2]=2.0f*BLI_frand()-1.0f; length=len_v3(cpa->fuv); } cpa->num=-1; } } /* dmcache must be updated for parent particles if children from faces is used */ psys_calc_dmcache(ob, finaldm, psys); return 0; } } else{ dm= CDDM_from_mesh((Mesh*)ob->data, ob); /* special handling of grid distribution */ if(part->distr==PART_DISTR_GRID && from != PART_FROM_VERT){ distribute_particles_in_grid(dm,psys); dm->release(dm); return 0; } /* we need orco for consistent distributions */ DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, get_mesh_orco_verts(ob)); distr=part->distr; pa=psys->particles; if(from==PART_FROM_VERT){ MVert *mv= dm->getVertDataArray(dm, CD_MVERT); float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO); int totvert = dm->getNumVerts(dm); tree=BLI_kdtree_new(totvert); for(p=0; pdata, &co, 1, 1); } else VECCOPY(co,mv[p].co) BLI_kdtree_insert(tree,p,co,NULL); } BLI_kdtree_balance(tree); } } /* 1. */ switch(from){ case PART_FROM_VERT: tot = dm->getNumVerts(dm); break; case PART_FROM_VOLUME: case PART_FROM_FACE: tot = dm->getNumFaces(dm); break; case PART_FROM_PARTICLE: if(psys->target_ob) tob=psys->target_ob; else tob=ob; if((tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1))){ tpars=tpsys->particles; tot=tpsys->totpart; } break; } if(tot==0){ no_distr=1; if(children){ if(G.f & G_DEBUG) fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n"); if(psys->child) { for(p=0,cpa=psys->child; pfuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0; cpa->foffset= 0.0f; cpa->parent=0; cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0; cpa->num= -1; } } } else { if(G.f & G_DEBUG) fprintf(stderr,"Particle distribution error: Nothing to emit from!\n"); for(p=0,pa=psys->particles; pfuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0; pa->foffset= 0.0f; pa->num= -1; } } if(dm != finaldm) dm->release(dm); return 0; } /* 2. */ weight=MEM_callocN(sizeof(float)*tot, "particle_distribution_weights"); index=MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes"); sum=MEM_callocN(sizeof(float)*(tot+1), "particle_distribution_sum"); jitoff=MEM_callocN(sizeof(float)*tot, "particle_distribution_jitoff"); /* 2.1 */ if((part->flag&PART_EDISTR || children) && ELEM(from,PART_FROM_PARTICLE,PART_FROM_VERT)==0){ MVert *v1, *v2, *v3, *v4; float totarea=0.0, co1[3], co2[3], co3[3], co4[3]; float (*orcodata)[3]; orcodata= dm->getVertDataArray(dm, CD_ORCO); for(i=0; igetFaceData(dm,i,CD_MFACE); if(orcodata) { VECCOPY(co1, orcodata[mf->v1]); VECCOPY(co2, orcodata[mf->v2]); VECCOPY(co3, orcodata[mf->v3]); transform_mesh_orco_verts((Mesh*)ob->data, &co1, 1, 1); transform_mesh_orco_verts((Mesh*)ob->data, &co2, 1, 1); transform_mesh_orco_verts((Mesh*)ob->data, &co3, 1, 1); } else { v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT); v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT); v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT); VECCOPY(co1, v1->co); VECCOPY(co2, v2->co); VECCOPY(co3, v3->co); } if (mf->v4){ if(orcodata) { VECCOPY(co4, orcodata[mf->v4]); transform_mesh_orco_verts((Mesh*)ob->data, &co4, 1, 1); } else { v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT); VECCOPY(co4, v4->co); } cur= area_quad_v3(co1, co2, co3, co4); } else cur= area_tri_v3(co1, co2, co3); if(cur>maxweight) maxweight=cur; weight[i]= cur; totarea+=cur; } for(i=0; igetFaceData(dm,i,CD_MFACE); tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3]; if(mf->v4) { tweight += vweight[mf->v4]; tweight /= 4.0; } else { tweight /= 3.0; } weight[i]*=tweight; } } MEM_freeN(vweight); } } /* 3. */ totweight= 0.0f; for(i=0;i 0.0f) totweight= 1.0f/totweight; sum[0]= 0.0f; for(i=0;iflag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) { float pos; for(p=0; p sum[i+1])) i++; index[p]= MIN2(tot-1, i); /* avoid zero weight face */ if(p == totpart-1 && weight[index[p]] == 0.0f) index[p]= index[p-1]; jitoff[index[p]]= pos; } } MEM_freeN(sum); /* for hair, sort by origindex, allows optimizations in rendering */ /* however with virtual parents the children need to be in random order */ if(part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0)) { if(from != PART_FROM_PARTICLE) { COMPARE_ORIG_INDEX = NULL; if(from == PART_FROM_VERT) { if(dm->numVertData) COMPARE_ORIG_INDEX= dm->getVertDataArray(dm, CD_ORIGINDEX); } else { if(dm->numFaceData) COMPARE_ORIG_INDEX= dm->getFaceDataArray(dm, CD_ORIGINDEX); } if(COMPARE_ORIG_INDEX) { qsort(index, totpart, sizeof(int), compare_orig_index); COMPARE_ORIG_INDEX = NULL; } } } /* weights are no longer used except for FROM_PARTICLE, which needs them zeroed for indexing */ if(from==PART_FROM_PARTICLE){ for(i=0; iuserjit; if(jitlevel == 0) { jitlevel= totpart/tot; if(part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */ if(jitlevel<3) jitlevel= 3; } jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit"); /* for small amounts of particles we use regular jitter since it looks * a bit better, for larger amounts we switch to hammersley sequence * because it is much faster */ if(jitlevel < 25) init_mv_jit(jit, jitlevel, psys->seed, part->jitfac); else hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac); BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */ } /* 5. */ ctx->tree= tree; ctx->seams= seams; ctx->totseam= totseam; ctx->sim.psys= psys; ctx->index= index; ctx->jit= jit; ctx->jitlevel= jitlevel; ctx->jitoff= jitoff; ctx->weight= weight; ctx->maxweight= maxweight; ctx->from= (children)? PART_FROM_CHILD: from; ctx->cfrom= cfrom; ctx->distr= distr; ctx->dm= dm; ctx->tpars= tpars; if(children) { totpart= psys_render_simplify_distribution(ctx, totpart); alloc_child_particles(psys, totpart); } if(!children || psys->totchild < 10000) totthread= 1; seed= 31415926 + ctx->sim.psys->seed; for(i=0; ipsmd->dm; ListBase threads; ParticleThread *pthreads; ParticleThreadContext *ctx; int i, totthread; pthreads= psys_threads_create(sim); if(!psys_threads_init_distribution(pthreads, sim->scene, finaldm, from)) { psys_threads_free(pthreads); return; } totthread= pthreads[0].tot; if(totthread > 1) { BLI_init_threads(&threads, exec_distribution, totthread); for(i=0; iob, finaldm, sim->psys); ctx= pthreads[0].ctx; if(ctx->dm != finaldm) ctx->dm->release(ctx->dm); psys_threads_free(pthreads); } /* ready for future use, to emit particles without geometry */ static void distribute_particles_on_shape(ParticleSimulationData *sim, int from) { ParticleSystem *psys = sim->psys; PARTICLE_P; fprintf(stderr,"Shape emission not yet possible!\n"); LOOP_PARTICLES { pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0; pa->foffset= 0.0f; pa->num= -1; } } static void distribute_particles(ParticleSimulationData *sim, int from) { PARTICLE_PSMD; int distr_error=0; if(psmd){ if(psmd->dm) distribute_particles_on_dm(sim, from); else distr_error=1; } else distribute_particles_on_shape(sim, from); if(distr_error){ ParticleSystem *psys = sim->psys; PARTICLE_P; fprintf(stderr,"Particle distribution error!\n"); LOOP_PARTICLES { pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0; pa->foffset= 0.0f; pa->num= -1; } } } /* threaded child particle distribution and path caching */ ParticleThread *psys_threads_create(ParticleSimulationData *sim) { ParticleThread *threads; ParticleThreadContext *ctx; int i, totthread; if(sim->scene->r.mode & R_FIXED_THREADS) totthread= sim->scene->r.threads; else totthread= BLI_system_thread_count(); threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread"); ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext"); ctx->sim = *sim; ctx->dm= ctx->sim.psmd->dm; ctx->ma= give_current_material(sim->ob, sim->psys->part->omat); memset(threads, 0, sizeof(ParticleThread)*totthread); for(i=0; ivg_length) MEM_freeN(ctx->vg_length); if(ctx->vg_clump) MEM_freeN(ctx->vg_clump); if(ctx->vg_kink) MEM_freeN(ctx->vg_kink); if(ctx->vg_rough1) MEM_freeN(ctx->vg_rough1); if(ctx->vg_rough2) MEM_freeN(ctx->vg_rough2); if(ctx->vg_roughe) MEM_freeN(ctx->vg_roughe); if(ctx->sim.psys->lattice){ end_latt_deform(ctx->sim.psys->lattice); ctx->sim.psys->lattice= NULL; } /* distribution */ if(ctx->jit) MEM_freeN(ctx->jit); if(ctx->jitoff) MEM_freeN(ctx->jitoff); if(ctx->weight) MEM_freeN(ctx->weight); if(ctx->index) MEM_freeN(ctx->index); if(ctx->skip) MEM_freeN(ctx->skip); if(ctx->seams) MEM_freeN(ctx->seams); //if(ctx->vertpart) MEM_freeN(ctx->vertpart); BLI_kdtree_free(ctx->tree); /* threads */ for(i=0; ipsys->part; ParticleTexture ptex; Material *ma=0; //IpoCurve *icu=0; // XXX old animation system int totpart; totpart=sim->psys->totpart; ptex.life=ptex.size=ptex.exist=ptex.length=1.0; ptex.time=(float)p/(float)totpart; BLI_srandom(sim->psys->seed + p + 125); if(part->from!=PART_FROM_PARTICLE && part->type!