/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Andr Pinto * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/shrinkwrap.c * \ingroup bke */ #include #include #include #include #include #include #include #include "DNA_object_types.h" #include "DNA_modifier_types.h" #include "DNA_meshdata_types.h" #include "DNA_mesh_types.h" #include "DNA_scene_types.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BKE_shrinkwrap.h" #include "BKE_DerivedMesh.h" #include "BKE_lattice.h" #include "BKE_deform.h" #include "BKE_mesh.h" #include "BKE_subsurf.h" #include "BKE_mesh.h" #include "BKE_tessmesh.h" /* Util macros */ #define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n")) /* Benchmark macros */ #if !defined(_WIN32) && 0 #include #define BENCH(a) \ do { \ double _t1, _t2; \ struct timeval _tstart, _tend; \ clock_t _clock_init = clock(); \ gettimeofday ( &_tstart, NULL); \ (a); \ gettimeofday ( &_tend, NULL); \ _t1 = ( double ) _tstart.tv_sec + ( double ) _tstart.tv_usec/ ( 1000*1000 ); \ _t2 = ( double ) _tend.tv_sec + ( double ) _tend.tv_usec/ ( 1000*1000 ); \ printf("%s: %fs (real) %fs (cpu)\n", #a, _t2-_t1, (float)(clock()-_clock_init)/CLOCKS_PER_SEC);\ } while (0) #else #define BENCH(a) (a) #endif typedef void ( *Shrinkwrap_ForeachVertexCallback) (DerivedMesh *target, float *co, float *normal); /* get derived mesh */ //TODO is anyfunction that does this? returning the derivedFinal without we caring if its in edit mode or not? DerivedMesh *object_get_derived_final(Object *ob) { Mesh *me= ob->data; BMEditMesh *em = me->edit_btmesh; if (em) { DerivedMesh *dm = em->derivedFinal; return dm; } return ob->derivedFinal; } /* Space transform */ void space_transform_from_matrixs(SpaceTransform *data, float local[4][4], float target[4][4]) { float itarget[4][4]; invert_m4_m4(itarget, target); mul_serie_m4(data->local2target, itarget, local, NULL, NULL, NULL, NULL, NULL, NULL); invert_m4_m4(data->target2local, data->local2target); } void space_transform_apply(const SpaceTransform *data, float *co) { mul_v3_m4v3(co, ((SpaceTransform*)data)->local2target, co); } void space_transform_invert(const SpaceTransform *data, float *co) { mul_v3_m4v3(co, ((SpaceTransform*)data)->target2local, co); } static void space_transform_apply_normal(const SpaceTransform *data, float *no) { mul_mat3_m4_v3( ((SpaceTransform*)data)->local2target, no); normalize_v3(no); // TODO: could we just determine de scale value from the matrix? } static void space_transform_invert_normal(const SpaceTransform *data, float *no) { mul_mat3_m4_v3(((SpaceTransform*)data)->target2local, no); normalize_v3(no); // TODO: could we just determine de scale value from the matrix? } /* * Shrinkwrap to the nearest vertex * * it builds a kdtree of vertexs we can attach to and then * for each vertex performs a nearest vertex search on the tree */ static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc) { int i; BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh; BVHTreeNearest nearest = NULL_BVHTreeNearest; BENCH(bvhtree_from_mesh_verts(&treeData, calc->target, 0.0, 2, 6)); if (treeData.tree == NULL) { OUT_OF_MEMORY(); return; } //Setup nearest nearest.index = -1; nearest.dist = FLT_MAX; #ifndef __APPLE__ #pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(treeData,calc) schedule(static) #endif for (i = 0; inumVerts; ++i) { float *co = calc->vertexCos[i]; float tmp_co[3]; float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup); if (weight == 0.0f) continue; //Convert the vertex to tree coordinates if (calc->vert) { copy_v3_v3(tmp_co, calc->vert[i].co); } else { copy_v3_v3(tmp_co, co); } space_transform_apply(&calc->local2target, tmp_co); //Use local proximity heuristics (to reduce the nearest search) // //If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex //so we can initiate the "nearest.dist" with the expected value to that last hit. //This will lead in prunning of the search tree. if (nearest.index != -1) nearest.dist = len_squared_v3v3(tmp_co, nearest.co); else nearest.dist = FLT_MAX; BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData); //Found the nearest vertex if (nearest.index != -1) { //Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position float dist = sasqrt(nearest.dist); if (dist > FLT_EPSILON) weight *= (dist - calc->keepDist)/dist; //Convert the coordinates back to mesh coordinates copy_v3_v3(tmp_co, nearest.co); space_transform_invert(&calc->local2target, tmp_co); interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation } } free_bvhtree_from_mesh(&treeData); } /* * This function raycast a single vertex and updates the hit if the "hit" is considered valid. * Returns TRUE if "hit" was updated. * Opts control whether an hit is valid or not * Supported options are: * MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored) * MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored) */ int normal_projection_project_vertex(char