/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2006 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Daniel Genrich, Andre Pinto * * ***** END GPL LICENSE BLOCK ***** */ #ifndef __BLI_KDOPBVH_H__ #define __BLI_KDOPBVH_H__ /** \file BLI_kdopbvh.h * \ingroup bli * \author Daniel Genrich * \author Andre Pinto */ #ifdef __cplusplus extern "C" { #endif struct BVHTree; typedef struct BVHTree BVHTree; typedef struct BVHTreeOverlap { int indexA; int indexB; } BVHTreeOverlap; /* flags */ #define BVH_ONQUAD (1 << 0) typedef struct BVHTreeNearest { int index; /* the index of the nearest found (untouched if none is found within a dist radius from the given coordinates) */ float co[3]; /* nearest coordinates (untouched it none is found within a dist radius from the given coordinates) */ float no[3]; /* normal at nearest coordinates (untouched it none is found within a dist radius from the given coordinates) */ float dist_sq; /* squared distance to search arround */ int flags; } BVHTreeNearest; typedef struct BVHTreeRay { float origin[3]; /* ray origin */ float direction[3]; /* ray direction */ float radius; /* radius around ray */ } BVHTreeRay; typedef struct BVHTreeRayHit { int index; /* index of the tree node (untouched if no hit is found) */ float co[3]; /* coordinates of the hit point */ float no[3]; /* normal on hit point */ float dist; /* distance to the hit point */ int flags; } BVHTreeRayHit; /* callback must update nearest in case it finds a nearest result */ typedef void (*BVHTree_NearestPointCallback)(void *userdata, int index, const float co[3], BVHTreeNearest *nearest); /* callback must update hit in case it finds a nearest successful hit */ typedef void (*BVHTree_RayCastCallback)(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit); /* callback to range search query */ typedef void (*BVHTree_RangeQuery)(void *userdata, int index, float dist_sq); BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis); void BLI_bvhtree_free(BVHTree *tree); /* construct: first insert points, then call balance */ void BLI_bvhtree_insert(BVHTree *tree, int index, const float co[3], int numpoints); void BLI_bvhtree_balance(BVHTree *tree); /* update: first update points/nodes, then call update_tree to refit the bounding volumes */ bool BLI_bvhtree_update_node(BVHTree *tree, int index, const float co[3], const float co_moving[3], int numpoints); void BLI_bvhtree_update_tree(BVHTree *tree); /* collision/overlap: check two trees if they overlap, alloc's *overlap with length of the int return value */ BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, unsigned int *r_overlap_tot); float BLI_bvhtree_getepsilon(const BVHTree *tree); /* find nearest node to the given coordinates * (if nearest is given it will only search nodes where square distance is smaller than nearest->dist) */ int BLI_bvhtree_find_nearest(BVHTree *tree, const float co[3], BVHTreeNearest *nearest, BVHTree_NearestPointCallback callback, void *userdata); int BLI_bvhtree_ray_cast(BVHTree *tree, const float co[3], const float dir[3], float radius, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata); /* Calls the callback for every ray intersection */ int BLI_bvhtree_ray_cast_all(BVHTree *tree, const float co[3], const float dir[3], float radius, BVHTree_RayCastCallback callback, void *userdata); float BLI_bvhtree_bb_raycast(const float bv[6], const float light_start[3], const float light_end[3], float pos[3]); /* range query */ int BLI_bvhtree_range_query(BVHTree *tree, const float co[3], float radius, BVHTree_RangeQuery callback, void *userdata); #ifdef __cplusplus } #endif #endif /* __BLI_KDOPBVH_H__ */