/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2006 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Daniel Genrich, Andre Pinto * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenlib/intern/BLI_kdopbvh.c * \ingroup bli */ #include #include "MEM_guardedalloc.h" #include "BLI_utildefines.h" #include "BLI_kdopbvh.h" #include "BLI_math.h" #include "BLI_strict_flags.h" #ifdef _OPENMP #include #endif #define MAX_TREETYPE 32 typedef unsigned char axis_t; typedef struct BVHNode { struct BVHNode **children; struct BVHNode *parent; /* some user defined traversed need that */ struct BVHNode *skip[2]; float *bv; /* Bounding volume of all nodes, max 13 axis */ int index; /* face, edge, vertex index */ char totnode; /* how many nodes are used, used for speedup */ char main_axis; /* Axis used to split this node */ } BVHNode; /* keep under 26 bytes for speed purposes */ struct BVHTree { BVHNode **nodes; BVHNode *nodearray; /* pre-alloc branch nodes */ BVHNode **nodechild; /* pre-alloc childs for nodes */ float *nodebv; /* pre-alloc bounding-volumes for nodes */ float epsilon; /* epslion is used for inflation of the k-dop */ int totleaf; /* leafs */ int totbranch; axis_t start_axis, stop_axis; /* KDOP_AXES array indices according to axis */ axis_t axis; /* kdop type (6 => OBB, 7 => AABB, ...) */ char tree_type; /* type of tree (4 => quadtree) */ }; /* optimization, ensure we stay small */ BLI_STATIC_ASSERT((sizeof(void *) == 8 && sizeof(BVHTree) <= 48) || (sizeof(void *) == 4 && sizeof(BVHTree) <= 32), "over sized") typedef struct BVHOverlapData { BVHTree *tree1, *tree2; BVHTreeOverlap *overlap; unsigned int i; unsigned int max_overlap; /* i is number of overlaps */ axis_t start_axis, stop_axis; } BVHOverlapData; typedef struct BVHNearestData { BVHTree *tree; const float *co; BVHTree_NearestPointCallback callback; void *userdata; float proj[13]; /* coordinates projection over axis */ BVHTreeNearest nearest; } BVHNearestData; typedef struct BVHRayCastData { BVHTree *tree; BVHTree_RayCastCallback callback; void *userdata; BVHTreeRay ray; float ray_dot_axis[13]; float idot_axis[13]; int index[6]; BVHTreeRayHit hit; } BVHRayCastData; /** * Bounding Volume Hierarchy Definition * * Notes: From OBB until 26-DOP --> all bounding volumes possible, just choose type below * Notes: You have to choose the type at compile time ITM * Notes: You can choose the tree type --> binary, quad, octree, choose below */ static const float KDOP_AXES[13][3] = { {1.0, 0, 0}, {0, 1.0, 0}, {0, 0, 1.0}, {1.0, 1.0, 1.0}, {1.0, -1.0, 1.0}, {1.0, 1.0, -1.0}, {1.0, -1.0, -1.0}, {1.0, 1.0, 0}, {1.0, 0, 1.0}, {0, 1.0, 1.0}, {1.0, -1.0, 0}, {1.0, 0, -1.0}, {0, 1.0, -1.0} }; MINLINE axis_t min_axis(axis_t a, axis_t b) { return (a < b) ? a : b; } #if 0 MINLINE axis_t max_axis(axis_t a, axis_t b) { return (b < a) ? a : b; } #endif #if 0 /* * Generic push and pop heap */ #define PUSH_HEAP_BODY(HEAP_TYPE, PRIORITY, heap, heap_size) \ { \ HEAP_TYPE element = heap[heap_size - 1]; \ int child = heap_size - 1; \ while (child != 0) { \ int parent = (child - 1) / 2; \ if (PRIORITY(element, heap[parent])) { \ heap[child] = heap[parent]; \ child = parent; \ } \ else { \ break; \ } \ } \ heap[child] = element; \ } (void)0 #define POP_HEAP_BODY(HEAP_TYPE, PRIORITY, heap, heap_size) \ { \ HEAP_TYPE element = heap[heap_size - 1]; \ int parent = 0; \ while (parent < (heap_size - 1) / 2) { \ int child2 = (parent + 1) * 2; \ if (PRIORITY(heap[child2 - 1], heap[child2])) { \ child2--; \ } \ if (PRIORITY(element, heap[child2])) { \ break; \ } \ heap[parent] = heap[child2]; \ parent = child2; \ } \ heap[parent] = element; \ } (void)0 static bool ADJUST_MEMORY(void *local_memblock, void **memblock, int new_size, int *max_size, int size_per_item) { int new_max_size = *max_size * 2; void *new_memblock = NULL; if (new_size <= *max_size) { return true; } if (*memblock == local_memblock) { new_memblock = malloc(size_per_item * new_max_size); memcpy(new_memblock, *memblock, size_per_item * *max_size); } else { new_memblock = realloc(*memblock, size_per_item * new_max_size); } if (new_memblock) { *memblock = new_memblock; *max_size = new_max_size; return true; } else { return false; } } #endif /** * Introsort * with permission deriven from the following Java code: * http://ralphunden.net/content/tutorials/a-guide-to-introsort/ * and he derived it from the SUN STL */ //static int size_threshold = 16; #if 0 /** * Common methods for all algorithms */ static int floor_lg(int a) { return (int)(floor(log(a) / log(2))); } #endif static void node_minmax_init(const BVHTree *tree, BVHNode *node) { axis_t axis_iter; float (*bv)[2] = (float (*)[2])node->bv; for (axis_iter = tree->start_axis; axis_iter != tree->stop_axis; axis_iter++) { bv[axis_iter][0] = FLT_MAX; bv[axis_iter][1] = -FLT_MAX; } } /** * Insertion sort algorithm */ static void bvh_insertionsort(BVHNode **a, int lo, int hi, int axis) { int i, j; BVHNode *t; for (i = lo; i < hi; i++) { j = i; t = a[i]; while ((j != lo) && (t->bv[axis] < (a[j - 1])->bv[axis])) { a[j] = a[j - 1]; j--; } a[j] = t; } } static int bvh_partition(BVHNode **a, int lo, int hi, BVHNode *x, int axis) { int i = lo, j = hi; while (1) { while ((a[i])->bv[axis] < x->bv[axis]) i++; j--; while (x->bv[axis] < (a[j])->bv[axis]) j--; if (!