options, const float *vert, const float *dir, const SpaceTransform *transf, BVHTree *tree, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata) { float tmp_co[3], tmp_no[3]; const float *co, *no; BVHTreeRayHit hit_tmp; //Copy from hit (we need to convert hit rays from one space coordinates to the other memcpy( &hit_tmp, hit, sizeof(hit_tmp) ); //Apply space transform (TODO readjust dist) if (transf) { copy_v3_v3( tmp_co, vert ); space_transform_apply( transf, tmp_co ); co = tmp_co; copy_v3_v3( tmp_no, dir ); space_transform_apply_normal( transf, tmp_no ); no = tmp_no; hit_tmp.dist *= mat4_to_scale( ((SpaceTransform*)transf)->local2target ); } else { co = vert; no = dir; } hit_tmp.index = -1; BLI_bvhtree_ray_cast(tree, co, no, 0.0f, &hit_tmp, callback, userdata); if (hit_tmp.index != -1) { /* invert the normal first so face culling works on rotated objects */ if (transf) { space_transform_invert_normal(transf, hit_tmp.no); } if (options & (MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE|MOD_SHRINKWRAP_CULL_TARGET_BACKFACE)) { /* apply backface */ const float dot= dot_v3v3(dir, hit_tmp.no); if ( ((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f) || ((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE) && dot >= 0.0f) ) { return FALSE; /* Ignore hit */ } } if (transf) { /* Inverting space transform (TODO make coeherent with the initial dist readjust) */ space_transform_invert(transf, hit_tmp.co); hit_tmp.dist = len_v3v3((float *)vert, hit_tmp.co); } memcpy(hit, &hit_tmp, sizeof(hit_tmp) ); return TRUE; } return FALSE; } static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc) { int i; //Options about projection direction const char use_normal = calc->smd->shrinkOpts; float proj_axis[3] = {0.0f, 0.0f, 0.0f}; //Raycast and tree stuff BVHTreeRayHit hit; BVHTreeFromMesh treeData= NULL_BVHTreeFromMesh; //auxiliary target DerivedMesh *auxMesh = NULL; BVHTreeFromMesh auxData = NULL_BVHTreeFromMesh; SpaceTransform local2aux; //If the user doesn't allows to project in any direction of projection axis //then theres nothing todo. if ((use_normal & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0) return; //Prepare data to retrieve the direction in which we should project each vertex if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) { if (calc->vert == NULL) return; } else { //The code supports any axis that is a combination of X,Y,Z //although currently UI only allows to set the 3 different axis if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f; if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f; if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f; normalize_v3(proj_axis); //Invalid projection direction if (dot_v3v3(proj_axis, proj_axis) < FLT_EPSILON) return; } if (calc->smd->auxTarget) { auxMesh = object_get_derived_final(calc->smd->auxTarget); if (!auxMesh) return; space_transform_setup( &local2aux, calc->ob, calc->smd->auxTarget); } //After sucessufuly build the trees, start projection vertexs if (bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 4, 6) && (auxMesh == NULL || bvhtree_from_mesh_faces(&auxData, auxMesh, 0.0, 4, 6))) { #ifndef __APPLE__ #pragma omp parallel for private(i,hit) schedule(static) #endif for (i = 0; inumVerts; ++i) { float *co = calc->vertexCos[i]; float tmp_co[3], tmp_no[3]; float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup); if (weight == 0.0f) continue; if (calc->vert) { /* calc->vert contains verts from derivedMesh */ /* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */ /* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */ if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) { copy_v3_v3(tmp_co, calc->vert[i].co); normal_short_to_float_v3(tmp_no, calc->vert[i].no); } else { copy_v3_v3(tmp_co, co); copy_v3_v3(tmp_no, proj_axis); } } else { copy_v3_v3(tmp_co, co); copy_v3_v3(tmp_no, proj_axis); } hit.index = -1; hit.dist = 10000.0f; //TODO: we should use FLT_MAX here, but sweepsphere code isn't prepared for that //Project over positive direction of axis if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR) { if (auxData.tree) normal_projection_project_vertex(0, tmp_co, tmp_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData); normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, tmp_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData); } //Project over negative direction of axis if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR && hit.index == -1) { float inv_no[3]; negate_v3_v3(inv_no, tmp_no); if (auxData.tree) normal_projection_project_vertex(0, tmp_co, inv_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData); normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, inv_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData); } if (hit.index != -1) { madd_v3_v3v3fl(hit.co, hit.co, tmp_no, calc->keepDist); interp_v3_v3v3(co, co, hit.co, weight); } } } //free data structures