=PART_FLUID){ ma=give_current_material(sim->ob,part->omat); /* TODO: needs some work to make most blendtypes generally usefull */ psys_get_texture(sim,ma,pa,&ptex,MAP_PA_INIT); } pa->lifetime= part->lifetime*ptex.life; if(part->type==PART_HAIR) pa->time= 0.0f; //else if(part->type==PART_REACTOR && (part->flag&PART_REACT_STA_END)==0) // pa->time= 300000.0f; /* max frame */ else{ //icu=find_ipocurve(psys->part->ipo,PART_EMIT_TIME); //if(icu){ // calc_icu(icu,100*ptex.time); // ptex.time=icu->curval; //} pa->time= part->sta + (part->end - part->sta)*ptex.time; } if(part->type==PART_HAIR){ pa->lifetime=100.0f; } else{ #if 0 // XXX old animation system icu=find_ipocurve(psys->part->ipo,PART_EMIT_LIFE); if(icu){ calc_icu(icu,100*ptex.time); pa->lifetime*=icu->curval; } #endif // XXX old animation system if(part->randlife!=0.0) pa->lifetime*= 1.0f - part->randlife * BLI_frand(); } pa->dietime= pa->time+pa->lifetime; if(part->type!=PART_HAIR && part->distr!=PART_DISTR_GRID && part->from != PART_FROM_VERT){ if(ptex.exist < BLI_frand()) pa->flag |= PARS_UNEXIST; else pa->flag &= ~PARS_UNEXIST; } pa->hair_index=0; /* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */ /* usage other than straight after distribute has to handle this index by itself - jahka*/ //pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */ } static void initialize_all_particles(ParticleSimulationData *sim) { //IpoCurve *icu=0; // XXX old animation system ParticleSystem *psys = sim->psys; PARTICLE_P; LOOP_PARTICLES initialize_particle(sim, pa, p); if(psys->part->type != PART_FLUID) { #if 0 // XXX old animation system icu=find_ipocurve(psys->part->ipo,PART_EMIT_FREQ); if(icu){ float time=psys->part->sta, end=psys->part->end; float v1, v2, a=0.0f, t1,t2, d; p=0; pa=psys->particles; calc_icu(icu,time); v1=icu->curval; if(v1<0.0f) v1=0.0f; calc_icu(icu,time+1.0f); v2=icu->curval; if(v2<0.0f) v2=0.0f; for(p=0, pa=psys->particles; pcurval; } if(timetime=time+((float)(p+1)-a)/v1; } else{ d=(float)sqrt(v1*v1-2.0f*(v2-v1)*(a-(float)(p+1))); t1=(-v1+d)/(v2-v1); t2=(-v1-d)/(v2-v1); /* the root between 0-1 is the correct one */ if(t1>0.0f && t1<=1.0f) pa->time=time+t1; else pa->time=time+t2; } } pa->dietime = pa->time+pa->lifetime; pa->flag &= ~PARS_UNEXIST; } for(; pflag |= PARS_UNEXIST; } } #endif // XXX old animation system } } /* sets particle to the emitter surface with initial velocity & rotation */ void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra) { Object *ob = sim->ob; ParticleSystem *psys = sim->psys; ParticleSettings *part; ParticleTexture ptex; ParticleKey state; //IpoCurve *icu=0; // XXX old animation system float fac, phasefac, nor[3]={0,0,0},loc[3],vel[3]={0.0,0.0,0.0},rot[4],q2[4]; float r_vel[3],r_ave[3],r_rot[4],vec[3],p_vel[3]={0.0,0.0,0.0}; float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0}, rot_vec[3]={0.0,0.0,0.0}; float q_phase[4], r_phase; int p = pa - psys->particles; part=psys->part; ptex.ivel=1.0; /* we need to get every random even if they're not used so that they don't effect eachother */ r_vel[0] = 2.0f * (PSYS_FRAND(p + 10) - 0.5f); r_vel[1] = 2.0f * (PSYS_FRAND(p + 11) - 0.5f); r_vel[2] = 2.0f * (PSYS_FRAND(p + 12) - 0.5f); r_ave[0] = 2.0f * (PSYS_FRAND(p + 13) - 0.5f); r_ave[1] = 2.0f * (PSYS_FRAND(p + 14) - 0.5f); r_ave[2] = 2.0f * (PSYS_FRAND(p + 15) - 0.5f); r_rot[0] = 2.0f * (PSYS_FRAND(p + 16) - 0.5f); r_rot[1] = 2.0f * (PSYS_FRAND(p + 17) - 0.5f); r_rot[2] = 2.0f * (PSYS_FRAND(p + 18) - 0.5f); r_rot[3] = 2.0f * (PSYS_FRAND(p + 19) - 0.5f); normalize_qt(r_rot); r_phase = PSYS_FRAND(p + 20); if(part->from==PART_FROM_PARTICLE){ ParticleSimulationData tsim = {sim->scene, psys->target_ob ? psys->target_ob : ob, NULL, NULL}; float speed; tsim.psys = BLI_findlink(&tsim.ob->particlesystem, sim->psys->target_psys-1); state.time = pa->time; if(pa->num == -1) memset(&state, 0, sizeof(state)); else psys_get_particle_state(&tsim, pa->num, &state, 1); psys_get_from_key(&state, loc, nor, rot, 0); mul_qt_v3(rot, vtan); mul_qt_v3(rot, utan); speed= normalize_v3_v3(p_vel, state.vel); mul_v3_fl(p_vel, dot_v3v3(r_vel, p_vel)); VECSUB(p_vel, r_vel, p_vel); normalize_v3(p_vel); mul_v3_fl(p_vel, speed); VECCOPY(pa->fuv, loc); /* abusing pa->fuv (not used for "from particle") for storing emit location */ } else{ /* get precise emitter matrix if particle is born */ if(part->type!=PART_HAIR && pa->time < cfra && pa->time >= sim->psys->cfra) { /* we have to force RECALC_ANIM here since where_is_objec_time only does drivers */ BKE_animsys_evaluate_animdata(&sim->ob->id, sim->ob->adt, pa->time, ADT_RECALC_ANIM); where_is_object_time(sim->scene, sim->ob, pa->time); } /* get birth location from object */ if(part->tanfac!=0.0) psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0); else psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,0,0,0,0); /* get possible textural influence */ psys_get_texture(sim, give_current_material(sim->ob,part->omat), pa, &ptex, MAP_PA_IVEL); //if(vg_vel && pa->num != -1) // ptex.ivel*=psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_vel); /* particles live in global space so */ /* let's convert: */ /* -location */ mul_m4_v3(ob->obmat,loc); /* -normal */ mul_mat3_m4_v3(ob->obmat,nor); normalize_v3(nor); /* -tangent */ if(part->tanfac!=0.0){ //float phase=vg_rot?2.0f*(psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f; float phase=0.0f; mul_v3_fl(vtan,-(float)cos(M_PI*(part->tanphase+phase))); fac=-(float)sin(M_PI*(part->tanphase+phase)); VECADDFAC(vtan,vtan,utan,fac); mul_mat3_m4_v3(ob->obmat,vtan); VECCOPY(utan,nor); mul_v3_fl(utan,dot_v3v3(vtan,nor)); VECSUB(vtan,vtan,utan); normalize_v3(vtan); } /* -velocity */ if(part->randfac!=0.0){ mul_mat3_m4_v3(ob->obmat,r_vel); normalize_v3(r_vel); } /* -angular velocity */ if(part->avemode==PART_AVE_RAND){ mul_mat3_m4_v3(ob->obmat,r_ave); normalize_v3(r_ave); } /* -rotation */ if(part->randrotfac != 0.0f){ mat4_to_quat(rot,ob->obmat); mul_qt_qtqt(r_rot,r_rot,rot); } } if(part->phystype==PART_PHYS_BOIDS && pa->boid) { BoidParticle *bpa = pa->boid; float dvec[3], q[4], mat[3][3]; VECCOPY(pa->state.co,loc); /* boids don't get any initial velocity */ pa->state.vel[0]=pa->state.vel[1]=pa->state.vel[2]=0.0f; /* boids store direction in ave */ if(fabs(nor[2])==1.0f) { sub_v3_v3v3(pa->state.ave, loc, ob->obmat[3]); normalize_v3(pa->state.ave); } else { VECCOPY(pa->state.ave, nor); } /* and gravity in r_ve */ bpa->gravity[0] = bpa->gravity[1] = 0.0f; bpa->gravity[2] = -1.0f; if((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) && sim->scene->physics_settings.gravity[2]!=0.0f) bpa->gravity[2] = sim->scene->physics_settings.gravity[2]; /* calculate rotation matrix */ project_v3_v3v3(dvec, r_vel, pa->state.ave); sub_v3_v3v3(mat[0], pa->state.ave, dvec); normalize_v3(mat[0]); negate_v3_v3(mat[2], r_vel); normalize_v3(mat[2]); cross_v3_v3v3(mat[1], mat[2], mat[0]); /* apply rotation */ mat3_to_quat_is_ok( q,mat); copy_qt_qt(pa->state.rot, q); bpa->data.health = part->boids->health; bpa->data.mode = eBoidMode_InAir; bpa->data.state_id = ((BoidState*)part->boids->states.first)->id; bpa->data.acc[0]=bpa->data.acc[1]=bpa->data.acc[2]=0.0f; } else { /* conversion done so now we apply new: */ /* -velocity from: */ /* *reactions */ if(dtime>0.0f){ VECSUB(vel,pa->state.vel,pa->prev_state.vel); } /* *emitter velocity */ if(dtime!=0.0 && part->obfac!=0.0){ VECSUB(vel,loc,pa->state.co); mul_v3_fl(vel,part->obfac/dtime); } /* *emitter normal */ if(part->normfac!=0.0) VECADDFAC(vel,vel,nor,part->normfac); /* *emitter tangent */ if(sim->psmd && part->tanfac!=0.0) VECADDFAC(vel,vel,vtan,part->tanfac); //VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_tan):1.0f)); /* *emitter object orientation */ if(part->ob_vel[0]!=0.0) { normalize_v3_v3(vec, ob->obmat[0]); VECADDFAC(vel, vel, vec, part->ob_vel[0]); } if(part->ob_vel[1]!=0.0) { normalize_v3_v3(vec, ob->obmat[1]); VECADDFAC(vel, vel, vec, part->ob_vel[1]); } if(part->ob_vel[2]!=0.0) { normalize_v3_v3(vec, ob->obmat[2]); VECADDFAC(vel, vel, vec, part->ob_vel[2]); } /* *texture */ /* TODO */ /* *random */ if(part->randfac!=0.0) VECADDFAC(vel,vel,r_vel,part->randfac); /* *particle */ if(part->partfac!=0.0) VECADDFAC(vel,vel,p_vel,part->partfac); //icu=find_ipocurve(psys->part->ipo,PART_EMIT_VEL); //if(icu){ // calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta))); // ptex.ivel*=icu->curval; //} mul_v3_fl(vel,ptex.ivel); VECCOPY(pa->state.vel,vel); /* -location from emitter */ VECCOPY(pa->state.co,loc); /* -rotation */ pa->state.rot[0]=1.0; pa->state.rot[1]=pa->state.rot[2]=pa->state.rot[3]=0.0; if(part->rotmode){ /* create vector into which rotation is aligned */ switch(part->rotmode){ case PART_ROT_NOR: copy_v3_v3(rot_vec, nor); break; case PART_ROT_VEL: copy_v3_v3(rot_vec, vel); break; case PART_ROT_GLOB_X: case PART_ROT_GLOB_Y: case PART_ROT_GLOB_Z: rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f; break; case PART_ROT_OB_X: case PART_ROT_OB_Y: case PART_ROT_OB_Z: copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]); break; } /* create rotation quat */ negate_v3(rot_vec); vec_to_quat( q2,rot_vec, OB_POSX, OB_POSZ); /* randomize rotation quat */ if(part->randrotfac!