/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup bli */ #include "MEM_guardedalloc.h" #include "BLI_utildefines.h" #include "BLI_bitmap.h" #include "BLI_math.h" #include "BLI_ghash.h" #include "BLI_task.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "BKE_pbvh.h" #include "BKE_ccg.h" #include "BKE_subdiv_ccg.h" #include "BKE_mesh.h" /* for BKE_mesh_calc_normals */ #include "BKE_paint.h" #include "GPU_buffers.h" #include "bmesh.h" #include "atomic_ops.h" #include "pbvh_intern.h" #include #define LEAF_LIMIT 10000 //#define PERFCNTRS #define STACK_FIXED_DEPTH 100 typedef struct PBVHStack { PBVHNode *node; bool revisiting; } PBVHStack; typedef struct PBVHIter { PBVH *bvh; BKE_pbvh_SearchCallback scb; void *search_data; PBVHStack *stack; int stacksize; PBVHStack stackfixed[STACK_FIXED_DEPTH]; int stackspace; } PBVHIter; void BB_reset(BB *bb) { bb->bmin[0] = bb->bmin[1] = bb->bmin[2] = FLT_MAX; bb->bmax[0] = bb->bmax[1] = bb->bmax[2] = -FLT_MAX; } /* Expand the bounding box to include a new coordinate */ void BB_expand(BB *bb, const float co[3]) { for (int i = 0; i < 3; i++) { bb->bmin[i] = min_ff(bb->bmin[i], co[i]); bb->bmax[i] = max_ff(bb->bmax[i], co[i]); } } /* Expand the bounding box to include another bounding box */ void BB_expand_with_bb(BB *bb, BB *bb2) { for (int i = 0; i < 3; i++) { bb->bmin[i] = min_ff(bb->bmin[i], bb2->bmin[i]); bb->bmax[i] = max_ff(bb->bmax[i], bb2->bmax[i]); } } /* Return 0, 1, or 2 to indicate the widest axis of the bounding box */ int BB_widest_axis(const BB *bb) { float dim[3]; for (int i = 0; i < 3; i++) { dim[i] = bb->bmax[i] - bb->bmin[i]; } if (dim[0] > dim[1]) { if (dim[0] > dim[2]) { return 0; } else { return 2; } } else { if (dim[1] > dim[2]) { return 1; } else { return 2; } } } void BBC_update_centroid(BBC *bbc) { for (int i = 0; i < 3; i++) { bbc->bcentroid[i] = (bbc->bmin[i] + bbc->bmax[i]) * 0.5f; } } /* Not recursive */ static void update_node_vb(PBVH *bvh, PBVHNode *node) { BB vb; BB_reset(&vb); if (node->flag & PBVH_Leaf) { PBVHVertexIter vd; BKE_pbvh_vertex_iter_begin(bvh, node, vd, PBVH_ITER_ALL) { BB_expand(&vb, vd.co); } BKE_pbvh_vertex_iter_end; } else { BB_expand_with_bb(&vb, &bvh->nodes[node->children_offset].vb); BB_expand_with_bb(&vb, &bvh->nodes[node->children_offset + 1].vb); } node->vb = vb; } // void BKE_pbvh_node_BB_reset(PBVHNode *node) //{ // BB_reset(&node->vb); //} // // void BKE_pbvh_node_BB_expand(PBVHNode *node, float co[3]) //{ // BB_expand(&node->vb, co); //} static bool face_materials_match(const MPoly *f1, const MPoly *f2) { return ((f1->flag & ME_SMOOTH) == (f2->flag & ME_SMOOTH) && (f1->mat_nr == f2->mat_nr)); } static bool grid_materials_match(const DMFlagMat *f1, const DMFlagMat *f2) { return ((f1->flag & ME_SMOOTH) == (f2->flag & ME_SMOOTH) && (f1->mat_nr == f2->mat_nr)); } /* Adapted from BLI_kdopbvh.c */ /* Returns the index of the first element on the right of the partition */ static int partition_indices(int *prim_indices, int lo, int hi, int axis, float mid, BBC *prim_bbc) { int i = lo, j = hi; for (;;) { for (; prim_bbc[prim_indices[i]].bcentroid[axis] < mid; i++) { /* pass */ } for (; mid < prim_bbc[prim_indices[j]].bcentroid[axis]; j--) { /* pass */ } if (!(i < j)) { return i; } SWAP(int, prim_indices[i], prim_indices[j]); i++; } } /* Returns the index of the first element on the right of the partition */ static int partition_indices_material(PBVH *bvh, int lo, int hi) { const MPoly *mpoly = bvh->mpoly; const MLoopTri *looptri = bvh->looptri; const DMFlagMat *flagmats = bvh->grid_flag_mats; const int *indices = bvh->prim_indices; const void *first; int i = lo, j = hi; if (bvh->looptri) { first = &mpoly[looptri[bvh->prim_indices[lo]].poly]; } else { first = &flagmats[bvh->prim_indices[lo]]; } for (;;) { if (bvh->looptri) { for (; face_materials_match(first, &mpoly[looptri[indices[i]].poly]); i++) { /* pass */ } for (; !face_materials_match(first, &mpoly[looptri[indices[j]].poly]); j--) { /* pass */ } } else { for (; grid_materials_match(first, &flagmats[indices[i]]); i++) { /* pass */ } for (; !grid_materials_match(first, &flagmats[indices[j]]); j--) { /* pass */ } } if (!(i < j)) { return i; } SWAP(int, bvh->prim_indices[i], bvh->prim_indices[j]); i++; } } void pbvh_grow_nodes(PBVH *bvh, int totnode) { if (UNLIKELY(totnode > bvh->node_mem_count)) { bvh->node_mem_count = bvh->node_mem_count + (bvh->node_mem_count / 3); if (bvh->node_mem_count < totnode) { bvh->node_mem_count = totnode; } bvh->nodes = MEM_recallocN(bvh->nodes, sizeof(PBVHNode) * bvh->node_mem_count); } bvh->totnode = totnode; } /* Add a vertex to the map, with a positive value for unique vertices and * a negative value for additional vertices */ static int map_insert_vert( PBVH *bvh, GHash *map, unsigned int *face_verts, unsigned int *uniq_verts, int vertex) { void *key, **value_p; key = POINTER_FROM_INT(vertex); if (!BLI_ghash_ensure_p(map, key, &value_p)) { int value_i; if (BLI_BITMAP_TEST(bvh->vert_bitmap, vertex) == 0) { BLI_BITMAP_ENABLE(bvh->vert_bitmap, vertex); value_i = *uniq_verts; (*uniq_verts)++; } else { value_i = ~(*face_verts); (*face_verts)++; } *value_p = POINTER_FROM_INT(value_i); return value_i; } else { return POINTER_AS_INT(*value_p); } } /* Find vertices used by the faces in this node and update the draw buffers */ static void build_mesh_leaf_node(PBVH *bvh, PBVHNode *node) { bool has_visible = false; node->uniq_verts = node->face_verts = 0; const int totface = node->totprim; /* reserve size is rough guess */ GHash *map = BLI_ghash_int_new_ex("build_mesh_leaf_node gh", 2 * totface); int(*face_vert_indices)[3] = MEM_mallocN(sizeof(int[3]) * totface, "bvh node face vert indices"); node->face_vert_indices = (const int(*)[3])face_vert_indices; for (int i = 0; i < totface; i++) { const MLoopTri *lt = &bvh->looptri[node->prim_indices[i]]; for (int j = 0; j < 3; j++) { face_vert_indices[i][j] = map_insert_vert( bvh, map, &node->face_verts, &node->uniq_verts, bvh->mloop[lt->tri[j]].v); } if (!paint_is_face_hidden(lt, bvh->verts, bvh->mloop)) { has_visible = true; } } int *vert_indices = MEM_callocN(sizeof(int) * (node->uniq_verts + node->face_verts), "bvh node vert indices"); node->vert_indices = vert_indices; /* Build the vertex list, unique verts first */ GHashIterator gh_iter; GHASH_ITER (gh_iter, map) { void *value = BLI_ghashIterator_getValue(&gh_iter); int ndx = POINTER_AS_INT(value); if (ndx < 0) { ndx = -ndx + node->uniq_verts - 1; } vert_indices[ndx] = POINTER_AS_INT(BLI_ghashIterator_getKey(&gh_iter)); } for (int i = 0; i < totface; i++) { const int sides = 3; for (int j = 0; j < sides; j++) { if (face_vert_indices[i][j] < 0) { face_vert_indices[i][j] = -face_vert_indices[i][j] + node->uniq_verts - 1; } } } BKE_pbvh_node_mark_rebuild_draw(node); BKE_pbvh_node_fully_hidden_set(node, !has_visible); BLI_ghash_free(map, NULL, NULL); } static void update_vb(PBVH *bvh, PBVHNode *node, BBC *prim_bbc, int offset, int count) { BB_reset(&node->vb); for (int i = offset + count - 1; i >= offset; i--) { BB_expand_with_bb(&node->vb, (BB *)(&prim_bbc[bvh->prim_indices[i]])); } node->orig_vb = node->vb; } /* Returns the number of visible quads in the nodes' grids. */ int BKE_pbvh_count_grid_quads(BLI_bitmap **grid_hidden, int *grid_indices, int totgrid, int gridsize) { const int gridarea = (gridsize - 1) * (gridsize - 1); int totquad = 0; /* grid hidden layer is present, so have to check each grid for * visibility */ for (int i = 0; i < totgrid; i++) { const BLI_bitmap *gh = grid_hidden[grid_indices[i]]; if (gh) { /* grid hidden are present, have to check each element */ for (int y = 0; y < gridsize - 1; y++) { for (int x = 0; x < gridsize - 1; x++) { if (!paint_is_grid_face_hidden(gh, gridsize, x, y)) { totquad++; } } } } else { totquad += gridarea; } } return totquad; } static void build_grid_leaf_node(PBVH *bvh, PBVHNode *node) { int totquads = BKE_pbvh_count_grid_quads( bvh->grid_hidden, node->prim_indices, node->totprim, bvh->gridkey.grid_size); BKE_pbvh_node_fully_hidden_set(node, (totquads == 0)); BKE_pbvh_node_mark_rebuild_draw(node); } static void build_leaf(PBVH *bvh, int node_index, BBC *prim_bbc, int offset, int count) { bvh->nodes[node_index].flag |= PBVH_Leaf; bvh->nodes[node_index].prim_indices = bvh->prim_indices + offset; bvh->nodes[node_index].totprim = count; /* Still need vb for searches */ update_vb(bvh, &bvh->nodes[node_index], prim_bbc, offset, count); if (bvh->looptri) { build_mesh_leaf_node(bvh, bvh->nodes + node_index); } else { build_grid_leaf_node(bvh, bvh->nodes + node_index); } } /* Return zero if all primitives in the node can be drawn with the * same material (including flat/smooth shading), non-zero otherwise */ static bool leaf_needs_material_split(PBVH *bvh, int offset, int count) { if (count <= 1) { return false; } if (bvh->looptri) { const MLoopTri *first = &bvh->looptri[bvh->prim_indices[offset]]; const MPoly *mp = &bvh->mpoly[first->poly]; for (int i = offset + count - 1; i > offset; i--) { int prim = bvh->prim_indices[i]; const MPoly *mp_other = &bvh->mpoly[bvh->looptri[prim].poly]; if (!face_materials_match(mp, mp_other)) { return true; } } } else { const DMFlagMat *first = &bvh->grid_flag_mats[bvh->prim_indices[offset]]; for (int i = offset + count - 1; i > offset; i--) { int prim = bvh->prim_indices[i]; if (!grid_materials_match(first, &bvh->grid_flag_mats[prim])) { return true; } } } return false; } /* Recursively build a node in the tree * * vb is the voxel box around all of the primitives contained in * this node. * * cb is the bounding box around all the centroids of the primitives * contained in this node * * offset and start indicate a range in the array of primitive indices */ static void build_sub(PBVH *bvh, int node_index, BB *cb, BBC *prim_bbc, int offset, int count) { int end; BB cb_backing; /* Decide whether this is a leaf or not */ const bool below_leaf_limit = count <= bvh->leaf_limit; if (below_leaf_limit) { if (!leaf_needs_material_split(bvh, offset, count)) { build_leaf(bvh, node_index, prim_bbc, offset, count); return; } } /* Add two child nodes */ bvh->nodes[node_index].children_offset = bvh->totnode; pbvh_grow_nodes(bvh, bvh->totnode + 2); /* Update parent node bounding box */ update_vb(bvh, &bvh->nodes[node_index], prim_bbc, offset, count); if (!below_leaf_limit) { /* Find axis with widest range of primitive centroids */ if (!cb) { cb = &cb_backing; BB_reset(cb); for (int i = offset + count - 1; i >= offset; i--) { BB_expand(cb, prim_bbc[bvh->prim_indices[i]].bcentroid); } } const int axis = BB_widest_axis(cb); /* Partition primitives along that axis */ end = partition_indices(bvh->prim_indices, offset, offset + count - 1, axis, (cb->bmax[axis] + cb->bmin[axis]) * 0.5f, prim_bbc); } else { /* Partition primitives by material */ end = partition_indices_material(bvh, offset, offset + count - 1); } /* Build children */ build_sub(bvh, bvh->nodes[node_index].children_offset, NULL, prim_bbc, offset, end - offset); build_sub( bvh, bvh->nodes[node_index].children_offset + 1, NULL, prim_bbc, end, offset + count - end); } static void pbvh_build(PBVH *bvh, BB *cb, BBC *prim_bbc, int totprim) { if (totprim != bvh->totprim) { bvh->totprim = totprim; if (bvh->nodes) { MEM_freeN(bvh->nodes); } if (bvh->prim_indices) { MEM_freeN(bvh->prim_indices); } bvh->prim_indices = MEM_mallocN(sizeof(int) * totprim, "bvh prim indices"); for (int i = 0; i < totprim; i++) { bvh->prim_indices[i] = i; } bvh->totnode = 0; if (bvh->node_mem_count < 100) { bvh->node_mem_count = 100; bvh->nodes = MEM_callocN(sizeof(PBVHNode) * bvh->node_mem_count, "bvh initial nodes"); } } bvh->totnode = 1; build_sub(bvh, 0, cb, prim_bbc, 0, totprim); } /** * Do a full rebuild with on Mesh data structure. * * \note Unlike mpoly/mloop/verts, looptri is **totally owned** by PBVH * (which means it may rewrite it if needed, see #BKE_pbvh_vert_coords_apply(). */ void BKE_pbvh_build_mesh(PBVH *bvh, const Mesh *mesh, const MPoly *mpoly, const MLoop *mloop, MVert *verts, int totvert, struct CustomData *vdata, struct CustomData *ldata, const MLoopTri *looptri, int looptri_num) { BBC *prim_bbc = NULL; BB cb; bvh->mesh = mesh; bvh->type = PBVH_FACES; bvh->mpoly = mpoly; bvh->mloop = mloop; bvh->looptri = looptri; bvh->verts = verts; bvh->vert_bitmap = BLI_BITMAP_NEW(totvert, "bvh->vert_bitmap"); bvh->totvert = totvert; bvh->leaf_limit = LEAF_LIMIT; bvh->vdata = vdata; bvh->ldata = ldata; BB_reset(&cb); /* For each face, store the AABB and the AABB centroid */ prim_bbc = MEM_mallocN(sizeof(BBC) * looptri_num, "prim_bbc"); for (int i = 0; i < looptri_num; i++) { const MLoopTri *lt = &looptri[i]; const int sides = 3; BBC *bbc = prim_bbc + i; BB_reset((BB *)bbc); for (int j = 0; j < sides; j++) { BB_expand((BB *)bbc, verts[bvh->mloop[lt->tri[j]].v].co); } BBC_update_centroid(bbc); BB_expand(&cb, bbc->bcentroid); } if (looptri_num) { pbvh_build(bvh, &cb, prim_bbc, looptri_num); } MEM_freeN(prim_bbc); MEM_freeN(bvh->vert_bitmap); } /* Do a full rebuild with on Grids data structure */ void BKE_pbvh_build_grids(PBVH *bvh, CCGElem **grids, int totgrid, CCGKey *key, void **gridfaces, DMFlagMat *flagmats, BLI_bitmap **grid_hidden) { const int gridsize = key->grid_size; bvh->type = PBVH_GRIDS; bvh->grids = grids; bvh->gridfaces = gridfaces; bvh->grid_flag_mats = flagmats; bvh->totgrid = totgrid; bvh->gridkey = *key; bvh->grid_hidden = grid_hidden; bvh->leaf_limit = max_ii(LEAF_LIMIT / ((gridsize - 1) * (gridsize - 1)), 1); BB cb; BB_reset(&cb); /* For each grid, store the AABB and the AABB centroid */ BBC *prim_bbc = MEM_mallocN(sizeof(BBC) * totgrid, "prim_bbc"); for (int i = 0; i < totgrid; i++) { CCGElem *grid = grids[i]; BBC *bbc = prim_bbc + i; BB_reset((BB *)bbc); for (int j = 0; j < gridsize * gridsize; j++) { BB_expand((BB *)bbc, CCG_elem_offset_co(key, grid, j)); } BBC_update_centroid(bbc); BB_expand(&cb, bbc->bcentroid); } if (totgrid) { pbvh_build(bvh, &cb, prim_bbc, totgrid); } MEM_freeN(prim_bbc); } PBVH *BKE_pbvh_new(void) { PBVH *bvh = MEM_callocN(sizeof(PBVH), "pbvh"); return bvh; } void BKE_pbvh_free(PBVH *bvh) { for (int i = 0; i < bvh->totnode; i++) { PBVHNode *node = &bvh->nodes[i]; if (node->flag & PBVH_Leaf) { if (node->draw_buffers) { GPU_pbvh_buffers_free(node->draw_buffers); } if (node->vert_indices) { MEM_freeN((void *)node->vert_indices); } if (node->face_vert_indices) { MEM_freeN((void *)node->face_vert_indices); } BKE_pbvh_node_layer_disp_free(node); if (node->bm_faces) { BLI_gset_free(node->bm_faces, NULL); } if (node->bm_unique_verts) { BLI_gset_free(node->bm_unique_verts, NULL); } if (node->bm_other_verts) { BLI_gset_free(node->bm_other_verts, NULL); } } } if (bvh->deformed) { if (bvh->verts) { /* if pbvh was deformed, new memory was allocated for verts/faces -- free it */ MEM_freeN((void *)bvh->verts); } } if (bvh->looptri) { MEM_freeN((void *)bvh->looptri); } if (bvh->nodes) { MEM_freeN(bvh->nodes); } if (bvh->prim_indices) { MEM_freeN(bvh->prim_indices); } MEM_freeN(bvh); } void BKE_pbvh_free_layer_disp(PBVH *bvh) { for (int i = 0; i < bvh->totnode; i++) { BKE_pbvh_node_layer_disp_free(&bvh->nodes[i]); } } static void pbvh_iter_begin(PBVHIter *iter, PBVH *bvh, BKE_pbvh_SearchCallback