free_bvhtree_from_mesh(&treeData); free_bvhtree_from_mesh(&auxData); } /* * Shrinkwrap moving vertexs to the nearest surface point on the target * * it builds a BVHTree from the target mesh and then performs a * NN matches for each vertex */ static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc) { int i; BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh; BVHTreeNearest nearest = NULL_BVHTreeNearest; //Create a bvh-tree of the given target BENCH(bvhtree_from_mesh_faces( &treeData, calc->target, 0.0, 2, 6)); if (treeData.tree == NULL) { OUT_OF_MEMORY(); return; } //Setup nearest nearest.index = -1; nearest.dist = FLT_MAX; //Find the nearest vertex #ifndef __APPLE__ #pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(calc,treeData) schedule(static) #endif for (i = 0; inumVerts; ++i) { float *co = calc->vertexCos[i]; float tmp_co[3]; float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup); if (weight == 0.0f) continue; //Convert the vertex to tree coordinates if (calc->vert) { copy_v3_v3(tmp_co, calc->vert[i].co); } else { copy_v3_v3(tmp_co, co); } space_transform_apply(&calc->local2target, tmp_co); //Use local proximity heuristics (to reduce the nearest search) // //If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex //so we can initiate the "nearest.dist" with the expected value to that last hit. //This will lead in prunning of the search tree. if (nearest.index != -1) nearest.dist = len_squared_v3v3(tmp_co, nearest.co); else nearest.dist = FLT_MAX; BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData); //Found the nearest vertex if (nearest.index != -1) { if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_KEEP_ABOVE_SURFACE) { //Make the vertex stay on the front side of the face madd_v3_v3v3fl(tmp_co, nearest.co, nearest.no, calc->keepDist); } else { //Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position float dist = sasqrt( nearest.dist ); if (dist > FLT_EPSILON) interp_v3_v3v3(tmp_co, tmp_co, nearest.co, (dist - calc->keepDist)/dist); //linear interpolation else copy_v3_v3( tmp_co, nearest.co ); } //Convert the coordinates back to mesh coordinates space_transform_invert(&calc->local2target, tmp_co); interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation } } free_bvhtree_from_mesh(&treeData); } /* Main shrinkwrap function */ void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Object *ob, DerivedMesh *dm, float (*vertexCos)[3], int numVerts) { DerivedMesh *ss_mesh = NULL; ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData; //remove loop dependencies on derived meshs (TODO should this be done elsewhere?) if (smd->target == ob) smd->target = NULL; if (smd->auxTarget == ob) smd->auxTarget = NULL; //Configure Shrinkwrap calc data calc.smd = smd; calc.ob = ob; calc.numVerts = numVerts; calc.vertexCos = vertexCos; //DeformVertex calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name); if (dm) { calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT); } else if (calc.ob->type == OB_LATTICE) { calc.dvert = lattice_get_deform_verts(calc.ob); } if (smd->target) { calc.target = object_get_derived_final(smd->target); //TODO there might be several "bugs" on non-uniform scales matrixs //because it will no longer be nearest surface, not sphere projection //because space has been deformed space_transform_setup(&calc.local2target, ob, smd->target); //TODO: smd->keepDist is in global units.. must change to local calc.keepDist = smd->keepDist; } calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name); if (dm != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT) { //Setup arrays to get vertexs positions, normals and deform weights calc.vert = dm->getVertDataArray(dm, CD_MVERT); calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT); //Using vertexs positions/normals as if a subsurface was applied if (smd->subsurfLevels) { SubsurfModifierData ssmd= {{NULL}}; ssmd.subdivType = ME_CC_SUBSURF; //catmull clark ssmd.levels = smd->subsurfLevels; //levels ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, FALSE, NULL, 0, 0, (ob->mode & OB_MODE_EDIT)); if (ss_mesh) { calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT); if (calc.vert) { /* TRICKY: this code assumes subsurface will have the transformed original vertices * in their original order at the end of the vert array. */ calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm); } } //Just to make sure we are not leaving any memory behind assert(ssmd.emCache == NULL); assert(ssmd.mCache == NULL); } } //Projecting target defined - lets work! if (calc.target) { switch (smd->shrinkType) { case MOD_SHRINKWRAP_NEAREST_SURFACE: BENCH(shrinkwrap_calc_nearest_surface_point(&calc)); break; case MOD_SHRINKWRAP_PROJECT: BENCH(shrinkwrap_calc_normal_projection(&calc)); break; case MOD_SHRINKWRAP_NEAREST_VERTEX: BENCH(shrinkwrap_calc_nearest_vertex(&calc)); break; } } //free memory if (ss_mesh) ss_mesh->release(ss_mesh); }