=0.0f) interp_qt_qtqt(rot, q2, r_rot, part->randrotfac); else copy_qt_qt(rot,q2); /* rotation phase */ phasefac = part->phasefac; if(part->randphasefac != 0.0f) phasefac += part->randphasefac * r_phase; axis_angle_to_quat( q_phase,x_vec, phasefac*(float)M_PI); /* combine base rotation & phase */ mul_qt_qtqt(pa->state.rot, rot, q_phase); } /* -angular velocity */ pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0; if(part->avemode){ switch(part->avemode){ case PART_AVE_SPIN: VECCOPY(pa->state.ave,vel); break; case PART_AVE_RAND: VECCOPY(pa->state.ave,r_ave); break; } normalize_v3(pa->state.ave); mul_v3_fl(pa->state.ave,part->avefac); //icu=find_ipocurve(psys->part->ipo,PART_EMIT_AVE); //if(icu){ // calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta))); // mul_v3_fl(pa->state.ave,icu->curval); //} } } pa->dietime = pa->time + pa->lifetime; if(pa->time > cfra) pa->alive = PARS_UNBORN; else if(pa->dietime <= cfra) pa->alive = PARS_DEAD; else pa->alive = PARS_ALIVE; pa->state.time = cfra; } static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from) { ParticleData *pa; int p, totpart=sim->psys->totpart; //float *vg_vel=psys_cache_vgroup(sim->psmd->dm,sim->psys,PSYS_VG_VEL); //float *vg_tan=psys_cache_vgroup(sim->psmd->dm,sim->psys,PSYS_VG_TAN); //float *vg_rot=psys_cache_vgroup(sim->psmd->dm,sim->psys,PSYS_VG_ROT); for(p=from, pa=sim->psys->particles+from; pob == NULL || pt->ob == ob) psys = BLI_findlink(&ob->particlesystem, pt->psys-1); else psys = BLI_findlink(&pt->ob->particlesystem, pt->psys-1); if(psys) pt->flag |= PTARGET_VALID; else pt->flag &= ~PTARGET_VALID; return psys; } /************************************************/ /* Keyed particles */ /************************************************/ /* Counts valid keyed targets */ void psys_count_keyed_targets(ParticleSimulationData *sim) { ParticleSystem *psys = sim->psys, *kpsys; ParticleTarget *pt = psys->targets.first; int keys_valid = 1; psys->totkeyed = 0; for(; pt; pt=pt->next) { kpsys = psys_get_target_system(sim->ob, pt); if(kpsys && kpsys->totpart) { psys->totkeyed += keys_valid; if(psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f) psys->totkeyed += 1; } else { keys_valid = 0; } } psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops; } static void set_keyed_keys(ParticleSimulationData *sim) { ParticleSystem *psys = sim->psys; ParticleSimulationData ksim = {sim->scene, NULL, NULL, NULL}; ParticleTarget *pt; PARTICLE_P; ParticleKey *key; int totpart = psys->totpart, k, totkeys = psys->totkeyed; /* no proper targets so let's clear and bail out */ if(psys->totkeyed==0) { free_keyed_keys(psys); psys->flag &= ~PSYS_KEYED; return; } if(totpart && psys->particles->totkey != totkeys) { free_keyed_keys(psys); key = MEM_callocN(totpart*totkeys*sizeof(ParticleKey), "Keyed keys"); LOOP_PARTICLES { pa->keys = key; pa->totkey = totkeys; key += totkeys; } } psys->flag &= ~PSYS_KEYED; pt = psys->targets.first; for(k=0; kob ? pt->ob : sim->ob; ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1); LOOP_PARTICLES { key = pa->keys + k; key->time = -1.0; /* use current time */ psys_get_particle_state(&ksim, p%ksim.psys->totpart, key, 1); if(psys->flag & PSYS_KEYED_TIMING){ key->time = pa->time + pt->time; if(pt->duration != 0.0f && k+1 < totkeys) { copy_particle_key(key+1, key, 1); (key+1)->time = pa->time + pt->time + pt->duration; } } else if(totkeys > 1) key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime; else key->time = pa->time; } if(psys->flag & PSYS_KEYED_TIMING && pt->duration!=0.0f) k++; pt = (pt->next && pt->next->flag & PTARGET_VALID)? pt->next : psys->targets.first; } psys->flag |= PSYS_KEYED; } /************************************************/ /* Reactors */ /************************************************/ //static void push_reaction(ParticleSimulationData *sim, int pa_num, int event, ParticleKey *state) //{ // Object *rob; // ParticleSystem *rpsys; // ParticleSettings *rpart; // ParticleData *pa; // ListBase *lb=&sim->psys->effectors; // ParticleEffectorCache *ec; // ParticleReactEvent *re; // // if(lb->first) for(ec = lb->first; ec; ec= ec->next){ // if(ec->type & PSYS_EC_REACTOR){ // /* all validity checks already done in add_to_effectors */ // rob=ec->ob; // rpsys=BLI_findlink(&rob->particlesystem,ec->psys_nbr); // rpart=rpsys->part; // if(rpsys->part->reactevent==event){ // pa=sim->psys->particles+pa_num; // re= MEM_callocN(sizeof(ParticleReactEvent), "react event"); // re->event=event; // re->pa_num = pa_num; // re->ob = sim->ob; // re->psys = sim->psys; // re->size = pa->size; // copy_particle_key(&re->state,state,1); // // switch(event){ // case PART_EVENT_DEATH: // re->time=pa->dietime; // break; // case PART_EVENT_COLLIDE: // re->time=state->time; // break; // case PART_EVENT_NEAR: // re->time=state->time; // break; // } // // BLI_addtail(&rpsys->reactevents, re); // } // } // } //} //static void react_to_events(ParticleSystem *psys, int pa_num) //{ // ParticleSettings *part=psys->part; // ParticleData *pa=psys->particles+pa_num; // ParticleReactEvent *re=psys->reactevents.first; // int birth=0; // float dist=0.0f; // // for(re=psys->reactevents.first; re; re=re->next){ // birth=0; // if(part->from==PART_FROM_PARTICLE){ // if(pa->num==re->pa_num && pa->alive==PARS_UNBORN){ // if(re->event==PART_EVENT_NEAR){ // ParticleData *tpa = re->psys->particles+re->pa_num; // float pa_time=tpa->time + pa->foffset*tpa->lifetime; // if(re->time >= pa_time){ // pa->time=pa_time; // pa->dietime=pa->time+pa->lifetime; // } // } // else{ // pa->time=re->time; // pa->dietime=pa->time+pa->lifetime; // } // } // } // else{ // dist=len_v3v3(pa->state.co, re->state.co); // if(dist <= re->size){ // if(pa->alive==PARS_UNBORN){ // pa->time=re->time; // pa->dietime=pa->time+pa->lifetime; // birth=1; // } // if(birth || part->flag&PART_REACT_MULTIPLE){ // float vec[3]; // VECSUB(vec,pa->state.co, re->state.co); // if(birth==0) // mul_v3_fl(vec,(float)pow(1.0f-dist/re->size,part->reactshape)); // VECADDFAC(pa->state.vel,pa->state.vel,vec,part->reactfac); // VECADDFAC(pa->state.vel,pa->state.vel,re->state.vel,part->partfac); // } // if(birth) // mul_v3_fl(pa->state.vel,(float)pow(1.0f-dist/re->size,part->reactshape)); // } // } // } //} //void psys_get_reactor_target(ParticleSimulationData *sim, Object **target_ob, ParticleSystem **target_psys) //{ // Object *tob; // // tob = sim->psys->target_ob ? sim->psys->target_ob : sim->ob; // // *target_psys = BLI_findlink(&tob->particlesystem, sim->psys->target_psys-1); // if(*target_psys) // *target_ob=tob; // else // *target_ob=0; //} /************************************************/ /* Point Cache */ /************************************************/ void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys) { PointCache *cache = psys->pointcache; if(cache->flag & PTCACHE_DISK_CACHE && cache->mem_cache.first == NULL) { PTCacheID pid; BKE_ptcache_id_from_particles(&pid, ob, psys); BKE_ptcache_disk_to_mem(&pid); } } static void psys_clear_temp_pointcache(ParticleSystem *psys) { if(psys->pointcache->flag & PTCACHE_DISK_CACHE) BKE_ptcache_free_mem(&psys->pointcache->mem_cache); } void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra) { ParticleSettings *part = psys->part; *sfra = MAX2(1, (int)part->sta); *efra = MIN2((int)(part->end + part->lifetime + 1.0), scene->r.efra); } /************************************************/ /* Effectors */ /************************************************/ void psys_update_particle_tree(ParticleSystem *psys, float cfra) { if(psys) { PARTICLE_P; if(!psys->tree || psys->tree_frame != cfra) { BLI_kdtree_free(psys->tree); psys->tree = BLI_kdtree_new(psys->totpart); LOOP_SHOWN_PARTICLES { if(pa->alive == PARS_ALIVE) { if(pa->state.time == cfra) BLI_kdtree_insert(psys->tree, p, pa->prev_state.co, NULL); else BLI_kdtree_insert(psys->tree, p, pa->state.co, NULL); } } BLI_kdtree_balance(psys->tree); psys->tree_frame = psys->cfra; } } } static void psys_update_effectors(ParticleSimulationData *sim) { pdEndEffectors(&sim->psys->effectors); sim->psys->effectors = pdInitEffectors(sim->scene, sim->ob, sim->psys, sim->psys->part->effector_weights); precalc_guides(sim, sim->psys->effectors); } /************************************************* SPH fluid physics In theory, there could be unlimited implementation of SPH simulators **************************************************/ void particle_fluidsim(ParticleSystem *psys, ParticleData *pa, ParticleSettings *part, ParticleSimulationData *sim, float dfra, float cfra, float mass){ /**************************************************************************************************************** * This code uses in some parts adapted algorithms from the pseduo code as outlined in the Research paper * Titled: Particle-based Viscoelastic Fluid Simulation. * Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin * * Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/ * Presented at Siggraph, (2005) * *****************************************************************************************************************/ KDTree *tree = psys->tree; KDTreeNearest *ptn = NULL; SPHFluidSettings *fluid = part->fluid; ParticleData *second_particle; float start[3], end[3], v[3]; float temp[3]; float