(i < j)) return i; SWAP(BVHNode *, a[i], a[j]); i++; } } #if 0 /** * Heapsort algorithm */ static void bvh_downheap(BVHNode **a, int i, int n, int lo, int axis) { BVHNode *d = a[lo + i - 1]; int child; while (i <= n / 2) { child = 2 * i; if ((child < n) && ((a[lo + child - 1])->bv[axis] < (a[lo + child])->bv[axis])) { child++; } if (!(d->bv[axis] < (a[lo + child - 1])->bv[axis])) break; a[lo + i - 1] = a[lo + child - 1]; i = child; } a[lo + i - 1] = d; } static void bvh_heapsort(BVHNode **a, int lo, int hi, int axis) { int n = hi - lo, i; for (i = n / 2; i >= 1; i = i - 1) { bvh_downheap(a, i, n, lo, axis); } for (i = n; i > 1; i = i - 1) { SWAP(BVHNode *, a[lo], a[lo + i - 1]); bvh_downheap(a, 1, i - 1, lo, axis); } } #endif static BVHNode *bvh_medianof3(BVHNode **a, int lo, int mid, int hi, int axis) /* returns Sortable */ { if ((a[mid])->bv[axis] < (a[lo])->bv[axis]) { if ((a[hi])->bv[axis] < (a[mid])->bv[axis]) return a[mid]; else { if ((a[hi])->bv[axis] < (a[lo])->bv[axis]) return a[hi]; else return a[lo]; } } else { if ((a[hi])->bv[axis] < (a[mid])->bv[axis]) { if ((a[hi])->bv[axis] < (a[lo])->bv[axis]) return a[lo]; else return a[hi]; } else return a[mid]; } } #if 0 /* * Quicksort algorithm modified for Introsort */ static void bvh_introsort_loop(BVHNode **a, int lo, int hi, int depth_limit, int axis) { int p; while (hi - lo > size_threshold) { if (depth_limit == 0) { bvh_heapsort(a, lo, hi, axis); return; } depth_limit = depth_limit - 1; p = bvh_partition(a, lo, hi, bvh_medianof3(a, lo, lo + ((hi - lo) / 2) + 1, hi - 1, axis), axis); bvh_introsort_loop(a, p, hi, depth_limit, axis); hi = p; } } static void sort(BVHNode **a0, int begin, int end, int axis) { if (begin < end) { BVHNode **a = a0; bvh_introsort_loop(a, begin, end, 2 * floor_lg(end - begin), axis); bvh_insertionsort(a, begin, end, axis); } } static void sort_along_axis(BVHTree *tree, int start, int end, int axis) { sort(tree->nodes, start, end, axis); } #endif /** * \note after a call to this function you can expect one of: * - every node to left of a[n] are smaller or equal to it * - every node to the right of a[n] are greater or equal to it */ static int partition_nth_element(BVHNode **a, int _begin, int _end, int n, int axis) { int begin = _begin, end = _end, cut; while (end - begin > 3) { cut = bvh_partition(a, begin, end, bvh_medianof3(a, begin, (begin + end) / 2, end - 1, axis), axis); if (cut <= n) begin = cut; else end = cut; } bvh_insertionsort(a, begin, end, axis); return n; } /* --- */ static void build_skip_links(BVHTree *tree, BVHNode *node, BVHNode *left, BVHNode *right) { int i; node->skip[0] = left; node->skip[1] = right; for (i = 0; i < node->totnode; i++) { if (i + 1 < node->totnode) build_skip_links(tree, node->children[i], left, node->children[i + 1]); else build_skip_links(tree, node->children[i], left, right); left = node->children[i]; } } /* * BVHTree bounding volumes functions */ static void create_kdop_hull(BVHTree *tree, BVHNode *node, const float *co, int numpoints, int moving) { float newminmax; float *bv = node->bv; int k; axis_t axis_iter; /* don't init boudings for the moving case */ if (!moving) { node_minmax_init(tree, node); } for (k = 0; k < numpoints; k++) { /* for all Axes. */ for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) { newminmax = dot_v3v3(&co[k * 3], KDOP_AXES[axis_iter]); if (newminmax < bv[2 * axis_iter]) bv[2 * axis_iter] = newminmax; if (newminmax > bv[(2 * axis_iter) + 1]) bv[(2 * axis_iter) + 1] = newminmax; } } } /** * \note depends on the fact that the BVH's for each face is already build */ static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end) { float newmin, newmax; float *bv = node->bv; int j; axis_t axis_iter; node_minmax_init(tree, node); for (j = start; j < end; j++) { /* for all Axes. */ for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) { newmin = tree->nodes[j]->bv[(2 * axis_iter)]; if ((newmin < bv[(2 * axis_iter)])) bv[(2 * axis_iter)] = newmin; newmax = tree->nodes[j]->bv[(2 * axis_iter) + 1]; if ((newmax > bv[(2 * axis_iter) + 1])) bv[(2 * axis_iter) + 1] = newmax; } } } /** * only supports x,y,z axis in the moment * but we should use a plain and simple function here for speed sake */ static char get_largest_axis(const float *bv) { float middle_point[3]; middle_point[0] = (bv[1]) - (bv[0]); /* x axis */ middle_point[1] = (bv[3]) - (bv[2]); /* y axis */ middle_point[2] = (bv[5]) - (bv[4]); /* z axis */ if (middle_point[0] > middle_point[1]) { if (middle_point[0] > middle_point[2]) return 1; /* max x axis */ else return 5; /* max z axis */ } else { if (middle_point[1] > middle_point[2]) return 3; /* max y axis */ else return 5; /* max z axis */ } } /** * bottom-up update of bvh node BV * join the children on the parent BV */ static void node_join(BVHTree *tree, BVHNode *node) { int i; axis_t axis_iter; node_minmax_init(tree, node); for (i = 0; i < tree->tree_type; i++) { if (node->children[i]) { for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) { /* update minimum */ if (node->children[i]->bv[(2 * axis_iter)] < node->bv[(2 * axis_iter)]) node->bv[(2 * axis_iter)] = node->children[i]->bv[(2 * axis_iter)]; /* update maximum */ if (node->children[i]->bv[(2 * axis_iter) + 1] > node->bv[(2 * axis_iter) + 1]) node->bv[(2 * axis_iter) + 1] = node->children[i]->bv[(2 * axis_iter) + 1]; } } else break; } } /* * Debug and information functions */ #if 0 static void bvhtree_print_tree(BVHTree *tree, BVHNode *node, int depth) { int i; axis_t axis_iter; for (i = 0; i < depth; i++) printf(" "); printf(" - %d (%ld): ", node->index, (long int)(node - tree->nodearray)); for (axis_iter = (axis_t)(2 * tree->start_axis); axis_iter < (axis_t)(2 * tree->stop_axis); axis_iter++) { printf("%.3f ", node->bv[axis_iter]); } printf("\n"); for (i = 0; i < tree->tree_type; i++) if (node->children[i]) bvhtree_print_tree(tree, node->children[i], depth + 1); } static void bvhtree_info(BVHTree *tree) { printf("BVHTree info\n"); printf("tree_type = %d, axis = %d, epsilon = %f\n", tree->tree_type, tree->axis, tree->epsilon); printf("nodes = %d, branches = %d, leafs = %d\n", tree->totbranch + tree->totleaf, tree->totbranch, tree->totleaf); printf("Memory per node = %ldbytes\n", sizeof(BVHNode) + sizeof(BVHNode *) * tree->tree_type + sizeof(float) * tree->axis); printf("BV memory = %dbytes\n", (int)MEM_allocN_len(tree->nodebv)); printf("Total memory = %ldbytes\n", sizeof(BVHTree) + MEM_allocN_len(tree->nodes) + MEM_allocN_len(tree->nodearray) + MEM_allocN_len(tree->nodechild) + MEM_allocN_len(tree->nodebv)); // bvhtree_print_tree(tree, tree->nodes[tree->totleaf], 0); } #endif #if 0 static void verify_tree(BVHTree *tree) { int i, j, check = 0; /* check the pointer list */ for (i = 0; i < tree->totleaf; i++) { if (tree->nodes[i]->parent == NULL) { printf("Leaf has no parent: %d\n", i); } else { for (j = 0; j < tree->tree_type; j++) { if (tree->nodes[i]->parent->children[j] == tree->nodes[i]) check = 1; } if (!check) { printf("Parent child relationship doesn't match: %d\n", i); } check = 0; } } /* check the leaf list */ for (i = 0; i < tree->totleaf; i++) { if (tree->nodearray[i].parent == NULL) { printf("Leaf has no parent: %d\n", i); } else { for (j = 0; j < tree->tree_type; j++) { if (tree->nodearray[i].parent->children[j] == &tree->nodearray[i]) check = 1; } if (!check) { printf("Parent child relationship doesn't match: %d\n", i); } check = 0; } } printf("branches: %d, leafs: %d, total: %d\n", tree->totbranch, tree->totleaf, tree->totbranch + tree->totleaf); } #endif /* Helper data and structures to build a min-leaf generalized implicit tree * This code can be easily reduced (basicly this is only method to calculate pow(k, n) in O(1).. and stuff like that) */ typedef struct BVHBuildHelper { int tree_type; /* */ int totleafs; /* */ int leafs_per_child[32]; /* Min number of leafs that are archievable from a node at depth N */ int branches_on_level[32]; /* Number of nodes at depth N (tree_type^N) */ int remain_leafs; /* Number of leafs that are placed on the level that is not 100% filled */ } BVHBuildHelper; static void build_implicit_tree_helper(BVHTree *tree, BVHBuildHelper *data) { int depth = 0; int remain; int nnodes; data->totleafs = tree->totleaf; data->tree_type = tree->tree_type; /* Calculate the smallest tree_type^n such that tree_type^n >= num_leafs */ for (data->leafs_per_child[0] = 1; data->leafs_per_child[0] < data->totleafs; data->leafs_per_child[0] *= data->tree_type) { /* pass */ } data->branches_on_level[0] = 1; for (depth = 1; (depth < 32) && data->leafs_per_child[depth - 1]; depth++) { data->branches_on_level[depth] = data->branches_on_level[depth - 1] * data->tree_type; data->leafs_per_child[depth] = data->leafs_per_child[depth - 1] / data->tree_type; } remain = data->totleafs - data->leafs_per_child[1]; nnodes = (remain + data->tree_type - 2) / (data->tree_type - 1); data->remain_leafs = remain + nnodes; } // return the min index of all the leafs archivable with the given branch static int implicit_leafs_index(BVHBuildHelper *data, int depth, int child_index) { int min_leaf_index = child_index * data->leafs_per_child[depth - 1]; if (min_leaf_index <= data->remain_leafs) return min_leaf_index; else if (data->leafs_per_child[depth]) return data->totleafs - (data->branches_on_level[depth - 1] - child_index) * data->leafs_per_child[depth]; else return data->remain_leafs; } /** * Generalized implicit tree build * * An implicit tree is a tree where its structure is implied, thus there is no need to store child pointers or indexs. * Its possible to find the position of the child or the parent with simple maths (multiplication and adittion). This type * of tree is for example used on heaps.. where node N has its childs at indexs N*2 and N*2+1. * * Although in this case the tree type is general.. and not know until runtime. * tree_type stands for the maximum number of childs that a tree node can have. * All tree types >= 2 are supported. * * Advantages of the used trees include: * - No need to store child/parent relations (they are implicit); * - Any node child always has an index greater than the parent; * - Brother nodes are sequential in memory; * * * Some math relations derived for general implicit trees: * * K = tree_type, ( 2 <= K ) * ROOT = 1 * N child of node A = A * K + (2 - K) + N, (0 <= N < K) * * Util