scb, void *search_data) { iter->bvh = bvh; iter->scb = scb; iter->search_data = search_data; iter->stack = iter->stackfixed; iter->stackspace = STACK_FIXED_DEPTH; iter->stack[0].node = bvh->nodes; iter->stack[0].revisiting = false; iter->stacksize = 1; } static void pbvh_iter_end(PBVHIter *iter) { if (iter->stackspace > STACK_FIXED_DEPTH) { MEM_freeN(iter->stack); } } static void pbvh_stack_push(PBVHIter *iter, PBVHNode *node, bool revisiting) { if (UNLIKELY(iter->stacksize == iter->stackspace)) { iter->stackspace *= 2; if (iter->stackspace != (STACK_FIXED_DEPTH * 2)) { iter->stack = MEM_reallocN(iter->stack, sizeof(PBVHStack) * iter->stackspace); } else { iter->stack = MEM_mallocN(sizeof(PBVHStack) * iter->stackspace, "PBVHStack"); memcpy(iter->stack, iter->stackfixed, sizeof(PBVHStack) * iter->stacksize); } } iter->stack[iter->stacksize].node = node; iter->stack[iter->stacksize].revisiting = revisiting; iter->stacksize++; } static PBVHNode *pbvh_iter_next(PBVHIter *iter) { /* purpose here is to traverse tree, visiting child nodes before their * parents, this order is necessary for e.g. computing bounding boxes */ while (iter->stacksize) { /* pop node */ iter->stacksize--; PBVHNode *node = iter->stack[iter->stacksize].node; /* on a mesh with no faces this can happen * can remove this check if we know meshes have at least 1 face */ if (node == NULL) { return NULL; } bool revisiting = iter->stack[iter->stacksize].revisiting; /* revisiting node already checked */ if (revisiting) { return node; } if (iter->scb && !iter->scb(node, iter->search_data)) { continue; /* don't traverse, outside of search zone */ } if (node->flag & PBVH_Leaf) { /* immediately hit leaf node */ return node; } else { /* come back later when children are done */ pbvh_stack_push(iter, node, true); /* push two child nodes on the stack */ pbvh_stack_push(iter, iter->bvh->nodes + node->children_offset + 1, false); pbvh_stack_push(iter, iter->bvh->nodes + node->children_offset, false); } } return NULL; } static PBVHNode *pbvh_iter_next_occluded(PBVHIter *iter) { while (iter->stacksize) { /* pop node */ iter->stacksize--; PBVHNode *node = iter->stack[iter->stacksize].node; /* on a mesh with no faces this can happen * can remove this check if we know meshes have at least 1 face */ if (node == NULL) { return NULL; } if (iter->scb && !iter->scb(node, iter->search_data)) { continue; /* don't traverse, outside of search zone */ } if (node->flag & PBVH_Leaf) { /* immediately hit leaf node */ return node; } else { pbvh_stack_push(iter, iter->bvh->nodes + node->children_offset + 1, false); pbvh_stack_push(iter, iter->bvh->nodes + node->children_offset, false); } } return NULL; } void BKE_pbvh_search_gather( PBVH *bvh, BKE_pbvh_SearchCallback scb, void *search_data, PBVHNode ***r_array, int *r_tot) { PBVHIter iter; PBVHNode **array = NULL, *node; int tot = 0, space = 0; pbvh_iter_begin(&iter, bvh, scb, search_data); while ((node = pbvh_iter_next(&iter))) { if (node->flag & PBVH_Leaf) { if (UNLIKELY(tot == space)) { /* resize array if needed */ space = (tot == 0) ? 32 : space * 2; array = MEM_recallocN_id(array, sizeof(PBVHNode *) * space, __func__); } array[tot] = node; tot++; } } pbvh_iter_end(&iter); if (tot == 0 && array) { MEM_freeN(array); array = NULL; } *r_array = array; *r_tot = tot; } void BKE_pbvh_search_callback(PBVH *bvh, BKE_pbvh_SearchCallback scb, void *search_data, BKE_pbvh_HitCallback hcb, void *hit_data) { PBVHIter iter; PBVHNode *node; pbvh_iter_begin(&iter, bvh, scb, search_data); while ((node = pbvh_iter_next(&iter))) { if (node->flag & PBVH_Leaf) { hcb(node, hit_data); } } pbvh_iter_end(&iter); } typedef struct node_tree { PBVHNode *data; struct node_tree *left; struct node_tree *right; } node_tree; static void node_tree_insert(node_tree *tree, node_tree *new_node) { if (new_node->data->tmin < tree->data->tmin) { if (tree->left) { node_tree_insert(tree->left, new_node); } else { tree->left = new_node; } } else { if (tree->right) { node_tree_insert(tree->right, new_node); } else { tree->right = new_node; } } } static void traverse_tree(node_tree *tree, BKE_pbvh_HitOccludedCallback hcb, void *hit_data, float *tmin) { if (tree->left) { traverse_tree(tree->left, hcb, hit_data, tmin); } hcb(tree->data, hit_data, tmin); if (tree->right) { traverse_tree(tree->right, hcb, hit_data, tmin); } } static void free_tree(node_tree *tree) { if (tree->left) { free_tree(tree->left); tree->left = NULL; } if (tree->right) { free_tree(tree->right); tree->right = NULL; } free(tree); } float BKE_pbvh_node_get_tmin(PBVHNode *node) { return node->tmin; } static void BKE_pbvh_search_callback_occluded(PBVH *bvh, BKE_pbvh_SearchCallback scb, void *search_data, BKE_pbvh_HitOccludedCallback hcb, void *hit_data) { PBVHIter iter; PBVHNode *node; node_tree *tree = NULL; pbvh_iter_begin(&iter, bvh, scb, search_data); while ((node = pbvh_iter_next_occluded(&iter))) { if (node->flag & PBVH_Leaf) { node_tree *new_node = malloc(sizeof(node_tree)); new_node->data = node; new_node->left = NULL; new_node->right = NULL; if (tree) { node_tree_insert(tree, new_node); } else { tree = new_node; } } } pbvh_iter_end(&iter); if (tree) { float tmin = FLT_MAX; traverse_tree(tree, hcb, hit_data, &tmin); free_tree(tree); } } static bool update_search_cb(PBVHNode *node, void *data_v) { int flag = POINTER_AS_INT(data_v); if (node->flag & PBVH_Leaf) { return (node->flag & flag) != 0; } return true; } typedef struct PBVHUpdateData { PBVH *bvh; PBVHNode **nodes; int totnode; float (*vnors)[3]; int flag; bool show_vcol; } PBVHUpdateData; static void pbvh_update_normals_accum_task_cb(void *__restrict userdata, const int n, const TaskParallelTLS *__restrict UNUSED(tls)) { PBVHUpdateData *data = userdata; PBVH *bvh = data->bvh; PBVHNode *node = data->nodes[n]; float(*vnors)[3] = data->vnors; if ((node->flag & PBVH_UpdateNormals)) { unsigned int mpoly_prev = UINT_MAX; float fn[3]; const int *faces = node->prim_indices; const int totface = node->totprim; for (int i = 0; i < totface; i++) { const MLoopTri *lt = &bvh->looptri[faces[i]]; const unsigned int vtri[3] = { bvh->mloop[lt->tri[0]].v, bvh->mloop[lt->tri[1]].v, bvh->mloop[lt->tri[2]].v, }; const int sides = 3; /* Face normal and mask */ if (lt->poly != mpoly_prev) { const MPoly *mp = &bvh->mpoly[lt->poly]; BKE_mesh_calc_poly_normal(mp, &bvh->mloop[mp->loopstart], bvh->verts, fn); mpoly_prev = lt->poly; } for (int j = sides; j--;) { const int v = vtri[j]; if (bvh->verts[v].flag & ME_VERT_PBVH_UPDATE) { /* Note: This avoids `lock, add_v3_v3, unlock` * and is five to ten times quicker than a spin-lock. * Not exact equivalent though, since atomicity is only ensured for one component * of the vector at a time, but here it shall not make any sensible difference. */ for (int k = 3; k--;) { atomic_add_and_fetch_fl(&vnors[v][k], fn[k]); } } } } } } static void pbvh_update_normals_store_task_cb(void *__restrict userdata, const int n, const TaskParallelTLS *__restrict UNUSED(tls)) { PBVHUpdateData *data = userdata; PBVH *bvh = data->bvh; PBVHNode *node = data->nodes[n]; float(*vnors)[3] = data->vnors; if (node->flag & PBVH_UpdateNormals) { const int *verts = node->vert_indices; const int totvert = node->uniq_verts; for (int i = 0; i < totvert; i++) { const int v = verts[i]; MVert *mvert = &bvh->verts[v]; /* No atomics necessary because we are iterating over uniq_verts only, * so we know only this thread will handle this vertex. */ if (mvert->flag & ME_VERT_PBVH_UPDATE) { normalize_v3(vnors[v]); normal_float_to_short_v3(mvert->no, vnors[v]); mvert->flag &= ~ME_VERT_PBVH_UPDATE; } } node->flag &= ~PBVH_UpdateNormals; } } static void pbvh_faces_update_normals(PBVH *bvh, PBVHNode **nodes, int totnode) { /* could be per node to save some memory, but also means * we have to store for each vertex which node it is in */ float(*vnors)[3] = MEM_callocN(sizeof(*vnors) * bvh->totvert, __func__); /* subtle assumptions: * - We know that for all edited vertices, the nodes with faces * adjacent to these vertices have been marked with PBVH_UpdateNormals. * This is true because if the vertex is inside the brush radius, the * bounding box of it's adjacent faces will be as well. * - However this is only true for the vertices that have actually been * edited, not for all vertices in the nodes marked for update, so we * can only update vertices marked with ME_VERT_PBVH_UPDATE. */ PBVHUpdateData data = { .bvh = bvh, .nodes = nodes, .vnors = vnors, }; PBVHParallelSettings settings; BKE_pbvh_parallel_range_settings(&settings, true, totnode); BKE_pbvh_parallel_range(0, totnode, &data, pbvh_update_normals_accum_task_cb, &settings); BKE_pbvh_parallel_range(0, totnode, &data, pbvh_update_normals_store_task_cb, &settings); MEM_freeN(vnors); } static void pbvh_update_mask_redraw_task_cb(void *__restrict userdata, const int n, const TaskParallelTLS *__restrict UNUSED(tls)) { PBVHUpdateData *data = userdata; PBVH *bvh = data->bvh; PBVHNode *node = data->nodes[n]; if (node->flag & PBVH_UpdateMask) { bool has_unmasked = false; bool has_masked = true; if (node->flag & PBVH_Leaf) { PBVHVertexIter vd; BKE_pbvh_vertex_iter_begin(bvh, node, vd, PBVH_ITER_ALL) { if (vd.mask && *vd.mask < 1.0f) { has_unmasked = true; } if (vd.mask && *vd.mask > 0.0f) { has_masked = false; } } BKE_pbvh_vertex_iter_end; } else { has_unmasked = true; has_masked = true; } BKE_pbvh_node_fully_masked_set(node, !has_unmasked); BKE_pbvh_node_fully_unmasked_set(node, has_masked); node->flag &= ~PBVH_UpdateMask; } } static void pbvh_update_mask_redraw(PBVH *bvh, PBVHNode **nodes, int totnode, int flag) { PBVHUpdateData data = { .bvh = bvh, .nodes = nodes, .flag = flag, }; PBVHParallelSettings settings; BKE_pbvh_parallel_range_settings(&settings, true, totnode); BKE_pbvh_parallel_range(0, totnode, &data, pbvh_update_mask_redraw_task_cb, &settings); } static void pbvh_update_BB_redraw_task_cb(void *__restrict userdata, const int n, const TaskParallelTLS *__restrict UNUSED(tls)) { PBVHUpdateData *data = userdata; PBVH *bvh = data->bvh; PBVHNode *node = data->nodes[n]; const int flag = data->flag; if ((flag & PBVH_UpdateBB) && (node->flag & PBVH_UpdateBB)) { /* don't clear flag yet, leave it for flushing later */ /* Note that bvh usage is read-only here, so no need to thread-protect it. */ update_node_vb(bvh, node); } if ((flag & PBVH_UpdateOriginalBB) && (node->flag & PBVH_UpdateOriginalBB)) { node->orig_vb = node->vb; } if ((flag & PBVH_UpdateRedraw) && (node->flag & PBVH_UpdateRedraw)) { node->flag &= ~PBVH_UpdateRedraw; } } void pbvh_update_BB_redraw(PBVH *bvh, PBVHNode **nodes, int totnode, int flag) { /* update BB, redraw flag */ PBVHUpdateData data = { .bvh = bvh, .nodes = nodes, .flag = flag, }; PBVHParallelSettings settings; BKE_pbvh_parallel_range_settings(&settings, true, totnode); BKE_pbvh_parallel_range(0, totnode, &data, pbvh_update_BB_redraw_task_cb, &settings); } static int pbvh_get_buffers_update_flags(PBVH *bvh, bool show_vcol) { int update_flags = 0; update_flags |= bvh->show_mask ? GPU_PBVH_BUFFERS_SHOW_MASK : 0; update_flags |= show_vcol ? GPU_PBVH_BUFFERS_SHOW_VCOL : 0; return update_flags; } static void pbvh_update_draw_buffer_cb(void *__restrict userdata, const int n, const TaskParallelTLS *__restrict UNUSED(tls)) { /* Create and update draw buffers. The functions called here must not * do any OpenGL calls. Flags are not cleared immediately, that happens * after GPU_pbvh_buffer_flush() which does the final OpenGL calls. */ PBVHUpdateData *data = userdata; PBVH *bvh = data->bvh; PBVHNode *node = data->nodes[n]; if (node->flag & PBVH_RebuildDrawBuffers) { switch (bvh->type) { case PBVH_GRIDS: node->draw_buffers = GPU_pbvh_grid_buffers_build(node->totprim, bvh->grid_hidden); break; case PBVH_FACES: node->draw_buffers = GPU_pbvh_mesh_buffers_build(node->face_vert_indices, bvh->mpoly, bvh->mloop, bvh->looptri, bvh->verts, node->prim_indices, node->totprim, bvh->mesh); break; case PBVH_BMESH: node->draw_buffers = GPU_pbvh_bmesh_buffers_build(bvh->flags & PBVH_DYNTOPO_SMOOTH_SHADING); break; } } if (node->flag & PBVH_UpdateDrawBuffers) { const int update_flags = pbvh_get_buffers_update_flags(bvh, data->show_vcol); switch (bvh->type) { case PBVH_GRIDS: GPU_pbvh_grid_buffers_update(node->draw_buffers, bvh->grids, bvh->grid_flag_mats, node->prim_indices, node->totprim, &bvh->gridkey, update_flags); break; case PBVH_FACES: GPU_pbvh_mesh_buffers_update(node->draw_buffers, bvh->verts, node->vert_indices, node->uniq_verts + node->face_verts, CustomData_get_layer(bvh->vdata, CD_PAINT_MASK), CustomData_get_layer(bvh->ldata, CD_MLOOPCOL), node->face_vert_indices, update_flags); break; case PBVH_BMESH: GPU_pbvh_bmesh_buffers_update(node->draw_buffers, bvh->bm, node->bm_faces, node->bm_unique_verts, node->bm_other_verts, update_flags); break; } } } static void pbvh_update_draw_buffers( PBVH *bvh, PBVHNode **nodes, int totnode, bool show_vcol, int update_flag) { if ((update_flag & PBVH_RebuildDrawBuffers) || ELEM(bvh->type, PBVH_GRIDS, PBVH_BMESH)) { /* Free buffers uses OpenGL, so not in parallel. */ for (int n = 0; n < totnode; n++) { PBVHNode *node = nodes[n]; if (node->flag & PBVH_RebuildDrawBuffers) { GPU_pbvh_buffers_free(node->draw_buffers); node->draw_buffers = NULL; } else if ((node->flag & PBVH_UpdateDrawBuffers) && node->draw_buffers) { if (bvh->type == PBVH_GRIDS) { GPU_pbvh_grid_buffers_update_free( node->draw_buffers, bvh->grid_flag_mats, node->prim_indices); } else if (bvh->type == PBVH_BMESH) { GPU_pbvh_bmesh_buffers_update_free(node->draw_buffers); } } } } /* Parallel creation and update of draw buffers. */ PBVHUpdateData data = { .bvh = bvh, .nodes = nodes, .show_vcol = show_vcol, }; PBVHParallelSettings settings; BKE_pbvh_parallel_range_settings(&settings, true, totnode); BKE_pbvh_parallel_range(0, totnode, &data, pbvh_update_draw_buffer_cb, &settings); } static int pbvh_flush_bb(PBVH *bvh, PBVHNode *node, int flag) { int update = 0; /* difficult to multithread well, we just do single threaded recursive */ if (node->flag & PBVH_Leaf) { if (flag & PBVH_UpdateBB) { update |= (node->flag & PBVH_UpdateBB); node->flag &= ~PBVH_UpdateBB; } if (flag & PBVH_UpdateOriginalBB) { update |= (node->flag & PBVH_UpdateOriginalBB); node->flag &= ~PBVH_UpdateOriginalBB; } return update; } else { update |= pbvh_flush_bb(bvh, bvh->nodes + node->children_offset, flag); update |= pbvh_flush_bb(bvh, bvh->nodes + node->children_offset + 1, flag); if (update & PBVH_UpdateBB) { update_node_vb(bvh, node); } if (update & PBVH_UpdateOriginalBB) { node->orig_vb = node->vb; } } return update; } void BKE_pbvh_update_bounds(PBVH *bvh, int flag) { if (!bvh->nodes) { return; } PBVHNode **nodes; int totnode; BKE_pbvh_search_gather(bvh, update_search_cb, POINTER_FROM_INT(flag), &nodes, &totnode); if (flag & (PBVH_UpdateBB | PBVH_UpdateOriginalBB | PBVH_UpdateRedraw)) { pbvh_update_BB_redraw(bvh, nodes, totnode, flag); } if (flag & (PBVH_UpdateBB | PBVH_UpdateOriginalBB)) { pbvh_flush_bb(bvh, bvh->nodes, flag); } MEM_SAFE_FREE(nodes); } void BKE_pbvh_update_vertex_data(PBVH *bvh, int flag) { if (!bvh->nodes) { return; } PBVHNode **nodes; int