q, radius, D; float p, pnear, pressure_near, pressure; float dtime = dfra * psys_get_timestep(sim); float omega = fluid->viscosity_omega; float beta = fluid->viscosity_omega; float massfactor = 1.0f/mass; int n, neighbours; radius = fluid->radius; VECCOPY(start, pa->prev_state.co); VECCOPY(end, pa->state.co); VECCOPY(v, pa->state.vel); neighbours = BLI_kdtree_range_search(tree, radius, start, NULL, &ptn); /* use ptn[n].co to store relative direction */ for(n=1; n 0.f || beta > 0.f) { float u, I; for(n=1; nparticles + ptn[n].index; q = ptn[n].dist/radius; sub_v3_v3v3(temp, v, second_particle->prev_state.vel); u = dot_v3v3(ptn[n].co, temp); if (u > 0){ I = dtime * ((1-q) * (omega * u + beta * u*u)) * 0.5f; madd_v3_v3fl(v, ptn[n].co, -I * massfactor); } } } /* Hooke's spring force */ if (fluid->spring_k > 0.f) { float D, L = fluid->rest_length; for(n=1; nspring_k * (1.f - L) * (L - ptn[n].dist/radius); madd_v3_v3fl(v, ptn[n].co, -D * massfactor); } } /* Update particle position */ VECADDFAC(end, start, v, dtime); /* Double Density Relaxation - Algorithm 2 */ p = 0; pnear = 0; for(n=1; nmass; pnear *= part->mass; pressure = fluid->stiffness_k * (p - fluid->rest_density); pressure_near = fluid->stiffness_knear * pnear; for(n=1; nbuoyancy >= 0.f && psys_uses_gravity(sim)) { float B = -dtime * dtime * fluid->buoyancy * (p - fluid->rest_density) * 0.5f; madd_v3_v3fl(end, sim->scene->physics_settings.gravity, -B * massfactor); } /* apply final result and recalculate velocity */ VECCOPY(pa->state.co, end); sub_v3_v3v3(pa->state.vel, end, start); mul_v3_fl(pa->state.vel, 1.f/dtime); if(ptn){ MEM_freeN(ptn); ptn=NULL;} } static void apply_particle_fluidsim(ParticleSystem *psys, ParticleData *pa, ParticleSettings *part, ParticleSimulationData *sim, float dfra, float cfra){ ParticleTarget *pt; // float dtime = dfra*psys_get_timestep(sim); float particle_mass = part->mass; particle_fluidsim(psys, pa, part, sim, dfra, cfra, particle_mass); /*----check other SPH systems (Multifluids) , each fluid has its own parameters---*/ for(pt=sim->psys->targets.first; pt; pt=pt->next) { ParticleSystem *epsys = psys_get_target_system(sim->ob, pt); if(epsys) particle_fluidsim(epsys, pa, epsys->part, sim, dfra, cfra, particle_mass); } /*----------------------------------------------------------------*/ } /************************************************/ /* Newtonian physics */ /************************************************/ /* gathers all forces that effect particles and calculates a new state for the particle */ static void apply_particle_forces(ParticleSimulationData *sim, int p, float dfra, float cfra) { ParticleSettings *part = sim->psys->part; ParticleData *pa = sim->psys->particles + p; EffectedPoint epoint; ParticleKey states[5], tkey; float timestep = psys_get_timestep(sim); float force[3],impulse[3],dx[4][3],dv[4][3],oldpos[3]; float dtime=dfra*timestep, time, pa_mass=part->mass, fac, fra=sim->psys->cfra; int i, steps=1; /* maintain angular velocity */ VECCOPY(pa->state.ave,pa->prev_state.ave); VECCOPY(oldpos,pa->state.co); if(part->flag & PART_SIZEMASS) pa_mass*=pa->size; switch(part->integrator){ case PART_INT_EULER: steps=1; break; case PART_INT_MIDPOINT: steps=2; break; case PART_INT_RK4: steps=4; break; case PART_INT_VERLET: steps=1; break; } copy_particle_key(states,&pa->state,1); for(i=0; itype != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR) pdDoEffectors(sim->psys->effectors, sim->colliders, part->effector_weights, &epoint, force, impulse); /* calculate air-particle interaction */ if(part->dragfac!=0.0f){ fac=-part->dragfac*pa->size*pa->size*len_v3(states[i].vel); VECADDFAC(force,force,states[i].vel,fac); } /* brownian force */ if(part->brownfac!=0.0){ force[0]+=(BLI_frand()-0.5f)*part->brownfac; force[1]+=(BLI_frand()-0.5f)*part->brownfac; force[2]+=(BLI_frand()-0.5f)*part->brownfac; } /* force to acceleration*/ mul_v3_fl(force,1.0f/pa_mass); /* add global acceleration (gravitation) */ if(psys_uses_gravity(sim) /* normal gravity is too strong for hair so it's disabled by default */ && (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)) { float gravity[3]; VECCOPY(gravity, sim->scene->physics_settings.gravity); mul_v3_fl(gravity, part->effector_weights->global_gravity); VECADD(force,force,gravity); } /* calculate next state */ VECADD(states[i].vel,states[i].vel,impulse); switch(part->integrator){ case PART_INT_EULER: VECADDFAC(pa->state.co,states->co,states->vel,dtime); VECADDFAC(pa->state.vel,states->vel,force,dtime); break; case PART_INT_MIDPOINT: if(i==0){ VECADDFAC(states[1].co,states->co,states->vel,dtime*0.5f); VECADDFAC(states[1].vel,states->vel,force,dtime*0.5f); fra=sim->psys->cfra+0.5f*dfra; } else{ VECADDFAC(pa->state.co,states->co,states[1].vel,dtime); VECADDFAC(pa->state.vel,states->vel,force,dtime); } break; case PART_INT_RK4: switch(i){ case 0: VECCOPY(dx[0],states->vel); mul_v3_fl(dx[0],dtime); VECCOPY(dv[0],force); mul_v3_fl(dv[0],dtime); VECADDFAC(states[1].co,states->co,dx[0],0.5f); VECADDFAC(states[1].vel,states->vel,dv[0],0.5f); fra=sim->psys->cfra+0.5f*dfra; break; case 1: VECADDFAC(dx[1],states->vel,dv[0],0.5f); mul_v3_fl(dx[1],dtime); VECCOPY(dv[1],force); mul_v3_fl(dv[1],dtime); VECADDFAC(states[2].co,states->co,dx[1],0.5f); VECADDFAC(states[2].vel,states->vel,dv[1],0.5f); break; case 2: VECADDFAC(dx[2],states->vel,dv[1],0.5f); mul_v3_fl(dx[2],dtime); VECCOPY(dv[2],force); mul_v3_fl(dv[2],dtime); VECADD(states[3].co,states->co,dx[2]); VECADD(states[3].vel,states->vel,dv[2]); fra=cfra; break; case 3: VECADD(dx[3],states->vel,dv[2]); mul_v3_fl(dx[3],dtime); VECCOPY(dv[3],force); mul_v3_fl(dv[3],dtime); VECADDFAC(pa->state.co,states->co,dx[0],1.0f/6.0f); VECADDFAC(pa->state.co,pa->state.co,dx[1],1.0f/3.0f); VECADDFAC(pa->state.co,pa->state.co,dx[2],1.0f/3.0f); VECADDFAC(pa->state.co,pa->state.co,dx[3],1.0f/6.0f); VECADDFAC(pa->state.vel,states->vel,dv[0],1.0f/6.0f); VECADDFAC(pa->state.vel,pa->state.vel,dv[1],1.0f/3.0f); VECADDFAC(pa->state.vel,pa->state.vel,dv[2],1.0f/3.0f); VECADDFAC(pa->state.vel,pa->state.vel,dv[3],1.0f/6.0f); } break; case PART_INT_VERLET: /* Verlet integration */ VECADDFAC(pa->state.vel,pa->state.vel,force,dtime); VECADDFAC(pa->state.co,pa->state.co,pa->state.vel,dtime); VECSUB(pa->state.vel,pa->state.co,oldpos); mul_v3_fl(pa->state.vel,1.0f/dtime); break; } } /* damp affects final velocity */ if(part->dampfac!=0.0) mul_v3_fl(pa->state.vel,1.0f-part->dampfac); VECCOPY(pa->state.ave, states->ave); /* finally we do guides */ time=(cfra-pa->time)/pa->lifetime; CLAMP(time,0.0,1.0); VECCOPY(tkey.co,pa->state.co); VECCOPY(tkey.vel,pa->state.vel); tkey.time=pa->state.time; if(part->type != PART_HAIR) { if(do_guides(sim->psys->effectors, &tkey, p, time)) { VECCOPY(pa->state.co,tkey.co); /* guides don't produce valid velocity */ VECSUB(pa->state.vel,tkey.co,pa->prev_state.co); mul_v3_fl(pa->state.vel,1.0f/dtime); pa->state.time=tkey.time; } } } static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep) { float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep; if((part->flag & PART_ROT_DYN)==0){ if(part->avemode==PART_AVE_SPIN){ float angle; float len1 = len_v3(pa->prev_state.vel); float len2 = len_v3(pa->state.vel); if(len1==0.0f || len2==0.0f) pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0f; else{ cross_v3_v3v3(pa->state.ave,pa->prev_state.vel,pa->state.vel); normalize_v3(pa->state.ave); angle=dot_v3v3(pa->prev_state.vel,pa->state.vel)/(len1*len2); mul_v3_fl(pa->state.ave,saacos(angle)/dtime); } axis_angle_to_quat(rot2,pa->state.vel,dtime*part->avefac); } } rotfac=len_v3(pa->state.ave); if(rotfac==0.0){ /* unit_qt(in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */ rot1[0]=1.0; rot1[1]=rot1[2]=rot1[3]=0; } else{ axis_angle_to_quat(rot1,pa->state.ave,rotfac*dtime); } mul_qt_qtqt(pa->state.rot,rot1,pa->prev_state.rot); mul_qt_qtqt(pa->state.rot,rot2,pa->state.rot); /* keep rotation quat in good health */ normalize_qt(pa->state.rot); } /* convert from triangle barycentric weights to quad mean value weights */ static void intersect_dm_quad_weights(float *v1, float *v2, float *v3, float *v4, float *w) { float co[3], vert[4][3]; VECCOPY(vert[0], v1); VECCOPY(vert[1], v2); VECCOPY(vert[2], v3); VECCOPY(vert[3], v4); co[0]= v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3]; co[1]= v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3]; co[2]= v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3]; interp_weights_poly_v3( w,vert, 4, co); } /* check intersection with a derivedmesh */ int psys_intersect_dm(Scene *scene, Object *ob, DerivedMesh *dm, float *vert_cos, float *co1, float* co2, float *min_d, int *min_face, float *min_w, float *face_minmax, float *pa_minmax, float radius, float *ipoint) { MFace *mface=0; MVert *mvert=0; int i, totface, intersect=0; float cur_d, cur_uv[2], v1[3], v2[3], v3[3], v4[3], min[3], max[3], p_min[3],p_max[3]; float cur_ipoint[3]; if(dm==0){ psys_disable_all(ob); dm=mesh_get_derived_final(scene, ob, 0); if(dm==0) dm=mesh_get_derived_deform(scene, ob, 