methods: * TODO... * (looping elements, knowing if its a leaf or not.. etc...) */ /* This functions returns the number of branches needed to have the requested number of leafs. */ static int implicit_needed_branches(int tree_type, int leafs) { return max_ii(1, (leafs + tree_type - 3) / (tree_type - 1) ); } /** * This function handles the problem of "sorting" the leafs (along the split_axis). * * It arranges the elements in the given partitions such that: * - any element in partition N is less or equal to any element in partition N+1. * - if all elements are different all partition will get the same subset of elements * as if the array was sorted. * * partition P is described as the elements in the range ( nth[P], nth[P+1] ] * * TODO: This can be optimized a bit by doing a specialized nth_element instead of K nth_elements */ static void split_leafs(BVHNode **leafs_array, int *nth, int partitions, int split_axis) { int i; for (i = 0; i < partitions - 1; i++) { if (nth[i] >= nth[partitions]) break; partition_nth_element(leafs_array, nth[i], nth[partitions], nth[i + 1], split_axis); } } /** * This functions builds an optimal implicit tree from the given leafs. * Where optimal stands for: * - The resulting tree will have the smallest number of branches; * - At most only one branch will have NULL childs; * - All leafs will be stored at level N or N+1. * * This function creates an implicit tree on branches_array, the leafs are given on the leafs_array. * * The tree is built per depth levels. First branches at depth 1.. then branches at depth 2.. etc.. * The reason is that we can build level N+1 from level N without any data dependencies.. thus it allows * to use multithread building. * * To archive this is necessary to find how much leafs are accessible from a certain branch, BVHBuildHelper * implicit_needed_branches and implicit_leafs_index are auxiliary functions to solve that "optimal-split". */ static void non_recursive_bvh_div_nodes(BVHTree *tree, BVHNode *branches_array, BVHNode **leafs_array, int num_leafs) { int i; const int tree_type = tree->tree_type; const int tree_offset = 2 - tree->tree_type; /* this value is 0 (on binary trees) and negative on the others */ const int num_branches = implicit_needed_branches(tree_type, num_leafs); BVHBuildHelper data; int depth; /* set parent from root node to NULL */ BVHNode *tmp = branches_array + 0; tmp->parent = NULL; /* Most of bvhtree code relies on 1-leaf trees having at least one branch * We handle that special case here */ if (num_leafs == 1) { BVHNode *root = branches_array + 0; refit_kdop_hull(tree, root, 0, num_leafs); root->main_axis = get_largest_axis(root->bv) / 2; root->totnode = 1; root->children[0] = leafs_array[0]; root->children[0]->parent = root; return; } branches_array--; /* Implicit trees use 1-based indexs */ build_implicit_tree_helper(tree, &data); /* Loop tree levels (log N) loops */ for (i = 1, depth = 1; i <= num_branches; i = i * tree_type + tree_offset, depth++) { const int first_of_next_level = i * tree_type + tree_offset; const int end_j = min_ii(first_of_next_level, num_branches + 1); /* index of last branch on this level */ int j; /* Loop all branches on this level */ #pragma omp parallel for private(j) schedule(static) for (j = i; j < end_j; j++) { int k; const int parent_level_index = j - i; BVHNode *parent = branches_array + j; int nth_positions[MAX_TREETYPE + 1]; char split_axis; int parent_leafs_begin = implicit_leafs_index(&data, depth, parent_level_index); int parent_leafs_end = implicit_leafs_index(&data, depth, parent_level_index + 1); /* This calculates the bounding box of this branch * and chooses the largest axis as the axis to divide leafs */ refit_kdop_hull(tree, parent, parent_leafs_begin, parent_leafs_end); split_axis = get_largest_axis(parent->bv); /* Save split axis (this can be used on raytracing to speedup the query time) */ parent->main_axis = split_axis / 2; /* Split the childs along the split_axis, note: its not needed to sort the whole leafs array * Only to assure that the elements are partitioned on a way that each child takes the elements * it would take in case the whole array was sorted. * Split_leafs takes care of that "sort" problem. */ nth_positions[0] = parent_leafs_begin; nth_positions[tree_type] = parent_leafs_end; for (k = 1; k < tree_type; k++) { int child_index = j * tree_type + tree_offset + k; int child_level_index = child_index - first_of_next_level; /* child level index */ nth_positions[k] = implicit_leafs_index(&data, depth + 1, child_level_index); } split_leafs(leafs_array, nth_positions, tree_type, split_axis); /* Setup children and totnode counters * Not really needed but currently most of BVH code relies on having an explicit children structure */ for (k = 0; k < tree_type; k++) { int child_index = j * tree_type + tree_offset + k; int child_level_index = child_index - first_of_next_level; /* child level index */ int child_leafs_begin = implicit_leafs_index(&data, depth + 1, child_level_index); int child_leafs_end = implicit_leafs_index(&data, depth + 1, child_level_index + 1); if (child_leafs_end - child_leafs_begin > 1) { parent->children[k] = branches_array + child_index; parent->children[k]->parent = parent; } else if (child_leafs_end - child_leafs_begin == 1) { parent->children[k] = leafs_array[child_leafs_begin]; parent->children[k]->parent = parent; } else { break; } parent->totnode = (char)(k + 1); } } } } /* -------------------------------------------------------------------- */ /* BLI_bvhtree api */ /** * \note many callers don't check for ``NULL`` return. */ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis) { BVHTree *tree; int numnodes, i; BLI_assert(tree_type >= 2 && tree_type <= MAX_TREETYPE); tree = MEM_callocN(sizeof(BVHTree), "BVHTree"); /* tree epsilon must be >= FLT_EPSILON * so that tangent rays can still hit a bounding volume.. * this bug would show up when casting a ray aligned with a kdop-axis and with an edge of 2 faces */ epsilon = max_ff(FLT_EPSILON, epsilon); if (tree) { tree->epsilon = epsilon; tree->tree_type = tree_type; tree->axis = axis; if (axis == 26) { tree->start_axis = 0; tree->stop_axis = 13; } else if (axis == 18) { tree->start_axis = 7; tree->stop_axis = 13; } else if (axis == 14) { tree->start_axis = 0; tree->stop_axis = 7; } else if (axis == 8) { /* AABB */ tree->start_axis = 0; tree->stop_axis = 4; } else if (axis == 6) { /* OBB */ tree->start_axis = 0; tree->stop_axis = 3; } else { /* should never happen! */ BLI_assert(0); goto fail; } /* Allocate arrays */ numnodes = maxsize + implicit_needed_branches(tree_type, maxsize) + tree_type; tree->nodes = MEM_callocN(sizeof(BVHNode *) * (size_t)numnodes, "BVHNodes"); tree->nodebv = MEM_callocN(sizeof(float) * (size_t)(axis * numnodes), "BVHNodeBV"); tree->nodechild = MEM_callocN(sizeof(BVHNode *) * (size_t)(tree_type * numnodes), "BVHNodeBV"); tree->nodearray = MEM_callocN(sizeof(BVHNode) * (size_t)numnodes, "BVHNodeArray"); if (UNLIKELY((!tree->nodes) || (!tree->nodebv) || (!tree->nodechild) || (!tree->nodearray))) { goto fail; } /* link the dynamic bv and child links */ for (i = 0; i < numnodes; i++) { tree->nodearray[i].bv = &tree->nodebv[i * axis]; tree->nodearray[i].children = &tree->nodechild[i * tree_type]; } } return tree; fail: MEM_SAFE_FREE(tree->nodes); MEM_SAFE_FREE(tree->nodebv); MEM_SAFE_FREE(tree->nodechild); MEM_SAFE_FREE(tree->nodearray); MEM_freeN(tree); return NULL; } void BLI_bvhtree_free(BVHTree *tree) { if (tree) { MEM_freeN(tree->nodes); MEM_freeN(tree->nodearray); MEM_freeN(tree->nodebv); MEM_freeN(tree->nodechild); MEM_freeN(tree); } } void BLI_bvhtree_balance(BVHTree *tree) { int i; BVHNode *branches_array = tree->nodearray + tree->totleaf; BVHNode **leafs_array = tree->nodes; /* This function should only be called once (some big bug goes here if its being called more than once per tree) */ BLI_assert(tree->totbranch == 0); /* Build the implicit tree */ non_recursive_bvh_div_nodes(tree, branches_array, leafs_array, tree->totleaf); /* current code expects the branches to be linked to the nodes array * we perform that linkage here */ tree->totbranch = implicit_needed_branches(tree->tree_type, tree->totleaf); for (i = 0; i < tree->totbranch; i++) tree->nodes[tree->totleaf + i] = branches_array + i; build_skip_links(tree, tree->nodes[tree->totleaf], NULL, NULL); /* bvhtree_info(tree); */ } void BLI_bvhtree_insert(BVHTree *tree, int index, const float co[3], int numpoints) { axis_t axis_iter; BVHNode *node = NULL; /* insert should only possible as long as tree->totbranch is 0 */ BLI_assert(tree->totbranch <= 0); BLI_assert((size_t)tree->totleaf < MEM_allocN_len(tree->nodes) / sizeof(*(tree->nodes))); node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]); tree->totleaf++; create_kdop_hull(tree, node, co, numpoints, 0); node->index = index; /* inflate the bv with some epsilon */ for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) { node->bv[(2 * axis_iter)] -= tree->epsilon; /* minimum */ node->bv[(2 * axis_iter) + 1] += tree->epsilon; /* maximum */ } } /* call before BLI_bvhtree_update_tree() */ int BLI_bvhtree_update_node(BVHTree *tree, int index, const float co[3], const float co_moving[3], int numpoints) { BVHNode *node = NULL; axis_t axis_iter; /* check if index exists */ if (index > tree->totleaf) return 0; node = tree->nodearray + index; create_kdop_hull(tree, node, co, numpoints, 0); if (co_moving) create_kdop_hull(tree, node, co_moving, numpoints, 1); /* inflate the bv with some epsilon */ for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) { node->bv[(2 * axis_iter)] -= tree->epsilon; /* minimum */ node->bv[(2 * axis_iter) + 1] += tree->epsilon; /* maximum */ } return 1; } /* call BLI_bvhtree_update_node() first for every node/point/triangle */ void BLI_bvhtree_update_tree(BVHTree *tree) { /* Update bottom=>top * TRICKY: the way we build the tree all the childs have an index greater than the parent * This allows us todo a bottom up update by starting on the bigger numbered branch */ BVHNode **root = tree->nodes + tree->totleaf; BVHNode **index = tree->nodes + tree->totleaf + tree->totbranch - 1; for (; index >= root; index--) node_join(tree, *index); } float BLI_bvhtree_getepsilon(const BVHTree *tree) { return tree->epsilon; } /* -------------------------------------------------------------------- */ /* BLI_bvhtree_overlap */ /** * overlap - is it possible for 2 bv's to