totnode; BKE_pbvh_search_gather(bvh, update_search_cb, POINTER_FROM_INT(flag), &nodes, &totnode); if (flag & (PBVH_UpdateMask)) { pbvh_update_mask_redraw(bvh, nodes, totnode, flag); } if (nodes) { MEM_freeN(nodes); } } void BKE_pbvh_redraw_BB(PBVH *bvh, float bb_min[3], float bb_max[3]) { PBVHIter iter; PBVHNode *node; BB bb; BB_reset(&bb); pbvh_iter_begin(&iter, bvh, NULL, NULL); while ((node = pbvh_iter_next(&iter))) { if (node->flag & PBVH_UpdateRedraw) { BB_expand_with_bb(&bb, &node->vb); } } pbvh_iter_end(&iter); copy_v3_v3(bb_min, bb.bmin); copy_v3_v3(bb_max, bb.bmax); } void BKE_pbvh_get_grid_updates(PBVH *bvh, bool clear, void ***r_gridfaces, int *r_totface) { GSet *face_set = BLI_gset_ptr_new(__func__); PBVHNode *node; PBVHIter iter; pbvh_iter_begin(&iter, bvh, NULL, NULL); while ((node = pbvh_iter_next(&iter))) { if (node->flag & PBVH_UpdateNormals) { for (unsigned i = 0; i < node->totprim; i++) { void *face = bvh->gridfaces[node->prim_indices[i]]; BLI_gset_add(face_set, face); } if (clear) { node->flag &= ~PBVH_UpdateNormals; } } } pbvh_iter_end(&iter); const int tot = BLI_gset_len(face_set); if (tot == 0) { *r_totface = 0; *r_gridfaces = NULL; BLI_gset_free(face_set, NULL); return; } void **faces = MEM_mallocN(sizeof(*faces) * tot, "PBVH Grid Faces"); GSetIterator gs_iter; int i; GSET_ITER_INDEX (gs_iter, face_set, i) { faces[i] = BLI_gsetIterator_getKey(&gs_iter); } BLI_gset_free(face_set, NULL); *r_totface = tot; *r_gridfaces = faces; } /***************************** PBVH Access ***********************************/ PBVHType BKE_pbvh_type(const PBVH *bvh) { return bvh->type; } bool BKE_pbvh_has_faces(const PBVH *bvh) { if (bvh->type == PBVH_BMESH) { return (bvh->bm->totface != 0); } else { return (bvh->totprim != 0); } } void BKE_pbvh_bounding_box(const PBVH *bvh, float min[3], float max[3]) { if (bvh->totnode) { const BB *bb = &bvh->nodes[0].vb; copy_v3_v3(min, bb->bmin); copy_v3_v3(max, bb->bmax); } else { zero_v3(min); zero_v3(max); } } BLI_bitmap **BKE_pbvh_grid_hidden(const PBVH *bvh) { BLI_assert(bvh->type == PBVH_GRIDS); return bvh->grid_hidden; } const CCGKey *BKE_pbvh_get_grid_key(const PBVH *bvh) { BLI_assert(bvh->type == PBVH_GRIDS); return &bvh->gridkey; } struct CCGElem **BKE_pbvh_get_grids(const PBVH *bvh) { BLI_assert(bvh->type == PBVH_GRIDS); return bvh->grids; } int BKE_pbvh_get_grid_num_vertices(const PBVH *bvh) { BLI_assert(bvh->type == PBVH_GRIDS); return bvh->totgrid * bvh->gridkey.grid_area; } BMesh *BKE_pbvh_get_bmesh(PBVH *bvh) { BLI_assert(bvh->type == PBVH_BMESH); return bvh->bm; } /***************************** Node Access ***********************************/ void BKE_pbvh_node_mark_update(PBVHNode *node) { node->flag |= PBVH_UpdateNormals | PBVH_UpdateBB | PBVH_UpdateOriginalBB | PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw; } void BKE_pbvh_node_mark_update_mask(PBVHNode *node) { node->flag |= PBVH_UpdateMask | PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw; } void BKE_pbvh_node_mark_rebuild_draw(PBVHNode *node) { node->flag |= PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw; } void BKE_pbvh_node_mark_redraw(PBVHNode *node) { node->flag |= PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw; } void BKE_pbvh_node_mark_normals_update(PBVHNode *node) { node->flag |= PBVH_UpdateNormals; } void BKE_pbvh_node_fully_hidden_set(PBVHNode *node, int fully_hidden) { BLI_assert(node->flag & PBVH_Leaf); if (fully_hidden) { node->flag |= PBVH_FullyHidden; } else { node->flag &= ~PBVH_FullyHidden; } } void BKE_pbvh_node_fully_masked_set(PBVHNode *node, int fully_masked) { BLI_assert(node->flag & PBVH_Leaf); if (fully_masked) { node->flag |= PBVH_FullyMasked; } else { node->flag &= ~PBVH_FullyMasked; } } bool BKE_pbvh_node_fully_masked_get(PBVHNode *node) { return (node->flag & PBVH_Leaf) && (node->flag & PBVH_FullyMasked); } void BKE_pbvh_node_fully_unmasked_set(PBVHNode *node, int fully_masked) { BLI_assert(node->flag & PBVH_Leaf); if (fully_masked) { node->flag |= PBVH_FullyUnmasked; } else { node->flag &= ~PBVH_FullyUnmasked; } } bool BKE_pbvh_node_fully_unmasked_get(PBVHNode *node) { return (node->flag & PBVH_Leaf) && (node->flag & PBVH_FullyUnmasked); } void BKE_pbvh_node_get_verts(PBVH *bvh, PBVHNode *node, const int **r_vert_indices, MVert **r_verts) { if (r_vert_indices) { *r_vert_indices = node->vert_indices; } if (r_verts) { *r_verts = bvh->verts; } } void BKE_pbvh_node_num_verts(PBVH *bvh, PBVHNode *node, int *r_uniquevert, int *r_totvert) { int tot; switch (bvh->type) { case PBVH_GRIDS: tot = node->totprim * bvh->gridkey.grid_area; if (r_totvert) { *r_totvert = tot; } if (r_uniquevert) { *r_uniquevert = tot; } break; case PBVH_FACES: if (r_totvert) { *r_totvert = node->uniq_verts + node->face_verts; } if (r_uniquevert) { *r_uniquevert = node->uniq_verts; } break; case PBVH_BMESH: tot = BLI_gset_len(node->bm_unique_verts); if (r_totvert) { *r_totvert = tot + BLI_gset_len(node->bm_other_verts); } if (r_uniquevert) { *r_uniquevert = tot; } break; } } void BKE_pbvh_node_get_grids(PBVH *bvh, PBVHNode *node, int **r_grid_indices, int *r_totgrid, int *r_maxgrid, int *r_gridsize, CCGElem ***r_griddata) { switch (bvh->type) { case PBVH_GRIDS: if (r_grid_indices) { *r_grid_indices = node->prim_indices; } if (r_totgrid) { *r_totgrid = node->totprim; } if (r_maxgrid) { *r_maxgrid = bvh->totgrid; } if (r_gridsize) { *r_gridsize = bvh->gridkey.grid_size; } if (r_griddata) { *r_griddata = bvh->grids; } break; case PBVH_FACES: case PBVH_BMESH: if (r_grid_indices) { *r_grid_indices = NULL; } if (r_totgrid) { *r_totgrid = 0; } if (r_maxgrid) { *r_maxgrid = 0; } if (r_gridsize) { *r_gridsize = 0; } if (r_griddata) { *r_griddata = NULL; } break; } } void BKE_pbvh_node_get_BB(PBVHNode *node, float bb_min[3], float bb_max[3]) { copy_v3_v3(bb_min, node->vb.bmin); copy_v3_v3(bb_max, node->vb.bmax); } void BKE_pbvh_node_get_original_BB(PBVHNode *node, float bb_min[3], float bb_max[3]) { copy_v3_v3(bb_min, node->orig_vb.bmin); copy_v3_v3(bb_max, node->orig_vb.bmax); } void BKE_pbvh_node_get_proxies(PBVHNode *node, PBVHProxyNode **proxies, int *proxy_count) { if (node->proxy_count > 0) { if (proxies) { *proxies = node->proxies; } if (proxy_count) { *proxy_count = node->proxy_count; } } else { if (proxies) { *proxies = NULL; } if (proxy_count) { *proxy_count = 0; } } } void BKE_pbvh_node_get_bm_orco_data(PBVHNode *node, int (**r_orco_tris)[3], int *r_orco_tris_num, float (**r_orco_coords)[3]) { *r_orco_tris = node->bm_ortri; *r_orco_tris_num = node->bm_tot_ortri; *r_orco_coords = node->bm_orco; } /** * \note doing a full search on all vertices here seems expensive, * however this is important to avoid having to recalculate boundbox & sync the buffers to the * GPU (which is far more expensive!) See: T47232. */ bool BKE_pbvh_node_vert_update_check_any(PBVH *bvh, PBVHNode *node) { BLI_assert(bvh->type == PBVH_FACES); const int *verts = node->vert_indices; const int totvert = node->uniq_verts + node->face_verts; for (int i = 0; i < totvert; i++) { const int v = verts[i]; const MVert *mvert = &bvh->verts[v]; if (mvert->flag & ME_VERT_PBVH_UPDATE) { return true; } } return false; } /********************************* Raycast ***********************************/ typedef struct { struct IsectRayAABB_Precalc ray; bool original; } RaycastData; static bool ray_aabb_intersect(PBVHNode *node, void *data_v) { RaycastData *rcd = data_v; const float *bb_min, *bb_max; if (rcd->original) { /* BKE_pbvh_node_get_original_BB */ bb_min = node->orig_vb.bmin; bb_max = node->orig_vb.bmax; } else { /* BKE_pbvh_node_get_BB */ bb_min = node->vb.bmin; bb_max = node->vb.bmax; } return isect_ray_aabb_v3(&rcd->ray, bb_min, bb_max, &node->tmin); } void BKE_pbvh_raycast(PBVH *bvh, BKE_pbvh_HitOccludedCallback cb, void *data, const float ray_start[3], const float ray_normal[3], bool original) { RaycastData rcd; isect_ray_aabb_v3_precalc(&rcd.ray, ray_start, ray_normal); rcd.original = original; BKE_pbvh_search_callback_occluded(bvh, ray_aabb_intersect, &rcd, cb, data); } bool ray_face_intersection_quad(const float ray_start[3], struct IsectRayPrecalc *isect_precalc, const float t0[3], const float t1[3], const float t2[3], const float t3[3], float *depth) { float depth_test; if ((isect_ray_tri_watertight_v3(ray_start, isect_precalc, t0, t1, t2, &depth_test, NULL) && (depth_test < *depth)) || (isect_ray_tri_watertight_v3(ray_start, isect_precalc, t0, t2, t3, &depth_test, NULL) && (depth_test < *depth))) { *depth = depth_test; return true; } else { return false; } } bool ray_face_intersection_tri(const float ray_start[3], struct IsectRayPrecalc *isect_precalc, const float t0[3], const float t1[3], const float t2[3], float *depth) { float depth_test; if ((isect_ray_tri_watertight_v3(ray_start, isect_precalc, t0, t1, t2, &depth_test, NULL) && (depth_test < *depth))) { *depth = depth_test; return true; } else { return false; } } /* Take advantage of the fact we know this wont be an intersection. * Just handle ray-tri edges. */ static float dist_squared_ray_to_tri_v3_fast(const float ray_origin[3], const float ray_direction[3], const float v0[3], const float v1[3], const float v2[3], float r_point[3], float *r_depth) { const float *tri[3] = {v0, v1, v2}; float dist_sq_best = FLT_MAX; for (int i = 0, j = 2; i < 3; j = i++) { float point_test[3], depth_test = FLT_MAX; const float dist_sq_test = dist_squared_ray_to_seg_v3( ray_origin, ray_direction, tri[i], tri[j], point_test, &depth_test); if (dist_sq_test < dist_sq_best || i == 0) { copy_v3_v3(r_point, point_test); *r_depth = depth_test; dist_sq_best = dist_sq_test; } } return dist_sq_best; } bool ray_face_nearest_quad(const float ray_start[3], const float ray_normal[3], const float t0[3], const float t1[3], const float t2[3], const float t3[3], float *depth, float *dist_sq) { float dist_sq_test; float co[3], depth_test; if (((dist_sq_test = dist_squared_ray_to_tri_v3_fast( ray_start, ray_normal, t0, t1, t2, co, &depth_test)) < *dist_sq)) { *dist_sq = dist_sq_test; *depth = depth_test; if (((dist_sq_test = dist_squared_ray_to_tri_v3_fast( ray_start, ray_normal, t0, t2, t3, co, &depth_test)) < *dist_sq)) { *dist_sq = dist_sq_test; *depth = depth_test; } return true; } else { return false; } } bool ray_face_nearest_tri(const float ray_start[3], const float ray_normal[3], const float t0[3], const float t1[3], const float t2[3], float *depth, float *dist_sq) { float dist_sq_test; float co[3], depth_test; if (((dist_sq_test = dist_squared_ray_to_tri_v3_fast( ray_start, ray_normal, t0, t1, t2, co, &depth_test)) < *dist_sq)) { *dist_sq = dist_sq_test; *depth = depth_test; return true; } else { return false; } } static bool pbvh_faces_node_raycast(PBVH *bvh, const PBVHNode *node, float (*origco)[3], const float ray_start[3], const float ray_normal[3], struct IsectRayPrecalc *isect_precalc, float *depth, int *r_active_vertex_index, float *r_face_normal) { const MVert *vert = bvh->verts; const MLoop *mloop = bvh->mloop; const int *faces = node->prim_indices; int totface = node->totprim; bool hit = false; float nearest_vertex_co[3] = {0.0f}; for (int i = 0; i < totface; i++) { const MLoopTri *lt = &bvh->looptri[faces[i]]; const int *face_verts = node->face_vert_indices[i]; if (paint_is_face_hidden(lt, vert, mloop)) { continue; } const float *co[3]; if (origco) { /* intersect with backuped original coordinates */ co[0] = origco[face_verts[0]]; co[1] = origco[face_verts[1]]; co[2] = origco[face_verts[2]]; } else { /* intersect with current coordinates */ co[0] = vert[mloop[lt->tri[0]].v].co; co[1] = vert[mloop[lt->tri[1]].v].co; co[2] = vert[mloop[lt->tri[2]].v].co; } if (ray_face_intersection_tri(ray_start, isect_precalc, co[0], co[1], co[2], depth)) { hit = true; if (r_face_normal) { normal_tri_v3(r_face_normal, co[0], co[1], co[2]); } if (r_active_vertex_index) { float location[3] = {0.0f}; madd_v3_v3v3fl(location, ray_start, ray_normal, *depth); for (int j = 0; j < 3; j++) { if (len_squared_v3v3(location, co[j]) < len_squared_v3v3(location, nearest_vertex_co)) { copy_v3_v3(nearest_vertex_co, co[j]); *r_active_vertex_index = mloop[lt->tri[j]].v; } } } } } return hit; } static bool pbvh_grids_node_raycast(PBVH *bvh, PBVHNode *node, float (*origco)[3], const float ray_start[3], const float ray_normal[3], struct IsectRayPrecalc *isect_precalc, float *depth, int *r_active_vertex_index, float *r_face_normal) { const int totgrid = node->totprim; const int gridsize = bvh->gridkey.grid_size; bool hit = false; float nearest_vertex_co[3] = {0.0}; const CCGKey *gridkey = &bvh->gridkey; for (int i = 0; i < totgrid; i++) { const int grid_index = node->prim_indices[i]; CCGElem *grid = bvh->grids[grid_index]; BLI_bitmap *gh; if (!grid) { continue; } gh = bvh->grid_hidden[grid_index]; for (int y = 0; y < gridsize - 1; y++) { for (int x = 0; x < gridsize - 1; x++) { /* check if grid face is hidden */ if (gh) { if (paint_is_grid_face_hidden(gh, gridsize, x, y)) { continue; } } const float *co[4]; if (origco) { co[0] = origco[y * gridsize + x]; co[1] = origco[y * gridsize + x + 1]; co[2] = origco[(y + 1) * gridsize + x + 1]; co[3] = origco[(y + 1) * gridsize + x]; } else { co[0] = CCG_grid_elem_co(gridkey, grid, x, y); co[1] = CCG_grid_elem_co(gridkey, grid, x + 1, y); co[2] = CCG_grid_elem_co(gridkey, grid, x + 1, y + 1); co[3] = CCG_grid_elem_co(gridkey, grid, x, y + 1); } if (ray_face_intersection_quad( ray_start, isect_precalc, co[0], co[1], co[2], co[3], depth)) { hit = true; if (r_face_normal) { normal_quad_v3(r_face_normal, co[0], co[1], co[2], co[3]); } if (r_active_vertex_index) { float location[3] = {0.0}; madd_v3_v3v3fl(location, ray_start, ray_normal, *depth); for (int j = 0; j < 4; j++) { if (len_squared_v3v3(location, co[j]) < len_squared_v3v3(location, nearest_vertex_co)) { copy_v3_v3(nearest_vertex_co, co[j]); *r_active_vertex_index = gridkey->grid_area * grid_index + y * gridkey->grid_size + x; } } } } } } if (origco) { origco += gridsize * gridsize; } } return hit; } bool BKE_pbvh_node_raycast(PBVH *bvh, PBVHNode *node, float (*origco)[3], bool use_origco, const float ray_start[3], const float ray_normal[3], struct IsectRayPrecalc *isect_precalc, float *depth, int *active_vertex_index, float *face_normal) { bool hit = false; if (node->flag & PBVH_FullyHidden) { return false; } switch (bvh->type) { case PBVH_FACES: hit |= pbvh_faces_node_raycast(bvh, node, origco, ray_start, ray_normal, isect_precalc, depth, active_vertex_index, face_normal); break; case PBVH_GRIDS: hit |= pbvh_grids_node_raycast(bvh, node, origco, ray_start, ray_normal, isect_precalc, depth, active_vertex_index, face_normal); break; case PBVH_BMESH: BM_mesh_elem_index_ensure(bvh->bm, BM_VERT); hit = pbvh_bmesh_node_raycast(node, ray_start, ray_normal, isect_precalc, depth, use_origco, active_vertex_index, face_normal); break; } return hit; } void BKE_pbvh_raycast_project_ray_root( PBVH *bvh, bool original, float ray_start[3], float ray_end[3], float ray_normal[3]) { if (bvh->nodes) { float rootmin_start, rootmin_end; float bb_min_root[3], bb_max_root[3], bb_center[3], bb_diff[3]; struct IsectRayAABB_Precalc ray; float ray_normal_inv[3]; float offset = 1.0f + 1e-3f; float offset_vec[3] = {1e-3f, 1e-3f, 