0); psys_enable_all(ob); if(dm==0) return 0; } if(pa_minmax==0){ INIT_MINMAX(p_min,p_max); DO_MINMAX(co1,p_min,p_max); DO_MINMAX(co2,p_min,p_max); } else{ VECCOPY(p_min,pa_minmax); VECCOPY(p_max,pa_minmax+3); } totface=dm->getNumFaces(dm); mface=dm->getFaceDataArray(dm,CD_MFACE); mvert=dm->getVertDataArray(dm,CD_MVERT); /* lets intersect the faces */ for(i=0; iv1); VECCOPY(v2,vert_cos+3*mface->v2); VECCOPY(v3,vert_cos+3*mface->v3); if(mface->v4) VECCOPY(v4,vert_cos+3*mface->v4) } else{ VECCOPY(v1,mvert[mface->v1].co); VECCOPY(v2,mvert[mface->v2].co); VECCOPY(v3,mvert[mface->v3].co); if(mface->v4) VECCOPY(v4,mvert[mface->v4].co) } if(face_minmax==0){ INIT_MINMAX(min,max); DO_MINMAX(v1,min,max); DO_MINMAX(v2,min,max); DO_MINMAX(v3,min,max); if(mface->v4) DO_MINMAX(v4,min,max) if(isect_aabb_aabb_v3(min,max,p_min,p_max)==0) continue; } else{ VECCOPY(min, face_minmax+6*i); VECCOPY(max, face_minmax+6*i+3); if(isect_aabb_aabb_v3(min,max,p_min,p_max)==0) continue; } if(radius>0.0f){ if(isect_sweeping_sphere_tri_v3(co1, co2, radius, v2, v3, v1, &cur_d, cur_ipoint)){ if(cur_d<*min_d){ *min_d=cur_d; VECCOPY(ipoint,cur_ipoint); *min_face=i; intersect=1; } } if(mface->v4){ if(isect_sweeping_sphere_tri_v3(co1, co2, radius, v4, v1, v3, &cur_d, cur_ipoint)){ if(cur_d<*min_d){ *min_d=cur_d; VECCOPY(ipoint,cur_ipoint); *min_face=i; intersect=1; } } } } else{ if(isect_line_tri_v3(co1, co2, v1, v2, v3, &cur_d, cur_uv)){ if(cur_d<*min_d){ *min_d=cur_d; min_w[0]= 1.0 - cur_uv[0] - cur_uv[1]; min_w[1]= cur_uv[0]; min_w[2]= cur_uv[1]; min_w[3]= 0.0f; if(mface->v4) intersect_dm_quad_weights(v1, v2, v3, v4, min_w); *min_face=i; intersect=1; } } if(mface->v4){ if(isect_line_tri_v3(co1, co2, v1, v3, v4, &cur_d, cur_uv)){ if(cur_d<*min_d){ *min_d=cur_d; min_w[0]= 1.0 - cur_uv[0] - cur_uv[1]; min_w[1]= 0.0f; min_w[2]= cur_uv[0]; min_w[3]= cur_uv[1]; intersect_dm_quad_weights(v1, v2, v3, v4, min_w); *min_face=i; intersect=1; } } } } } return intersect; } void particle_intersect_face(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit) { ParticleCollision *col = (ParticleCollision *) userdata; MFace *face = col->md->mfaces + index; MVert *x = col->md->x; MVert *v = col->md->current_v; float vel[3], co1[3], co2[3], uv[2], ipoint[3], temp[3], t; float *t0, *t1, *t2, *t3; t0 = x[ face->v1 ].co; t1 = x[ face->v2 ].co; t2 = x[ face->v3 ].co; t3 = face->v4 ? x[ face->v4].co : NULL; /* calculate average velocity of face */ VECCOPY(vel, v[ face->v1 ].co); VECADD(vel, vel, v[ face->v2 ].co); VECADD(vel, vel, v[ face->v3 ].co); mul_v3_fl(vel, 0.33334f); /* substract face velocity, in other words convert to a coordinate system where only the particle moves */ VECADDFAC(co1, col->co1, vel, -col->t); VECSUB(co2, col->co2, vel); do { if(ray->radius == 0.0f) { if(isect_line_tri_v3(co1, co2, t0, t1, t2, &t, uv)) { if(t >= 0.0f && t < hit->dist/col->ray_len) { hit->dist = col->ray_len * t; hit->index = index; /* calculate normal that's facing the particle */ normal_tri_v3( col->nor,t0, t1, t2); VECSUB(temp, co2, co1); if(dot_v3v3(col->nor, temp) > 0.0f) negate_v3(col->nor); VECCOPY(col->vel,vel); col->hit_ob = col->ob; col->hit_md = col->md; } } } else { if(isect_sweeping_sphere_tri_v3(co1, co2, ray->radius, t0, t1, t2, &t, ipoint)) { if(t >=0.0f && t < hit->dist/col->ray_len) { hit->dist = col->ray_len * t; hit->index = index; interp_v3_v3v3(temp, co1, co2, t); VECSUB(col->nor, temp, ipoint); normalize_v3(col->nor); VECCOPY(col->vel,vel); col->hit_ob = col->ob; col->hit_md = col->md; } } } t1 = t2; t2 = t3; t3 = NULL; } while(t2); } /* particle - mesh collision code */ /* in addition to basic point to surface collisions handles friction & damping,*/ /* angular momentum <-> linear momentum and swept sphere - mesh collisions */ /* 1. check for all possible deflectors for closest intersection on particle path */ /* 2. if deflection was found kill the particle or calculate new coordinates */ static void deflect_particle(ParticleSimulationData *sim, int p, float dfra, float cfra){ Object *ground_ob = NULL; ParticleSettings *part = sim->psys->part; ParticleData *pa = sim->psys->particles + p; ParticleCollision col; ColliderCache *coll; BVHTreeRayHit hit; float ray_dir[3], zerovec[3]={0.0,0.0,0.0}; float radius = ((part->flag & PART_SIZE_DEFL)?pa->size:0.0f), boid_z = 0.0f; float timestep = psys_get_timestep(sim); int deflections=0, max_deflections=10; VECCOPY(col.co1, pa->prev_state.co); VECCOPY(col.co2, pa->state.co); VECCOPY(col.ve1, pa->prev_state.vel); VECCOPY(col.ve2, pa->state.vel); mul_v3_fl(col.ve1, timestep * dfra); mul_v3_fl(col.ve2, timestep * dfra); col.t = 0.0f; /* override for boids */ if(part->phystype == PART_PHYS_BOIDS) { BoidParticle *bpa = pa->boid; radius = pa->size; boid_z = pa->state.co[2]; ground_ob = bpa->ground; } /* 10 iterations to catch multiple deflections */ if(sim->colliders) while(deflections < max_deflections){ /* 1. */ VECSUB(ray_dir, col.co2, col.co1); hit.index = -1; hit.dist = col.ray_len = len_v3(ray_dir); /* even if particle is stationary we want to check for moving colliders */ /* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */ if(hit.dist == 0.0f) hit.dist = col.ray_len = 0.000001f; for(coll = sim->colliders->first; coll; coll=coll->next){ /* for boids: don't check with current ground object */ if(coll->ob == ground_ob) continue; /* particles should not collide with emitter at birth */ if(coll->ob == sim->ob && pa->time < cfra && pa->time >= sim->psys->cfra) continue; col.ob = coll->ob; col.md = coll->collmd; if(col.md && col.md->bvhtree) BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col); } /* 2. */ if(hit.index>=0) { PartDeflect *pd = col.hit_ob->pd; int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0; float co[3]; /* point of collision */ float vec[3]; /* movement through collision */ float acc[3]; /* acceleration */ float x = hit.dist/col.ray_len; /* location of collision between this iteration */ float le = len_v3(col.ve1)/col.ray_len; float ac = len_v3(col.ve2)/col.ray_len - le; /* (taking acceleration into account) */ float t = (-le + sqrt(le*le + 2*ac*x))/ac; /* time of collision between this iteration */ float dt = col.t + x * (1.0f - col.t); /* time of collision between frame change*/ float it = 1.0 - t; interp_v3_v3v3(co, col.co1, col.co2, x); VECSUB(vec, col.co2, col.co1); VECSUB(acc, col.ve2, col.ve1); mul_v3_fl(col.vel, 1.0f-col.t); /* particle dies in collision */ if(through == 0 && (part->flag & PART_DIE_ON_COL || pd->flag & PDEFLE_KILL_PART)) { pa->alive = PARS_DYING; pa->dietime = pa->state.time + (cfra - pa->state.time) * dt; /* we have to add this for dying particles too so that reactors work correctly */ VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f)); VECCOPY(pa->state.co, co); interp_v3_v3v3(pa->state.vel, pa->prev_state.vel, pa->state.vel, dt); interp_qt_qtqt(pa->state.rot, pa->prev_state.rot, pa->state.rot, dt); interp_v3_v3v3(pa->state.ave, pa->prev_state.ave, pa->state.ave, dt); /* particle is dead so we don't need to calculate further */ deflections=max_deflections; } else { float nor_vec[3], tan_vec[3], tan_vel[3]; float damp, frict; float inp, inp_v; /* get damping & friction factors */ damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f); CLAMP(damp,0.0,1.0); frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f); CLAMP(frict,0.0,1.0); /* treat normal & tangent components separately */ inp = dot_v3v3(col.nor, vec); inp_v = dot_v3v3(col.nor, col.vel); VECADDFAC(tan_vec, vec, col.nor, -inp); VECADDFAC(tan_vel, col.vel, col.nor, -inp_v); if((part->flag & PART_ROT_DYN)==0) interp_v3_v3v3(tan_vec, tan_vec, tan_vel, frict); VECCOPY(nor_vec, col.nor); inp *= 1.0f - damp; if(through) inp_v *= damp; /* special case for object hitting the particle from behind */ if(through==0 && ((inp_v>0 && inp>0 && inp_v>inp) || (inp_v<0 && inp<0 && inp_v linear velocity - slightly more physical and looks even nicer than before */ if(part->flag & PART_ROT_DYN) { float surface_vel[3], rot_vel[3], friction[3], dave[3], dvel[3]; /* apparent velocity along collision surface */ VECSUB(surface_vel, tan_vec, tan_vel); /* direction of rolling friction */ cross_v3_v3v3(rot_vel, pa->state.ave, col.nor); /* convert to current dt */ mul_v3_fl(rot_vel, (timestep*dfra) * (1.0f - col.t)); mul_v3_fl(rot_vel, pa->size); /* apply sliding friction */ VECSUB(surface_vel, surface_vel, rot_vel); VECCOPY(friction, surface_vel); mul_v3_fl(surface_vel, 1.0 - frict); mul_v3_fl(friction, frict); /* sliding changes angular velocity */ cross_v3_v3v3(dave, col.nor, friction); mul_v3_fl(dave, 1.0f/MAX2(pa->size, 0.001)); /* we assume rolling friction is around 0.01 of sliding friction */ mul_v3_fl(rot_vel, 1.0 - frict*0.01); /* change in angular velocity has to be added to the linear velocity too */ cross_v3_v3v3(dvel, dave, col.nor); mul_v3_fl(dvel, pa->size); VECADD(rot_vel, rot_vel, dvel); VECADD(surface_vel, surface_vel, rot_vel); VECADD(tan_vec, surface_vel, tan_vel); /* convert back to normal time */ mul_v3_fl(dave, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001)); mul_v3_fl(pa->state.ave, 