collide ? */ static int tree_overlap(BVHNode *node1, BVHNode *node2, axis_t start_axis, axis_t stop_axis) { const float *bv1 = node1->bv; const float *bv2 = node2->bv; const float *bv1_end = bv1 + (stop_axis << 1); bv1 += start_axis << 1; bv2 += start_axis << 1; /* test all axis if min + max overlap */ for (; bv1 != bv1_end; bv1 += 2, bv2 += 2) { if ((*(bv1) > *(bv2 + 1)) || (*(bv2) > *(bv1 + 1))) return 0; } return 1; } static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2) { int j; if (tree_overlap(node1, node2, data->start_axis, data->stop_axis)) { /* check if node1 is a leaf */ if (!node1->totnode) { /* check if node2 is a leaf */ if (!node2->totnode) { if (node1 == node2) { return; } if (data->i >= data->max_overlap) { /* try to make alloc'ed memory bigger */ data->overlap = realloc(data->overlap, sizeof(BVHTreeOverlap) * (size_t)data->max_overlap * 2); if (!data->overlap) { printf("Out of Memory in traverse\n"); return; } data->max_overlap *= 2; } /* both leafs, insert overlap! */ data->overlap[data->i].indexA = node1->index; data->overlap[data->i].indexB = node2->index; data->i++; } else { for (j = 0; j < data->tree2->tree_type; j++) { if (node2->children[j]) traverse(data, node1, node2->children[j]); } } } else { for (j = 0; j < data->tree2->tree_type; j++) { if (node1->children[j]) traverse(data, node1->children[j], node2); } } } return; } BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, unsigned int *result) { int j; unsigned int total = 0; BVHTreeOverlap *overlap = NULL, *to = NULL; BVHOverlapData **data; /* check for compatibility of both trees (can't compare 14-DOP with 18-DOP) */ if ((tree1->axis != tree2->axis) && (tree1->axis == 14 || tree2->axis == 14) && (tree1->axis == 18 || tree2->axis == 18)) return NULL; /* fast check root nodes for collision before doing big splitting + traversal */ if (!tree_overlap(tree1->nodes[tree1->totleaf], tree2->nodes[tree2->totleaf], min_axis(tree1->start_axis, tree2->start_axis), min_axis(tree1->stop_axis, tree2->stop_axis))) { return NULL; } data = MEM_callocN(sizeof(BVHOverlapData *) * tree1->tree_type, "BVHOverlapData_star"); for (j = 0; j < tree1->tree_type; j++) { data[j] = MEM_callocN(sizeof(BVHOverlapData), "BVHOverlapData"); /* init BVHOverlapData */ data[j]->overlap = malloc(sizeof(BVHTreeOverlap) * (size_t)max_ii(tree1->totleaf, tree2->totleaf)); data[j]->tree1 = tree1; data[j]->tree2 = tree2; data[j]->max_overlap = (unsigned int)max_ii(tree1->totleaf, tree2->totleaf); data[j]->i = 0; data[j]->start_axis = min_axis(tree1->start_axis, tree2->start_axis); data[j]->stop_axis = min_axis(tree1->stop_axis, tree2->stop_axis); } #pragma omp parallel for private(j) schedule(static) for (j = 0; j < MIN2(tree1->tree_type, tree1->nodes[tree1->totleaf]->totnode); j++) { traverse(data[j], tree1->nodes[tree1->totleaf]->children[j], tree2->nodes[tree2->totleaf]); } for (j = 0; j < tree1->tree_type; j++) total += data[j]->i; to = overlap = MEM_callocN(sizeof(BVHTreeOverlap) * total, "BVHTreeOverlap"); for (j = 0; j < tree1->tree_type; j++) { memcpy(to, data[j]->overlap, data[j]->i * sizeof(BVHTreeOverlap)); to += data[j]->i; } for (j = 0; j < tree1->tree_type; j++) { free(data[j]->overlap); MEM_freeN(data[j]); } MEM_freeN(data); (*result) = total; return overlap; } /* Determines the nearest point of the given node BV. Returns the squared distance to that point. */ static float calc_nearest_point_squared(const float proj[3], BVHNode *node, float nearest[3]) { int i; const float *bv = node->bv; /* nearest on AABB hull */ for (i = 0; i != 3; i++, bv += 2) { if (bv[0] > proj[i]) nearest[i] = bv[0]; else if (bv[1] < proj[i]) nearest[i] = bv[1]; else nearest[i] = proj[i]; } #if 0 /* nearest on a general hull */ copy_v3_v3(nearest, data->co); for (i = data->tree->start_axis; i != data->tree->stop_axis; i++, bv += 2) { float proj = dot_v3v3(nearest, KDOP_AXES[i]); float dl = bv[0] - proj; float du = bv[1] - proj; if (dl > 0) { madd_v3_v3fl(nearest, KDOP_AXES[i], dl); } else if (du < 0) { madd_v3_v3fl(nearest, KDOP_AXES[i], du); } } #endif return len_squared_v3v3(proj, nearest); } typedef struct NodeDistance { BVHNode *node; float dist; } NodeDistance; /* TODO: use a priority queue to reduce the number of nodes looked on */ static void dfs_find_nearest_dfs(BVHNearestData *data, BVHNode *node) { if (node->totnode == 0) { if (data->callback) data->callback(data->userdata, node->index, data->co, &data->nearest); else { data->nearest.index = node->index; data->nearest.dist_sq = calc_nearest_point_squared(data->proj, node, data->nearest.co); } } else { /* Better heuristic to pick the closest node to dive on */ int i; float nearest[3]; if (data->proj[node->main_axis] <= node->children[0]->bv[node->main_axis * 2 + 1]) { for (i = 0; i != node->totnode; i++) { if (calc_nearest_point_squared(data->proj, node->children[i], nearest) >= data->nearest.dist_sq) continue; dfs_find_nearest_dfs(data, node->children[i]); } } else { for (i = node->totnode - 1; i >= 0; i--) { if (calc_nearest_point_squared(data->proj, node->children[i], nearest) >= data->nearest.dist_sq) continue; dfs_find_nearest_dfs(data, node->children[i]); } } } } static void dfs_find_nearest_begin(BVHNearestData *data, BVHNode *node) { float nearest[3], dist_sq; dist_sq = calc_nearest_point_squared(data->proj, node, nearest); if (dist_sq >= data->nearest.dist_sq) { return; } dfs_find_nearest_dfs(data, node); } #if 0 #define DEFAULT_FIND_NEAREST_HEAP_SIZE 1024 #define NodeDistance_priority(a, b) ((a).dist < (b).dist) static void NodeDistance_push_heap(NodeDistance *heap, int heap_size) PUSH_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size) static void NodeDistance_pop_heap(NodeDistance *heap, int heap_size) POP_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size) /* NN function that uses an heap.. this functions leads to an optimal number of min-distance * but for normal tri-faces and BV 6-dop.. a simple dfs with local heuristics (as implemented * in source/blender/blenkernel/intern/shrinkwrap.c) works faster. * * It may make sense to use this function if the callback queries are very slow.. or if its impossible * to get a nice heuristic * * this function uses "malloc/free" instead of the MEM_* because it intends to be openmp safe */ static void bfs_find_nearest(BVHNearestData *data, BVHNode *node) { int i; NodeDistance default_heap[DEFAULT_FIND_NEAREST_HEAP_SIZE]; NodeDistance *heap = default_heap, current; int heap_size = 0, max_heap_size = sizeof(default_heap) / sizeof(default_heap[0]); float nearest[3]; int callbacks = 0, push_heaps = 0; if (node->totnode == 0) { dfs_find_nearest_dfs(data, node); return; } current.node = node; current.dist = calc_nearest_point(data->proj, node, nearest); while (current.dist < data->nearest.dist) { // printf("%f : %f\n", current.dist, data->nearest.dist); for (i = 0; i < current.node->totnode; i++) { BVHNode *child = current.node->children[i]; if (child->totnode == 0) { callbacks++; dfs_find_nearest_dfs(data, child); } else { /* adjust heap size */ if ((heap_size >= max_heap_size) && ADJUST_MEMORY(default_heap, (void **)&heap, heap_size + 1, &max_heap_size, sizeof(heap[0])) == false) { printf("WARNING: bvh_find_nearest got out of memory\n"); if (heap != default_heap) free(heap); return; } heap[heap_size].node = current.node->children[i]; heap[heap_size].dist = calc_nearest_point(data->proj, current.node->children[i], nearest); if (heap[heap_size].dist >= data->nearest.dist) continue; heap_size++; NodeDistance_push_heap(heap, heap_size); // PUSH_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size); push_heaps++; } } if (heap_size == 0) break; current = heap[0]; NodeDistance_pop_heap(heap, heap_size); // POP_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size); heap_size--; } // printf("hsize=%d, callbacks=%d, pushs=%d\n", heap_size, callbacks, push_heaps); if (heap != default_heap) free(heap); } #endif int BLI_bvhtree_find_nearest(BVHTree *tree, const float co[3], BVHTreeNearest *nearest, BVHTree_NearestPointCallback callback, void *userdata) { axis_t axis_iter; BVHNearestData data; BVHNode *root = tree->nodes[tree->totleaf]; /* init data to search */ data.tree = tree; data.co = co; data.callback = callback; data.userdata = userdata; for (axis_iter = data.tree->start_axis; axis_iter != data.tree->stop_axis; axis_iter++) { data.proj[axis_iter] = dot_v3v3(data.co, KDOP_AXES[axis_iter]); } if (nearest) { memcpy(&data.nearest, nearest, sizeof(*nearest)); } else { data.nearest.index = -1; data.nearest.dist_sq = FLT_MAX; } /* dfs search */ if (root) dfs_find_nearest_begin(&data, root); /* copy back results */ if (nearest) { memcpy(nearest, &data.nearest, sizeof(*nearest)); } return data.nearest.index; } /** * Raycast - BLI_bvhtree_ray_cast * * raycast is done by performing a DFS on the BVHTree and saving the closest hit */ /* Determines the distance that the ray must travel to hit the bounding volume of the given node */ static float ray_nearest_hit(BVHRayCastData *data, const float bv[6]) { int i; float low = 0, upper = data->hit.dist; for (i = 0; i != 3; i++, bv += 2) { if (data->ray_dot_axis[i] == 0.0f) { /* axis aligned ray */ if (data->ray.origin[i] < bv[0] - data->ray.radius || data->ray.origin[i] > bv[1] + data->ray.radius) { return FLT_MAX; } } else { float ll = (bv[0] - data->ray.radius - data->ray.origin[i]) / data->ray_dot_axis[i]; float lu = (bv[1] + data->ray.radius - data->ray.origin[i]) / data->ray_dot_axis[i]; if (data->ray_dot_axis[i] > 0.0f) { if (ll > low) low = ll; if (lu < upper) upper = lu; } else { if (lu > low) low = lu; if (ll < upper) upper = ll; } if (low > upper) return FLT_MAX; } } return low; } /** * Determines the distance that the ray must travel to hit the bounding volume of the given node * Based on Tactical Optimization of Ray/Box Intersection, by Graham Fyffe * [http://tog.acm.org/resources/RTNews/html/rtnv21n1.html#art9] * * TODO this doesn't take data->ray.radius into consideration */ static float fast_ray_nearest_hit(const BVHRayCastData *data, const BVHNode *node) { const float *bv = node->bv; float t1x = (bv[data->index[0]] - data->ray.origin[0]) * data->idot_axis[0]; float t2x = (bv[data->index[1]] - data->ray.origin[0]) * data->idot_axis[0]; float t1y = (bv[data->index[2]] - data->ray.origin[1]) * data->idot_axis[1]; float t2y = (bv[data->index[3]] - data->ray.origin[1]) * data->idot_axis[1]; float t1z = (bv[data->index[4]] - data->ray.origin[2]) * data->idot_axis[2]; float t2z = (bv[data->index[5]] - data->ray.origin[2]) * data->idot_axis[2]; if ((t1x > t2y || t2x < t1y || t1x > t2z || t2x < t1z || t1y > t2z || t2y < t1z) || (t2x < 0.0f || t2y < 0.0f || t2z < 0.0f) || (t1x > data->hit.dist || t1y > data->hit.dist || t1z > data->hit.dist)) { return FLT_MAX; } else { return max_fff(t1x, t1y, t1z); } } static void dfs_raycast(BVHRayCastData *data, BVHNode *node) { int i; /* ray-bv is really fast.. and simple tests revealed its worth to test it * before calling the ray-primitive functions */ /* XXX: temporary solution for particles until fast_ray_nearest_hit supports ray.radius */ float dist = (data->ray.radius == 0.0f) ? fast_ray_nearest_hit(data, node) : ray_nearest_hit(data, node->bv); if (dist >= data->hit.dist) return; if (node->totnode == 0) { if (data->callback) { data->callback(data->userdata, node->index, &data->ray, &data->hit); } else { data->hit.index = node->index; data->hit.dist = dist; madd_v3_v3v3fl(data->hit.co, data->ray.origin, data->ray.direction, dist); } } else { /* pick loop direction to dive into the tree (based on ray direction and split axis) */ if (data->ray_dot_axis[node->main_axis] > 0.0f) { for (i = 0; i != node->totnode; i++) { dfs_raycast(data, node->children[i]); } } else { for (i = node->totnode - 1; i >= 0; i--) { dfs_raycast(data, node->children[i]); } } } } #if 0 static void iterative_raycast(BVHRayCastData *data, BVHNode *node) { while (node) { float dist = fast_ray_nearest_hit(data, node); if (dist >= data->hit.dist) { node = node->skip[1]; continue; } if (node->totnode == 0) { if (data->callback) { data->callback(data->userdata, node->index, &data->ray, &data->hit); } else { data->hit.index = node->index; data->hit.dist = dist; madd_v3_v3v3fl(data->hit.co, data->ray.origin, data->ray.direction, dist); } node = node->skip[1]; } else { node = node->children[0]; } } } #endif int BLI_bvhtree_ray_cast(BVHTree *tree, const float co[3], const float dir[3], float radius, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata) { int i; BVHRayCastData data; BVHNode *root = tree->nodes[tree->totleaf]; data.tree = tree; data.callback = callback; data.userdata = userdata; copy_v3_v3(data.ray.origin, co); copy_v3_v3(data.ray.direction, dir); data.ray.radius = radius; normalize_v3(data.ray.direction); for (i = 0; i < 3; i++) { data.ray_dot_axis[i] = dot_v3v3(data.ray.direction, KDOP_AXES[i]); data.idot_axis[i] = 1.0f / data.ray_dot_axis[i]; if (fabsf(data.ray_dot_axis[i]) < FLT_EPSILON) { data.ray_dot_axis[i] = 0.0; } data.index[2 * i] = data.idot_axis[i] < 0.0f ? 1 : 0; data.index[2 * i + 1] = 1 - data.index[2 * i]; data.index[2 * i] += 2 * i; data.index[2 * i + 1] += 2 * i; } if (hit) memcpy(&data.hit, hit, sizeof(*hit)); else { data.hit.index = -1; data.hit.dist = FLT_MAX; } if (root) { dfs_raycast(&data, root); // iterative_raycast(&data, root); } if (hit) memcpy(hit, &data.hit, sizeof(*hit)); return data.hit.index; } float BLI_bvhtree_bb_raycast(const float bv[6], const float light_start[3], const float light_end[3], float pos[3]) { BVHRayCastData data; float dist; data.hit.dist = FLT_MAX; /* get light direction */ sub_v3_v3v3(data.ray.direction, light_end, light_start); data.ray.radius = 0.0; copy_v3_v3(data.ray.origin, light_start); normalize_v3(data.ray.direction); copy_v3_v3(data.ray_dot_axis, data.ray.direction); dist = ray_nearest_hit(&data, bv); madd_v3_v3v3fl(pos, light_start, data.ray.direction, dist); return dist; } /** * Range Query - as request by broken :P * * Allocs and fills an array with the indexs of node that are on the given spherical range (center, radius) * Returns the size of the array. */ typedef struct RangeQueryData { BVHTree *tree; const float *center; float radius_sq; /* squared radius */ int hits; BVHTree_RangeQuery callback; void *userdata; } RangeQueryData; static void dfs_range_query(RangeQueryData *data, BVHNode *node) { if (node->totnode == 0) { #if 0 /*UNUSED*/ /* Calculate the node min-coords (if the node was a point then this is the point coordinates) */ float co[3]; co[0] = node->bv[0]; co[1] = node->bv[2]; co[2] = node->bv[4]; #endif } else { int i; for (i = 0; i != node->totnode; i++) { float nearest[3]; float dist_sq = calc_nearest_point_squared(data->center, node->children[i], nearest); if (dist_sq < data->radius_sq) { /* Its a leaf.. call the callback */ if (node->children[i]->totnode == 0) { data->hits++; data->callback(data->userdata, node->children[i]->index, dist_sq); } else dfs_range_query(data, node->children[i]); } } } } int BLI_bvhtree_range_query(BVHTree *tree, const float co[3], float radius, BVHTree_RangeQuery callback, void *userdata) { BVHNode *root = tree->nodes[tree->totleaf]; RangeQueryData data; data.tree = tree; data.center = co; data.radius_sq = radius * radius; data.hits = 0; data.callback = callback; data.userdata = userdata; if (root != NULL) { float nearest[3]; float dist_sq = calc_nearest_point_squared(data.center, root, nearest); if (dist_sq < data.radius_sq) { /* Its a leaf.. call the callback */ if (root->totnode == 0) { data.hits++; data.callback(data.userdata, root->index, dist_sq); } else dfs_range_query(&data, root); } } return data.hits; }