1e-3f}; if (original) { BKE_pbvh_node_get_original_BB(bvh->nodes, bb_min_root, bb_max_root); } else { BKE_pbvh_node_get_BB(bvh->nodes, bb_min_root, bb_max_root); } /* Slightly offset min and max in case we have a zero width node * (due to a plane mesh for instance), or faces very close to the bounding box boundary. */ mid_v3_v3v3(bb_center, bb_max_root, bb_min_root); /* diff should be same for both min/max since it's calculated from center */ sub_v3_v3v3(bb_diff, bb_max_root, bb_center); /* handles case of zero width bb */ add_v3_v3(bb_diff, offset_vec); madd_v3_v3v3fl(bb_max_root, bb_center, bb_diff, offset); madd_v3_v3v3fl(bb_min_root, bb_center, bb_diff, -offset); /* first project start ray */ isect_ray_aabb_v3_precalc(&ray, ray_start, ray_normal); if (!isect_ray_aabb_v3(&ray, bb_min_root, bb_max_root, &rootmin_start)) { return; } /* then the end ray */ mul_v3_v3fl(ray_normal_inv, ray_normal, -1.0); isect_ray_aabb_v3_precalc(&ray, ray_end, ray_normal_inv); /* unlikely to fail exiting if entering succeeded, still keep this here */ if (!isect_ray_aabb_v3(&ray, bb_min_root, bb_max_root, &rootmin_end)) { return; } madd_v3_v3v3fl(ray_start, ray_start, ray_normal, rootmin_start); madd_v3_v3v3fl(ray_end, ray_end, ray_normal_inv, rootmin_end); } } /* -------------------------------------------------------------------- */ typedef struct { struct DistRayAABB_Precalc dist_ray_to_aabb_precalc; bool original; } FindNearestRayData; static bool nearest_to_ray_aabb_dist_sq(PBVHNode *node, void *data_v) { FindNearestRayData *rcd = data_v; const float *bb_min, *bb_max; if (rcd->original) { /* BKE_pbvh_node_get_original_BB */ bb_min = node->orig_vb.bmin; bb_max = node->orig_vb.bmax; } else { /* BKE_pbvh_node_get_BB */ bb_min = node->vb.bmin; bb_max = node->vb.bmax; } float co_dummy[3], depth; node->tmin = dist_squared_ray_to_aabb_v3( &rcd->dist_ray_to_aabb_precalc, bb_min, bb_max, co_dummy, &depth); /* Ideally we would skip distances outside the range. */ return depth > 0.0f; } void BKE_pbvh_find_nearest_to_ray(PBVH *bvh, BKE_pbvh_SearchNearestCallback cb, void *data, const float ray_start[3], const float ray_normal[3], bool original) { FindNearestRayData ncd; dist_squared_ray_to_aabb_v3_precalc(&ncd.dist_ray_to_aabb_precalc, ray_start, ray_normal); ncd.original = original; BKE_pbvh_search_callback_occluded(bvh, nearest_to_ray_aabb_dist_sq, &ncd, cb, data); } static bool pbvh_faces_node_nearest_to_ray(PBVH *bvh, const PBVHNode *node, float (*origco)[3], const float ray_start[3], const float ray_normal[3], float *depth, float *dist_sq) { const MVert *vert = bvh->verts; const MLoop *mloop = bvh->mloop; const int *faces = node->prim_indices; int i, totface = node->totprim; bool hit = false; for (i = 0; i < totface; i++) { const MLoopTri *lt = &bvh->looptri[faces[i]]; const int *face_verts = node->face_vert_indices[i]; if (paint_is_face_hidden(lt, vert, mloop)) { continue; } if (origco) { /* intersect with backuped original coordinates */ hit |= ray_face_nearest_tri(ray_start, ray_normal, origco[face_verts[0]], origco[face_verts[1]], origco[face_verts[2]], depth, dist_sq); } else { /* intersect with current coordinates */ hit |= ray_face_nearest_tri(ray_start, ray_normal, vert[mloop[lt->tri[0]].v].co, vert[mloop[lt->tri[1]].v].co, vert[mloop[lt->tri[2]].v].co, depth, dist_sq); } } return hit; } static bool pbvh_grids_node_nearest_to_ray(PBVH *bvh, PBVHNode *node, float (*origco)[3], const float ray_start[3], const float ray_normal[3], float *depth, float *dist_sq) { const int totgrid = node->totprim; const int gridsize = bvh->gridkey.grid_size; bool hit = false; for (int i = 0; i < totgrid; i++) { CCGElem *grid = bvh->grids[node->prim_indices[i]]; BLI_bitmap *gh; if (!grid) { continue; } gh = bvh->grid_hidden[node->prim_indices[i]]; for (int y = 0; y < gridsize - 1; y++) { for (int x = 0; x < gridsize - 1; x++) { /* check if grid face is hidden */ if (gh) { if (paint_is_grid_face_hidden(gh, gridsize, x, y)) { continue; } } if (origco) { hit |= ray_face_nearest_quad(ray_start, ray_normal, origco[y * gridsize + x], origco[y * gridsize + x + 1], origco[(y + 1) * gridsize + x + 1], origco[(y + 1) * gridsize + x], depth, dist_sq); } else { hit |= ray_face_nearest_quad(ray_start, ray_normal, CCG_grid_elem_co(&bvh->gridkey, grid, x, y), CCG_grid_elem_co(&bvh->gridkey, grid, x + 1, y), CCG_grid_elem_co(&bvh->gridkey, grid, x + 1, y + 1), CCG_grid_elem_co(&bvh->gridkey, grid, x, y + 1), depth, dist_sq); } } } if (origco) { origco += gridsize * gridsize; } } return hit; } bool BKE_pbvh_node_find_nearest_to_ray(PBVH *bvh, PBVHNode *node, float (*origco)[3], bool use_origco, const float ray_start[3], const float ray_normal[3], float *depth, float *dist_sq) { bool hit = false; if (node->flag & PBVH_FullyHidden) { return false; } switch (bvh->type) { case PBVH_FACES: hit |= pbvh_faces_node_nearest_to_ray( bvh, node, origco, ray_start, ray_normal, depth, dist_sq); break; case PBVH_GRIDS: hit |= pbvh_grids_node_nearest_to_ray( bvh, node, origco, ray_start, ray_normal, depth, dist_sq); break; case PBVH_BMESH: hit = pbvh_bmesh_node_nearest_to_ray( node, ray_start, ray_normal, depth, dist_sq, use_origco); break; } return hit; } typedef enum { ISECT_INSIDE, ISECT_OUTSIDE, ISECT_INTERSECT, } PlaneAABBIsect; /* Adapted from: * http://www.gamedev.net/community/forums/topic.asp?topic_id=512123 * Returns true if the AABB is at least partially within the frustum * (ok, not a real frustum), false otherwise. */ static PlaneAABBIsect test_frustum_aabb(const float bb_min[3], const float bb_max[3], PBVHFrustumPlanes *frustum) { PlaneAABBIsect ret = ISECT_INSIDE; float(*planes)[4] = frustum->planes; for (int i = 0; i < frustum->num_planes; i++) { float vmin[3], vmax[3]; for (int axis = 0; axis < 3; axis++) { if (planes[i][axis] < 0) { vmin[axis] = bb_min[axis]; vmax[axis] = bb_max[axis]; } else { vmin[axis] = bb_max[axis]; vmax[axis] = bb_min[axis]; } } if (dot_v3v3(planes[i], vmin) + planes[i][3] < 0) { return ISECT_OUTSIDE; } else if (dot_v3v3(planes[i], vmax) + planes[i][3] <= 0) { ret = ISECT_INTERSECT; } } return ret; } bool BKE_pbvh_node_frustum_contain_AABB(PBVHNode *node, void *data) { const float *bb_min, *bb_max; /* BKE_pbvh_node_get_BB */ bb_min = node->vb.bmin; bb_max = node->vb.bmax; return test_frustum_aabb(bb_min, bb_max, data) != ISECT_OUTSIDE; } bool BKE_pbvh_node_frustum_exclude_AABB(PBVHNode *node, void *data) { const float *bb_min, *bb_max; /* BKE_pbvh_node_get_BB */ bb_min = node->vb.bmin; bb_max = node->vb.bmax; return test_frustum_aabb(bb_min, bb_max, data) != ISECT_INSIDE; } void BKE_pbvh_update_normals(PBVH *bvh, struct SubdivCCG *subdiv_ccg) { /* Update normals */ PBVHNode **nodes; int totnode; BKE_pbvh_search_gather( bvh, update_search_cb, POINTER_FROM_INT(PBVH_UpdateNormals), &nodes, &totnode); if (totnode > 0) { if (bvh->type == PBVH_BMESH) { pbvh_bmesh_normals_update(nodes, totnode); } else if (bvh->type == PBVH_FACES) { pbvh_faces_update_normals(bvh, nodes, totnode); } else if (bvh->type == PBVH_GRIDS) { struct CCGFace **faces; int num_faces; BKE_pbvh_get_grid_updates(bvh, true, (void ***)&faces, &num_faces); if (num_faces > 0) { BKE_subdiv_ccg_update_normals(subdiv_ccg, faces, num_faces); MEM_freeN(faces); } } } MEM_SAFE_FREE(nodes); } /** * PBVH drawing, updating draw buffers as needed and culling any nodes outside * the specified frustum. */ typedef struct PBVHDrawSearchData { PBVHFrustumPlanes *frustum; int accum_update_flag; } PBVHDrawSearchData; static bool pbvh_draw_search_cb(PBVHNode *node, void *data_v) { PBVHDrawSearchData *data = data_v; if (data->frustum && !BKE_pbvh_node_frustum_contain_AABB(node, data->frustum)) { return false; } data->accum_update_flag |= node->flag; return true; } void BKE_pbvh_draw_cb(PBVH *bvh, bool show_vcol, bool update_only_visible, PBVHFrustumPlanes *frustum, void (*draw_fn)(void *user_data, GPU_PBVH_Buffers *buffers), void *user_data) { PBVHNode **nodes; int totnode; const int update_flag = PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers; if (!update_only_visible) { /* Update all draw buffers, also those outside the view. */ BKE_pbvh_search_gather(bvh, update_search_cb, POINTER_FROM_INT(update_flag), &nodes, &totnode); if (totnode) { pbvh_update_draw_buffers(bvh, nodes, totnode, show_vcol, update_flag); } MEM_SAFE_FREE(nodes); } /* Gather visible nodes. */ PBVHDrawSearchData data = {.frustum = frustum, .accum_update_flag = 0}; BKE_pbvh_search_gather(bvh, pbvh_draw_search_cb, &data, &nodes, &totnode); if (update_only_visible && (data.accum_update_flag & update_flag)) { /* Update draw buffers in visible nodes. */ pbvh_update_draw_buffers(bvh, nodes, totnode, show_vcol, data.accum_update_flag); } /* Draw. */ for (int a = 0; a < totnode; a++) { PBVHNode *node = nodes[a]; if (node->flag & PBVH_UpdateDrawBuffers) { /* Flush buffers uses OpenGL, so not in parallel. */ GPU_pbvh_buffers_update_flush(node->draw_buffers); } node->flag &= ~(PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers); if (!(node->flag & PBVH_FullyHidden)) { draw_fn(user_data, node->draw_buffers); } } MEM_SAFE_FREE(nodes); } void BKE_pbvh_draw_debug_cb( PBVH *bvh, void (*draw_fn)(void *user_data, const float bmin[3], const float bmax[3], PBVHNodeFlags flag), void *user_data) { for (int a = 0; a < bvh->totnode; a++) { PBVHNode *node = &bvh->nodes[a]; draw_fn(user_data, node->vb.bmin, node->vb.bmax, node->flag); } } void BKE_pbvh_grids_update( PBVH *bvh, CCGElem **grids, void **gridfaces, DMFlagMat *flagmats, BLI_bitmap **grid_hidden) { bvh->grids = grids; bvh->gridfaces = gridfaces; if (flagmats != bvh->grid_flag_mats || bvh->grid_hidden != grid_hidden) { bvh->grid_flag_mats = flagmats; bvh->grid_hidden = grid_hidden; for (int a = 0; a < bvh->totnode; a++) { BKE_pbvh_node_mark_rebuild_draw(&bvh->nodes[a]); } } } /* Get the node's displacement layer, creating it if necessary */ float *BKE_pbvh_node_layer_disp_get(PBVH *bvh, PBVHNode *node) { if (!node->layer_disp) { int totvert = 0; BKE_pbvh_node_num_verts(bvh, node, &totvert, NULL); node->layer_disp = MEM_callocN(sizeof(float) * totvert, "layer disp"); } return node->layer_disp; } /* If the node has a displacement layer, free it and set to null */ void BKE_pbvh_node_layer_disp_free(PBVHNode *node) { if (node->layer_disp) { MEM_freeN(node->layer_disp); node->layer_disp = NULL; } } float (*BKE_pbvh_vert_coords_alloc(PBVH *pbvh))[3] { float(*vertCos)[3] = NULL; if (pbvh->verts) { MVert *mvert = pbvh->verts; vertCos = MEM_callocN(3 * pbvh->totvert * sizeof(float), "BKE_pbvh_get_vertCoords"); float *co = (float *)vertCos; for (int a = 0; a < pbvh->totvert; a++, mvert++, co += 3) { copy_v3_v3(co, mvert->co); } } return vertCos; } void BKE_pbvh_vert_coords_apply(PBVH *pbvh, const float (*vertCos)[3], const int totvert) { if (totvert != pbvh->totvert) { BLI_assert(!"PBVH: Given deforming vcos number does not natch PBVH vertex number!"); return; } if (!pbvh->deformed) { if (pbvh->verts) { /* if pbvh is not already deformed, verts/faces points to the */ /* original data and applying new coords to this arrays would lead to */ /* unneeded deformation -- duplicate verts/faces to avoid this */ pbvh->verts = MEM_dupallocN(pbvh->verts); /* No need to dupalloc pbvh->looptri, this one is 'totally owned' by pbvh, * it's never some mesh data. */ pbvh->deformed = true; } } if (pbvh->verts) { MVert *mvert = pbvh->verts; /* copy new verts coords */ for (int a = 0; a < pbvh->totvert; a++, mvert++) { /* no need for float comparison here (memory is exactly equal or not) */ if (memcmp(mvert->co, vertCos[a], sizeof(float[3])) != 0) { copy_v3_v3(mvert->co, vertCos[a]); mvert->flag |= ME_VERT_PBVH_UPDATE; } } /* coordinates are new -- normals should also be updated */ BKE_mesh_calc_normals_looptri( pbvh->verts, pbvh->totvert, pbvh->mloop, pbvh->looptri, pbvh->totprim, NULL); for (int a = 0; a < pbvh->totnode; a++) { BKE_pbvh_node_mark_update(&pbvh->nodes[a]); } BKE_pbvh_update_bounds(pbvh, PBVH_UpdateBB | PBVH_UpdateOriginalBB); } } bool BKE_pbvh_is_deformed(PBVH *pbvh) { return pbvh->deformed; } /* Proxies */ PBVHProxyNode *BKE_pbvh_node_add_proxy(PBVH *bvh, PBVHNode *node) { int index, totverts; index = node->proxy_count; node->proxy_count++; if (node->proxies) { node->proxies = MEM_reallocN(node->proxies, node->proxy_count * sizeof(PBVHProxyNode)); } else { node->proxies = MEM_mallocN(sizeof(PBVHProxyNode), "PBVHNodeProxy"); } BKE_pbvh_node_num_verts(bvh, node, &totverts, NULL); node->proxies[index].co = MEM_callocN(sizeof(float[3]) * totverts, "PBVHNodeProxy.co"); return node->proxies + index; } void BKE_pbvh_node_free_proxies(PBVHNode *node) { for (int p = 0; p < node->proxy_count; p++) { MEM_freeN(node->proxies[p].co); node->proxies[p].co = NULL; } MEM_freeN(node->proxies); node->proxies = NULL; node->proxy_count = 0; } void BKE_pbvh_gather_proxies(PBVH *pbvh, PBVHNode ***r_array, int *r_tot) { PBVHNode **array = NULL; int tot = 0, space = 0; for (int n = 0; n < pbvh->totnode; n++) { PBVHNode *node = pbvh->nodes + n; if (node->proxy_count > 0) { if (tot == space) { /* resize array if needed */ space = (tot == 0) ? 32 : space * 2; array = MEM_recallocN_id(array, sizeof(PBVHNode *) * space, __func__); } array[tot] = node; tot++; } } if (tot == 0 && array) { MEM_freeN(array); array = NULL; } *r_array = array; *r_tot = tot; } void pbvh_vertex_iter_init(PBVH *bvh, PBVHNode *node, PBVHVertexIter *vi, int mode) { struct CCGElem **grids; struct MVert *verts; const int *vert_indices; int *grid_indices; int totgrid, gridsize, uniq_verts, totvert; vi->grid = NULL; vi->no = NULL; vi->fno = NULL; vi->mvert = NULL; BKE_pbvh_node_get_grids(bvh, node, &grid_indices, &totgrid, NULL, &gridsize, &grids); BKE_pbvh_node_num_verts(bvh, node, &uniq_verts, &totvert); BKE_pbvh_node_get_verts(bvh, node, &vert_indices, &verts); vi->key = bvh->gridkey; vi->grids = grids; vi->grid_indices = grid_indices; vi->totgrid = (grids) ? totgrid : 1; vi->gridsize = gridsize; if (mode == PBVH_ITER_ALL) { vi->totvert = totvert; } else { vi->totvert = uniq_verts; } vi->vert_indices = vert_indices; vi->mverts = verts; if (bvh->type == PBVH_BMESH) { BLI_gsetIterator_init(&vi->bm_unique_verts, node->bm_unique_verts); BLI_gsetIterator_init(&vi->bm_other_verts, node->bm_other_verts); vi->bm_vdata = &bvh->bm->vdata; vi->cd_vert_mask_offset = CustomData_get_offset(vi->bm_vdata, CD_PAINT_MASK); } vi->gh = NULL; if (vi->grids && mode == PBVH_ITER_UNIQUE) { vi->grid_hidden = bvh->grid_hidden; } vi->mask = NULL; if (bvh->type == PBVH_FACES) { vi->vmask = CustomData_get_layer(bvh->vdata, CD_PAINT_MASK); } } bool pbvh_has_mask(PBVH *bvh) { switch (bvh->type) { case PBVH_GRIDS: return (bvh->gridkey.has_mask != 0); case PBVH_FACES: return (bvh->vdata && CustomData_get_layer(bvh->vdata, CD_PAINT_MASK)); case PBVH_BMESH: return (bvh->bm && (CustomData_get_offset(&bvh->bm->vdata, CD_PAINT_MASK) != -1)); } return false; } void pbvh_show_mask_set(PBVH *bvh, bool show_mask) { bvh->show_mask = show_mask; } void BKE_pbvh_parallel_range_settings(PBVHParallelSettings *settings, bool use_threading, int totnode) { memset(settings, 0, sizeof(*settings)); settings->use_threading = use_threading && totnode > 1; }