1.0 - frict*0.01); VECADD(pa->state.ave, pa->state.ave, dave); } /* combine components together again */ VECADD(vec, nor_vec, tan_vec); /* make sure we don't hit the current face again */ VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f)); if(part->phystype == PART_PHYS_BOIDS && part->boids->options & BOID_ALLOW_LAND) { BoidParticle *bpa = pa->boid; if(bpa->data.mode == eBoidMode_OnLand || co[2] <= boid_z) { co[2] = boid_z; vec[2] = 0.0f; } } /* set coordinates for next iteration */ /* apply acceleration to final position, but make sure particle stays above surface */ madd_v3_v3v3fl(acc, vec, acc, it); ac = dot_v3v3(acc, col.nor); if((!through && ac < 0.0f) || (through && ac > 0.0f)) madd_v3_v3fl(acc, col.nor, -ac); VECCOPY(col.co1, co); VECADDFAC(col.co2, co, acc, it); VECCOPY(col.ve1, vec); VECCOPY(col.ve2, acc); if(len_v3(vec) < 0.001 && len_v3v3(pa->state.co, pa->prev_state.co) < 0.001) { /* kill speed to stop slipping */ VECCOPY(pa->state.vel,zerovec); VECCOPY(pa->state.co, co); if(part->flag & PART_ROT_DYN) { VECCOPY(pa->state.ave,zerovec); } } else { VECCOPY(pa->state.co, col.co2); mul_v3_v3fl(pa->state.vel, acc, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001)); /* Stickness to surface */ normalize_v3(nor_vec); madd_v3_v3fl(pa->state.vel, nor_vec, -pd->pdef_stickness); } col.t = dt; } deflections++; //reaction_state.time = cfra - (1.0f - dt) * dfra; //push_reaction(col.ob, psys, p, PART_EVENT_COLLIDE, &reaction_state); } else return; } } /************************************************/ /* Hair */ /************************************************/ /* check if path cache or children need updating and do it if needed */ static void psys_update_path_cache(ParticleSimulationData *sim, float cfra) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; ParticleEditSettings *pset = &sim->scene->toolsettings->particle; int distr=0, alloc=0, skip=0; if((psys->part->childtype && psys->totchild != get_psys_tot_child(sim->scene, psys)) || psys->recalc&PSYS_RECALC_RESET) alloc=1; if(alloc || psys->recalc&PSYS_RECALC_CHILD || (psys->vgroup[PSYS_VG_DENSITY] && (sim->ob && sim->ob->mode & OB_MODE_WEIGHT_PAINT))) distr=1; if(distr){ if(alloc) realloc_particles(sim, sim->psys->totpart); if(get_psys_tot_child(sim->scene, psys)) { /* don't generate children while computing the hair keys */ if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) { distribute_particles(sim, PART_FROM_CHILD); if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES && part->parents!=0.0) psys_find_parents(sim); } } else psys_free_children(psys); } if((part->type==PART_HAIR || psys->flag&PSYS_KEYED || psys->pointcache->flag & PTCACHE_BAKED)==0) skip = 1; /* only hair, keyed and baked stuff can have paths */ else if(part->ren_as != PART_DRAW_PATH && !(part->type==PART_HAIR && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR))) skip = 1; /* particle visualization must be set as path */ else if(!psys->renderdata) { if(part->draw_as != PART_DRAW_REND) skip = 1; /* draw visualization */ else if(psys->pointcache->flag & PTCACHE_BAKING) skip = 1; /* no need to cache paths while baking dynamics */ else if(psys_in_edit_mode(sim->scene, psys)) { if((pset->flag & PE_DRAW_PART)==0) skip = 1; else if(part->childtype==0 && (psys->flag & PSYS_HAIR_DYNAMICS && psys->pointcache->flag & PTCACHE_BAKED)==0) skip = 1; /* in edit mode paths are needed for child particles and dynamic hair */ } } if(!skip) { psys_cache_paths(sim, cfra); /* for render, child particle paths are computed on the fly */ if(part->childtype) { if(!psys->totchild) skip = 1; else if(psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE)==0) skip = 1; if(!skip) psys_cache_child_paths(sim, cfra, 0); } } else if(psys->pathcache) psys_free_path_cache(psys, NULL); } static void do_hair_dynamics(ParticleSimulationData *sim) { ParticleSystem *psys = sim->psys; DerivedMesh *dm = psys->hair_in_dm; MVert *mvert = NULL; MEdge *medge = NULL; MDeformVert *dvert = NULL; HairKey *key; PARTICLE_P; int totpoint = 0; int totedge; int k; float hairmat[4][4]; if(!psys->clmd) { psys->clmd = (ClothModifierData*)modifier_new(eModifierType_Cloth); psys->clmd->sim_parms->goalspring = 0.0f; psys->clmd->sim_parms->flags |= CLOTH_SIMSETTINGS_FLAG_GOAL|CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS; psys->clmd->coll_parms->flags &= ~CLOTH_COLLSETTINGS_FLAG_SELF; } /* create a dm from hair vertices */ LOOP_PARTICLES totpoint += pa->totkey; totedge = totpoint; totpoint += psys->totpart; if(dm && (totpoint != dm->getNumVerts(dm) || totedge != dm->getNumEdges(dm))) { dm->release(dm); dm = psys->hair_in_dm = NULL; } if(!dm) { dm = psys->hair_in_dm = CDDM_new(totpoint, totedge, 0); DM_add_vert_layer(dm, CD_MDEFORMVERT, CD_CALLOC, NULL); } mvert = CDDM_get_verts(dm); medge = CDDM_get_edges(dm); dvert = DM_get_vert_data_layer(dm, CD_MDEFORMVERT); psys->clmd->sim_parms->vgroup_mass = 1; /* make vgroup for pin roots etc.. */ psys->particles->hair_index = 1; LOOP_PARTICLES { if(p) pa->hair_index = (pa-1)->hair_index + (pa-1)->totkey + 1; psys_mat_hair_to_object(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat); for(k=0, key=pa->hair; ktotkey; k++,key++) { /* create fake root before actual root to resist bending */ if(k==0) { float temp[3]; VECSUB(temp, key->co, (key+1)->co); VECCOPY(mvert->co, key->co); VECADD(mvert->co, mvert->co, temp); mul_m4_v3(hairmat, mvert->co); mvert++; medge->v1 = pa->hair_index - 1; medge->v2 = pa->hair_index; medge++; if(dvert) { if(!dvert->totweight) { dvert->dw = MEM_callocN (sizeof(MDeformWeight), "deformWeight"); dvert->totweight = 1; } dvert->dw->weight = 1.0f; dvert++; } } VECCOPY(mvert->co, key->co); mul_m4_v3(hairmat, mvert->co); mvert++; if(k) { medge->v1 = pa->hair_index + k - 1; medge->v2 = pa->hair_index + k; medge++; } if(dvert) { if(!dvert->totweight) { dvert->dw = MEM_callocN (sizeof(MDeformWeight), "deformWeight"); dvert->totweight = 1; } /* roots should be 1.0, the rest can be anything from 0.0 to 1.0 */ dvert->dw->weight = key->weight; dvert++; } } } if(psys->hair_out_dm) psys->hair_out_dm->release(psys->hair_out_dm); psys->clmd->point_cache = psys->pointcache; psys->clmd->sim_parms->effector_weights = psys->part->effector_weights; psys->hair_out_dm = clothModifier_do(psys->clmd, sim->scene, sim->ob, dm, 0, 0); psys->clmd->sim_parms->effector_weights = NULL; } static void hair_step(ParticleSimulationData *sim, float cfra) { ParticleSystem *psys = sim->psys; /* ParticleSettings *part = psys->part; */ PARTICLE_P; float disp = (float)get_current_display_percentage(psys)/100.0f; BLI_srandom(psys->seed); LOOP_PARTICLES { if(PSYS_FRAND(p) > disp) pa->flag |= PARS_NO_DISP; else pa->flag &= ~PARS_NO_DISP; } if(psys->recalc & PSYS_RECALC_RESET) { /* need this for changing subsurf levels */ psys_calc_dmcache(sim->ob, sim->psmd->dm, psys); if(psys->clmd) cloth_free_modifier(sim->ob, psys->clmd); } /* dynamics with cloth simulation */ if(psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) do_hair_dynamics(sim); /* following lines were removed r29079 but cause bug [#22811], see report for details */ psys_update_effectors(sim); psys_update_path_cache(sim, cfra); psys->flag |= PSYS_HAIR_UPDATED; } static void save_hair(ParticleSimulationData *sim, float cfra){ Object *ob = sim->ob; ParticleSystem *psys = sim->psys; HairKey *key, *root; PARTICLE_P; int totpart; invert_m4_m4(ob->imat, ob->obmat); psys->lattice= psys_get_lattice(sim); if(psys->totpart==0) return; totpart=psys->totpart; /* save new keys for elements if needed */ LOOP_PARTICLES { /* first time alloc */ if(pa->totkey==0 || pa->hair==NULL) { pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys"); pa->totkey = 0; } key = root = pa->hair; key += pa->totkey; /* convert from global to geometry space */ copy_v3_v3(key->co, pa->state.co); mul_m4_v3(ob->imat, key->co); if(pa->totkey) { VECSUB(key->co, key->co, root->co); psys_vec_rot_to_face(sim->psmd->dm, pa, key->co); } key->time = pa->state.time; key->weight = 1.0f - key->time / 100.0f; pa->totkey++; /* root is always in the origin of hair space so we set it to be so after the last key is saved*/ if(pa->totkey == psys->part->hair_step + 1) root->co[0] = root->co[1] = root->co[2] = 0.0f; } } /************************************************/ /* System Core */ /************************************************/ /* unbaked particles are calculated dynamically */ static void dynamics_step(ParticleSimulationData *sim, float cfra) { ParticleSystem *psys = sim->psys; ParticleSettings *part=psys->part; BoidBrainData bbd; PARTICLE_P; float timestep; /* current time */ float ctime; /* frame & time changes */ float dfra, dtime, pa_dtime, pa_dfra=0.0; float birthtime, dietime; /* where have we gone in time since last time */ dfra= cfra - psys->cfra; timestep = psys_get_timestep(sim); dtime= dfra*timestep; ctime= cfra*timestep; if(dfra<0.0){ LOOP_EXISTING_PARTICLES { pa->size = part->size; if(part->randsize > 0.0) pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1); reset_particle(sim, pa, dtime, cfra); } return; } BLI_srandom(31415926 + (int)cfra + psys->seed); psys_update_effectors(sim); if(part->type != PART_HAIR) sim->colliders = get_collider_cache(sim->scene, NULL, NULL); if(part->phystype==PART_PHYS_BOIDS){ ParticleTarget *pt = psys->targets.first; bbd.sim = sim; bbd.part = part; bbd.cfra = cfra; bbd.dfra = dfra; bbd.timestep = timestep; psys_update_particle_tree(psys, cfra); boids_precalc_rules(part, cfra); for(; pt; pt=pt->next) { if(pt->ob) psys_update_particle_tree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra); } } else if(part->phystype==PART_PHYS_FLUID){ ParticleTarget *pt = psys->targets.first; psys_update_particle_tree(psys, cfra); for(; pt; pt=pt->next) { /* Updating others systems particle tree for fluid-fluid interaction */ if(pt->ob) psys_update_particle_tree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra); } } /* main loop: calculate physics for all particles */ LOOP_SHOWN_PARTICLES { copy_particle_key(&pa->prev_state,&pa->state,1); pa->size = part->size; if(part->randsize > 0.0) pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1); ///* reactions can change birth time so they need to be checked first */ //if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0) // react_to_events(psys,p); birthtime = pa->time; dietime = birthtime + pa->lifetime; pa_dfra = dfra; pa_dtime = dtime; if(dietime <= cfra && psys->cfra < dietime){ /* particle dies some time between this and last step */ pa_dfra = dietime - ((birthtime > psys->cfra) ? birthtime : psys->cfra); pa_dtime = pa_dfra * timestep; pa->alive = PARS_DYING; } else if(birthtime <= cfra && birthtime >= psys->cfra){ /* particle is born some time between this and last step*/ reset_particle(sim, pa, dtime, cfra); pa->alive = PARS_ALIVE; pa_dfra = cfra - birthtime; pa_dtime = pa_dfra*timestep; } else if(dietime < cfra){ /* nothing to be done when particle is dead */ } /* only reset unborn particles if they're shown or if the particle is born soon*/ if(pa->alive==PARS_UNBORN && (part->flag & PART_UNBORN || cfra + psys->pointcache->step > pa->time)) reset_particle(sim, pa, dtime, cfra); else if(part->phystype == PART_PHYS_NO) reset_particle(sim, pa, dtime, cfra); if(dfra>0.0 && ELEM(pa->alive,PARS_ALIVE,PARS_DYING)){ switch(part->phystype){ case PART_PHYS_NEWTON: /* do global forces & effectors */ apply_particle_forces(sim, p, pa_dfra, cfra); /* deflection */ if(sim->colliders) deflect_particle(sim, p, pa_dfra, cfra); /* rotations */ rotate_particle(part, pa, pa_dfra, timestep); break; case PART_PHYS_BOIDS: { bbd.goal_ob = NULL; boid_brain(&bbd, p, pa); if(pa->alive != PARS_DYING) { boid_body(&bbd, pa); /* deflection */ if(sim->colliders) deflect_particle(sim, p, pa_dfra, cfra); } break; } case PART_PHYS_FLUID: { /* do global forces & effectors */ apply_particle_forces(sim, p, pa_dfra, cfra); /* do fluid sim */ apply_particle_fluidsim(psys, pa, part, sim, pa_dfra, cfra); /* deflection */ if(sim->colliders) deflect_particle(sim, p, pa_dfra, cfra); /* rotations, SPH particles are not physical particles, just interpolation particles, thus rotation has not a direct sense for them */ rotate_particle(part, pa, pa_dfra, timestep); break; } } if(pa->alive == PARS_DYING){ //push_reaction(ob,psys,p,PART_EVENT_DEATH,&pa->state); pa->alive=PARS_DEAD; pa->state.time=pa->dietime; } else pa->state.time=cfra; //push_reaction(ob,psys,p,PART_EVENT_NEAR,&pa->state); } } free_collider_cache(&sim->colliders); } static void update_children(ParticleSimulationData *sim) { if((sim->psys->part->type == PART_HAIR) && (sim->psys->flag & PSYS_HAIR_DONE)==0) /* don't generate children while growing hair - waste of time */ psys_free_children(sim->psys); else if(sim->psys->part->childtype && sim->psys->totchild != get_psys_tot_child(sim->scene, sim->psys)) distribute_particles(sim, PART_FROM_CHILD); else psys_free_children(sim->psys); } /* updates cached particles' alive & other flags etc..*/ static void cached_step(ParticleSimulationData *sim, float cfra) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; PARTICLE_P; float disp, birthtime, dietime; BLI_srandom(psys->seed); psys_update_effectors(sim); disp= (float)get_current_display_percentage(psys)/100.0f; LOOP_PARTICLES { pa->size = part->size; if(part->randsize > 0.0) pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1); psys->lattice= psys_get_lattice(sim); birthtime = pa->time; dietime = pa->dietime; /* update alive status and push events */ if(pa->time > cfra) { pa->alive = PARS_UNBORN; if(part->flag & PART_UNBORN && (psys->pointcache->flag & PTCACHE_EXTERNAL) == 0) reset_particle(sim, pa, 0.0f, cfra); } else if(dietime <= cfra) pa->alive = PARS_DEAD; else pa->alive = PARS_ALIVE; if(psys->lattice){ end_latt_deform(psys->lattice); psys->lattice= NULL; } if(PSYS_FRAND(p) > disp) pa->flag |= PARS_NO_DISP; else pa->flag &= ~PARS_NO_DISP; } } static void particles_fluid_step(ParticleSimulationData *sim, int cfra) { ParticleSystem *psys = sim->psys; if(psys->particles){ MEM_freeN(psys->particles); psys->particles = 0; psys->totpart = 0; } /* fluid sim particle import handling, actual loading of particles from file */ #ifndef DISABLE_ELBEEM { FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(sim->ob, eModifierType_Fluidsim); if( fluidmd && fluidmd->fss) { FluidsimSettings *fss= fluidmd->fss; ParticleSettings *part = psys->part; ParticleData *pa=0; char *suffix = "fluidsurface_particles_####"; char *suffix2 = ".gz"; char filename[256]; char debugStrBuffer[256]; int curFrame = sim->scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading int p, j, numFileParts, totpart; int readMask, activeParts = 0, fileParts = 0; gzFile gzf; // XXX if(ob==G.obedit) // off... // return; // ok, start loading strcpy(filename, fss->surfdataPath); strcat(filename, suffix); BLI_path_abs(filename, G.sce); BLI_path_frame(filename, curFrame, 0); // fixed #frame-no strcat(filename, suffix2); gzf = gzopen(filename, "rb"); if (!gzf) { snprintf(debugStrBuffer,256,"readFsPartData::error - Unable to open file for reading '%s' \n", filename); // XXX bad level call elbeemDebugOut(debugStrBuffer); return; } gzread(gzf, &totpart, sizeof(totpart)); numFileParts = totpart; totpart = (G.rendering)?totpart:(part->disp*totpart)/100; part->totpart= totpart; part->sta=part->end = 1.0f; part->lifetime = sim->scene->r.efra + 1; /* initialize particles */ realloc_particles(sim, part->totpart); initialize_all_particles(sim); // set up reading mask readMask = fss->typeFlags; for(p=0, pa=psys->particles; psize), sizeof( float )); pa->size /= 10.0f; for(j=0; j<3; j++) { float wrf; gzread(gzf, &wrf, sizeof( wrf )); pa->state.co[j] = wrf; //fprintf(stderr,"Rj%d ",j); } for(j=0; j<3; j++) { float wrf; gzread(gzf, &wrf, sizeof( wrf )); pa->state.vel[j] = wrf; } pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0f; pa->state.rot[0] = 1.0; pa->state.rot[1] = pa->state.rot[2] = pa->state.rot[3] = 0.0; pa->alive = PARS_ALIVE; //if(a<25) fprintf(stderr,"FSPARTICLE debug set %s , a%d = %f,%f,%f , life=%f \n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime ); } else { // skip... for(j=0; j<2*3+1; j++) { float wrf; gzread(gzf, &wrf, sizeof( wrf )); } } fileParts++; } gzclose( gzf ); totpart = psys->totpart = activeParts; snprintf(debugStrBuffer,256,"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d \n", psys->totpart,activeParts,fileParts,readMask); // bad level call // XXX elbeemDebugOut(debugStrBuffer); } // fluid sim particles done } #endif // DISABLE_ELBEEM } static int emit_particles(ParticleSimulationData *sim, PTCacheID *pid, float cfra) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; int oldtotpart = psys->totpart; int totpart = oldtotpart; if(pid && psys->pointcache->flag & PTCACHE_EXTERNAL) totpart = pid->cache->totpoint; else if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT) totpart = part->grid_res*part->grid_res*part->grid_res; else totpart = psys->part->totpart; if(totpart != oldtotpart) realloc_particles(sim, totpart); return totpart - oldtotpart; } /* Calculates the next state for all particles of the system * In particles code most fra-ending are frames, time-ending are fra*timestep (seconds) * 1. Emit particles * 2. Check cache (if used) and return if frame is cached * 3. Do dynamics * 4. Save to cache */ static void system_step(ParticleSimulationData *sim, float cfra) { ParticleSystem *psys = sim->psys; ParticleSettings *part = psys->part; PointCache *cache = psys->pointcache; PTCacheID pid, *use_cache = NULL; PARTICLE_P; int oldtotpart; float disp; /*, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; */ int init= 0, emit= 0; //, only_children_changed= 0; int framenr, framedelta, startframe = 0, endframe = 100; framenr= (int)sim->scene->r.cfra; framedelta= framenr - cache->simframe; /* cache shouldn't be used for hair or "continue physics" */ if(part->type != PART_HAIR && BKE_ptcache_get_continue_physics() == 0) { BKE_ptcache_id_from_particles(&pid, sim->ob, psys); use_cache = &pid; } if(use_cache) { psys_clear_temp_pointcache(sim->psys); /* set suitable cache range automatically */ if((cache->flag & (PTCACHE_BAKING|PTCACHE_BAKED))==0) psys_get_pointcache_start_end(sim->scene, sim->psys, &cache->startframe, &cache->endframe); BKE_ptcache_id_time(&pid, sim->scene, 0.0f, &startframe, &endframe, NULL); /* simulation is only active during a specific period */ if(framenr < startframe) { psys_reset(psys, PSYS_RESET_CACHE_MISS); return; } else if(framenr > endframe) { framenr= endframe; } if(framenr == startframe) { BKE_ptcache_id_reset(sim->scene, use_cache, PTCACHE_RESET_OUTDATED); BKE_ptcache_validate(cache, framenr); cache->flag &= ~PTCACHE_REDO_NEEDED; } } /* 1. emit particles */ /* verify if we need to reallocate */ oldtotpart = psys->totpart; emit = emit_particles(sim, use_cache, cfra); if(use_cache && emit > 0) BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, cfra); init = emit*emit + (psys->recalc & PSYS_RECALC_RESET); if(init) { distribute_particles(sim, part->from); initialize_all_particles(sim); reset_all_particles(sim, 0.0, cfra, oldtotpart); /* flag for possible explode modifiers after this system */ sim->psmd->flag |= eParticleSystemFlag_Pars; } /* 2. try to read from the cache */ if(use_cache) { int cache_result = BKE_ptcache_read_cache(use_cache, cfra, sim->scene->r.frs_sec); if(ELEM(cache_result, PTCACHE_READ_EXACT, PTCACHE_READ_INTERPOLATED)) { cached_step(sim, cfra); update_children(sim); psys_update_path_cache(sim, cfra); BKE_ptcache_validate(cache, framenr); if(cache_result == PTCACHE_READ_INTERPOLATED && cache->flag & PTCACHE_REDO_NEEDED) BKE_ptcache_write_cache(use_cache, framenr); return; } else if(cache_result == PTCACHE_READ_OLD) { psys->cfra = (float)cache->simframe; cached_step(sim, psys->cfra); } else if(cfra != startframe && ( /*sim->ob->id.lib ||*/ (cache->flag & PTCACHE_BAKED))) { /* 2.4x disabled lib, but this can be used in some cases, testing further - campbell */ psys_reset(psys, PSYS_RESET_CACHE_MISS); return; } /* if on second frame, write cache for first frame */ if(psys->cfra == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0)) BKE_ptcache_write_cache(use_cache, startframe); } else BKE_ptcache_invalidate(cache); /* 3. do dynamics */ /* set particles to be not calculated TODO: can't work with pointcache */ disp= (float)get_current_display_percentage(psys)/100.0f; BLI_srandom(psys->seed); LOOP_PARTICLES { if(PSYS_FRAND(p) > disp) pa->flag |= PARS_NO_DISP; else pa->flag &= ~PARS_NO_DISP; } if(psys->totpart) { int dframe, subframe = 0, totframesback = 0, totsubframe = part->subframes+1; float fraction; /* handle negative frame start at the first frame by doing * all the steps before the first frame */ if(framenr == startframe && part->sta < startframe) totframesback = (startframe - (int)part->sta); for(dframe=-totframesback; dframe<=0; dframe++) { /* ok now we're all set so let's go */ for (subframe = 1; subframe <= totsubframe; subframe++) { fraction = (float)subframe/(float)totsubframe; dynamics_step(sim, cfra+dframe+fraction - 1.f); psys->cfra = cfra+dframe+fraction - 1.f; } } } /* 4. only write cache starting from second frame */ if(use_cache) { BKE_ptcache_validate(cache, framenr); if(framenr != startframe) BKE_ptcache_write_cache(use_cache, framenr); } if(init) update_children(sim); /* cleanup */ if(psys->lattice){ end_latt_deform(psys->lattice); psys->lattice= NULL; } } /* system type has changed so set sensible defaults and clear non applicable flags */ static void psys_changed_type(ParticleSimulationData *sim) { ParticleSettings *part = sim->psys->part; PTCacheID pid; BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys); if(part->from == PART_FROM_PARTICLE) { //if(part->type != PART_REACTOR) part->from = PART_FROM_FACE; if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT) part->distr = PART_DISTR_JIT; } if(part->phystype != PART_PHYS_KEYED) sim->psys->flag &= ~PSYS_KEYED; if(part->type == PART_HAIR) { if(ELEM4(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR)==0) part->ren_as = PART_DRAW_PATH; if(ELEM3(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH)==0) part->draw_as = PART_DRAW_REND; CLAMP(part->path_start, 0.0f, 100.0f); CLAMP(part->path_end, 0.0f, 100.0f); BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0); } else { free_hair(sim->ob, sim->psys, 1); CLAMP(part->path_start, 0.0f, MAX2(100.0f, part->end + part->lifetime)); CLAMP(part->path_end, 0.0f, MAX2(100.0f, part->end + part->lifetime)); } psys_reset(sim->psys, PSYS_RESET_ALL); } void psys_check_boid_data(ParticleSystem *psys) { BoidParticle *bpa; PARTICLE_P; pa = psys->particles; if(!pa) return; if(psys->part && psys->part->phystype==PART_PHYS_BOIDS) { if(!pa->boid) { bpa = MEM_callocN(psys->totpart * sizeof(BoidParticle), "Boid Data"); LOOP_PARTICLES pa->boid = bpa++; } } else if(pa->boid){ MEM_freeN(pa->boid); LOOP_PARTICLES pa->boid = NULL; } } static void fluid_default_settings(ParticleSettings *part){ SPHFluidSettings *fluid = part->fluid; fluid->radius = 0.5f; fluid->spring_k = 0.f; fluid->rest_length = 0.5f; fluid->viscosity_omega = 2.f; fluid->viscosity_beta = 0.f; fluid->stiffness_k = 0.1f; fluid->stiffness_knear = 0.05f; fluid->rest_density = 10.f; fluid->buoyancy = 0.f; } static void psys_changed_physics(ParticleSimulationData *sim) { ParticleSettings *part = sim->psys->part; if(ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) { PTCacheID pid; BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys); BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0); } else { free_keyed_keys(sim->psys); sim->psys->flag &= ~PSYS_KEYED; } if(part->phystype == PART_PHYS_BOIDS && part->boids == NULL) { BoidState *state; part->boids = MEM_callocN(sizeof(BoidSettings), "Boid Settings"); boid_default_settings(part->boids); state = boid_new_state(part->boids); BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Separate)); BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Flock)); ((BoidRule*)state->rules.first)->flag |= BOIDRULE_CURRENT; state->flag |= BOIDSTATE_CURRENT; BLI_addtail(&part->boids->states, state); } else if(part->phystype == PART_PHYS_FLUID && part->fluid == NULL) { part->fluid = MEM_callocN(sizeof(SPHFluidSettings), "SPH Fluid Settings"); fluid_default_settings(part); } psys_check_boid_data(sim->psys); } static int hair_needs_recalc(ParticleSystem *psys) { if(!(psys->flag & PSYS_EDITED) && (!psys->edit || !psys->edit->edited) && ((psys->flag & PSYS_HAIR_DONE)==0 || psys->recalc & PSYS_RECALC_RESET)) { return 1; } return 0; } /* main particle update call, checks that things are ok on the large scale and * then advances in to actual particle calculations depending on particle type */ void particle_system_update(Scene *scene, Object *ob, ParticleSystem *psys) { ParticleSimulationData sim = {scene, ob, psys, NULL, NULL}; ParticleSettings *part = psys->part; float cfra; /* drawdata is outdated after ANY change */ if(psys->pdd) psys->pdd->flag &= ~PARTICLE_DRAW_DATA_UPDATED; if(!psys_check_enabled(ob, psys)) return; cfra= BKE_curframe(scene); sim.psmd= psys_get_modifier(ob, psys); /* system was already updated from modifier stack */ if(sim.psmd->flag & eParticleSystemFlag_psys_updated) { sim.psmd->flag &= ~eParticleSystemFlag_psys_updated; /* make sure it really was updated to cfra */ if(psys->cfra == cfra) return; } if(!sim.psmd->dm) return; /* execute drivers only, as animation has already been done */ BKE_animsys_evaluate_animdata(&part->id, part->adt, cfra, ADT_RECALC_DRIVERS); if(psys->recalc & PSYS_RECALC_TYPE) psys_changed_type(&sim); else if(psys->recalc & PSYS_RECALC_PHYS) psys_changed_physics(&sim); switch(part->type) { case PART_HAIR: { /* (re-)create hair */ if(hair_needs_recalc(psys)) { float hcfra=0.0f; int i, recalc = psys->recalc; free_hair(ob, psys, 0); /* first step is negative so particles get killed and reset */ psys->cfra= 1.0f; for(i=0; i<=part->hair_step; i++){ hcfra=100.0f*(float)i/(float)psys->part->hair_step; BKE_animsys_evaluate_animdata(&part->id, part->adt, hcfra, ADT_RECALC_ANIM); system_step(&sim, hcfra); psys->cfra = hcfra; psys->recalc = 0; save_hair(&sim, hcfra); } psys->flag |= PSYS_HAIR_DONE; psys->recalc = recalc; } if(psys->flag & PSYS_HAIR_DONE) hair_step(&sim, cfra); break; } case PART_FLUID: { particles_fluid_step(&sim, (int)cfra); break; } default: { switch(part->phystype) { case PART_PHYS_NO: case PART_PHYS_KEYED: { PARTICLE_P; if(emit_particles(&sim, NULL, cfra)) { free_keyed_keys(psys); distribute_particles(&sim, part->from); initialize_all_particles(&sim); } LOOP_EXISTING_PARTICLES { pa->size = part->size; if(part->randsize > 0.0) pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1); reset_particle(&sim, pa, 0.0, cfra); } if(part->phystype == PART_PHYS_KEYED) { psys_count_keyed_targets(&sim); set_keyed_keys(&sim); psys_update_path_cache(&sim,(int)cfra); } break; } default: { /* the main dynamic particle system step */ system_step(&sim, cfra); break; } } break; } } psys->cfra = cfra; psys->recalc = 0; /* save matrix for duplicators */ invert_m4_m4(psys->imat, ob->obmat); }