/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Janne Karhu * Brecht Van Lommel * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenlib/intern/BLI_kdtree.c * \ingroup bli */ #include "MEM_guardedalloc.h" #include "BLI_math.h" #include "BLI_kdtree.h" #include "BLI_utildefines.h" #include "BLI_strict_flags.h" typedef struct KDTreeNode_head { uint left, right; float co[3]; int index; } KDTreeNode_head; typedef struct KDTreeNode { uint left, right; float co[3]; int index; uint d; /* range is only (0-2) */ } KDTreeNode; struct KDTree { KDTreeNode *nodes; uint totnode; uint root; #ifdef DEBUG bool is_balanced; /* ensure we call balance first */ uint maxsize; /* max size of the tree */ #endif }; #define KD_STACK_INIT 100 /* initial size for array (on the stack) */ #define KD_NEAR_ALLOC_INC 100 /* alloc increment for collecting nearest */ #define KD_FOUND_ALLOC_INC 50 /* alloc increment for collecting nearest */ #define KD_NODE_UNSET ((uint)-1) /** * Creates or free a kdtree */ KDTree *BLI_kdtree_new(uint maxsize) { KDTree *tree; tree = MEM_mallocN(sizeof(KDTree), "KDTree"); tree->nodes = MEM_mallocN(sizeof(KDTreeNode) * maxsize, "KDTreeNode"); tree->totnode = 0; tree->root = KD_NODE_UNSET; #ifdef DEBUG tree->is_balanced = false; tree->maxsize = maxsize; #endif return tree; } void BLI_kdtree_free(KDTree *tree) { if (tree) { MEM_freeN(tree->nodes); MEM_freeN(tree); } } /** * Construction: first insert points, then call balance. Normal is optional. */ void BLI_kdtree_insert(KDTree *tree, int index, const float co[3]) { KDTreeNode *node = &tree->nodes[tree->totnode++]; #ifdef DEBUG BLI_assert(tree->totnode <= tree->maxsize); #endif /* note, array isn't calloc'd, * need to initialize all struct members */ node->left = node->right = KD_NODE_UNSET; copy_v3_v3(node->co, co); node->index = index; node->d = 0; #ifdef DEBUG tree->is_balanced = false; #endif } static uint kdtree_balance(KDTreeNode *nodes, uint totnode, uint axis, const uint ofs) { KDTreeNode *node; float co; uint left, right, median, i, j; if (totnode <= 0) return KD_NODE_UNSET; else if (totnode == 1) return 0 + ofs; /* quicksort style sorting around median */ left = 0; right = totnode - 1; median = totnode / 2; while (right > left) { co = nodes[right].co[axis]; i = left - 1; j = right; while (1) { while (nodes[++i].co[axis] < co) ; while (nodes[--j].co[axis] > co && j > left) ; if (i >= j) break; SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[j]); } SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[right]); if (i >= median) right = i - 1; if (i <= median) left = i + 1; } /* set node and sort subnodes */ node = &nodes[median]; node->d = axis; axis = (axis + 1) % 3; node->left = kdtree_balance(nodes, median, axis, ofs); node->right = kdtree_balance(nodes + median + 1, (totnode - (median + 1)), axis, (median + 1) + ofs); return median + ofs; } void BLI_kdtree_balance(KDTree *tree) { tree->root = kdtree_balance(tree->nodes, tree->totnode, 0, 0); #ifdef DEBUG tree->is_balanced = true; #endif } static float squared_distance(const float v2[3], const float v1[3], const float n2[3]) { float d[3], dist; d[0] = v2[0] - v1[0]; d[1] = v2[1] - v1[1]; d[2] = v2[2] - v1[2]; dist = len_squared_v3(d); /* can someone explain why this is done?*/ if (n2 && (dot_v3v3(d, n2) < 0.0f)) { dist *= 10.0f; } return dist; } static uint *realloc_nodes(uint *stack, uint *totstack, const bool is_alloc) { uint *stack_new = MEM_mallocN((*totstack + KD_NEAR_ALLOC_INC) * sizeof(uint), "KDTree.treestack"); memcpy(stack_new, stack, *totstack * sizeof(uint)); // memset(stack_new + *totstack, 0, sizeof(uint) * KD_NEAR_ALLOC_INC); if (is_alloc) MEM_freeN(stack); *totstack += KD_NEAR_ALLOC_INC; return stack_new; } /** * Find nearest returns index, and -1 if no node is found. */ int BLI_kdtree_find_nearest( const KDTree *tree, const float co[3], KDTreeNearest *r_nearest) { const KDTreeNode *nodes = tree->nodes; const KDTreeNode *root, *min_node; uint *stack, defaultstack[KD_STACK_INIT]; float min_dist, cur_dist; uint totstack, cur = 0; #ifdef DEBUG BLI_assert(tree->is_balanced == true); #endif if (UNLIKELY(tree->root == KD_NODE_UNSET)) return -1; stack = defaultstack; totstack = KD_STACK_INIT; root = &nodes[tree->root]; min_node = root; min_dist = len_squared_v3v3(root->co, co); if (co[root->d] < root->co[root->d]) { if (root->right != KD_NODE_UNSET) stack[cur++] = root->right; if (root->left != KD_NODE_UNSET) stack[cur++] = root->left; } else { if (root->left != KD_NODE_UNSET) stack[cur++] = root->left; if (root->right != KD_NODE_UNSET) stack[cur++] = root->right; } while (cur--) { const KDTreeNode *node = &nodes[stack[cur]]; cur_dist = node->co[node->d] - co[node->d]; if (cur_dist < 0.0f) { cur_dist = -cur_dist * cur_dist; if (-cur_dist < min_dist) { cur_dist = len_squared_v3v3(node->co, co); if (cur_dist < min_dist) { min_dist = cur_dist; min_node = node; } if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } else { cur_dist = cur_dist * cur_dist; if (cur_dist < min_dist) { cur_dist = len_squared_v3v3(node->co, co); if (cur_dist < min_dist) { min_dist = cur_dist; min_node = node; } if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } if (UNLIKELY(cur + 3 > totstack)) { stack = realloc_nodes(stack, &totstack, defaultstack != stack); } } if (r_nearest) { r_nearest->index = min_node->index; r_nearest->dist = sqrtf(min_dist); copy_v3_v3(r_nearest->co, min_node->co); } if (stack != defaultstack) MEM_freeN(stack); return min_node->index; } /** * A version of #BLI_kdtree_find_nearest which runs a callback * to filter out values. * * \param filter_cb: Filter find results, * Return codes: (1: accept, 0: skip, -1: immediate exit). */ int BLI_kdtree_find_nearest_cb( const KDTree *tree, const float co[3], int (*filter_cb)(void *user_data, int index, const float co[3], float dist_sq), void *user_data, KDTreeNearest *r_nearest) { const KDTreeNode *nodes = tree->nodes; const KDTreeNode *min_node = NULL; uint *stack, defaultstack[KD_STACK_INIT]; float min_dist = FLT_MAX, cur_dist; uint totstack, cur = 0; #ifdef DEBUG BLI_assert(tree->is_balanced == true); #endif if (UNLIKELY(tree->root == KD_NODE_UNSET)) return -1; stack = defaultstack; totstack = KD_STACK_INIT; #define NODE_TEST_NEAREST(node) \ { \ const float dist_sq = len_squared_v3v3((node)->co, co); \ if (dist_sq < min_dist) { \ const int result = filter_cb(user_data, (node)->index, (node)->co, dist_sq); \ if (result == 1) { \ min_dist = dist_sq; \ min_node = node; \ } \ else if (result == 0) { \ /* pass */ \ } \ else { \ BLI_assert(result == -1); \ goto finally; \ } \ } \ } ((void)0) stack[cur++] = tree->root; while (cur--) { const KDTreeNode *node = &nodes[stack[cur]]; cur_dist = node->co[node->d] - co[node->d]; if (cur_dist < 0.0f) { cur_dist = -cur_dist * cur_dist; if (-cur_dist < min_dist) { NODE_TEST_NEAREST(node); if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } else { cur_dist = cur_dist * cur_dist; if (cur_dist < min_dist) { NODE_TEST_NEAREST(node); if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } if (UNLIKELY(cur + 3 > totstack)) { stack = realloc_nodes(stack, &totstack, defaultstack != stack); } } #undef NODE_TEST_NEAREST finally: if (stack != defaultstack) MEM_freeN(stack); if (min_node) { if (r_nearest) { r_nearest->index = min_node->index; r_nearest->dist = sqrtf(min_dist); copy_v3_v3(r_nearest->co, min_node->co); } return min_node->index; } else { return -1; } } static void add_nearest(KDTreeNearest *ptn, uint *found, uint n, int index, float dist, const float *co) { uint i; if (*found < n) (*found)++; for (i = *found - 1; i > 0; i--) { if (dist >= ptn[i - 1].dist) break; else ptn[i] = ptn[i - 1]; } ptn[i].index = index; ptn[i].dist = dist; copy_v3_v3(ptn[i].co, co); } /** * Find n nearest returns number of points found, with results in nearest. * Normal is optional, but if given will limit results to points in normal direction from co. * * \param r_nearest An array of nearest, sized at least \a n. */ int BLI_kdtree_find_nearest_n__normal( const KDTree *tree, const float co[3], const float nor[3], KDTreeNearest r_nearest[], uint n) { const KDTreeNode *nodes = tree->nodes; const KDTreeNode *root; uint *stack, defaultstack[KD_STACK_INIT]; float cur_dist; uint totstack, cur = 0; uint i, found = 0; #ifdef DEBUG BLI_assert(tree->is_balanced == true); #endif if (UNLIKELY((tree->root == KD_NODE_UNSET) || n == 0)) return 0; stack = defaultstack; totstack = KD_STACK_INIT; root = &nodes[tree->root]; cur_dist = squared_distance(root->co, co, nor); add_nearest(r_nearest, &found, n, root->index, cur_dist, root->co); if (co[root->d] < root->co[root->d]) { if (root->right != KD_NODE_UNSET) stack[cur++] = root->right; if (root->left != KD_NODE_UNSET) stack[cur++] = root->left; } else { if (root->left != KD_NODE_UNSET) stack[cur++] = root->left; if (root->right != KD_NODE_UNSET) stack[cur++] = root->right; } while (cur--) { const KDTreeNode *node = &nodes[stack[cur]]; cur_dist = node->co[node->d] - co[node->d]; if (cur_dist < 0.0f) { cur_dist = -cur_dist * cur_dist; if (found < n || -cur_dist < r_nearest[found - 1].dist) { cur_dist = squared_distance(node->co, co, nor); if (found < n || cur_dist < r_nearest[found - 1].dist) add_nearest(r_nearest, &found, n, node->index, cur_dist, node->co); if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } else { cur_dist = cur_dist * cur_dist; if (found < n || cur_dist < r_nearest[found - 1].dist) { cur_dist = squared_distance(node->co, co, nor); if (found < n || cur_dist < r_nearest[found - 1].dist) add_nearest(r_nearest, &found, n, node->index, cur_dist, node->co); if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } if (UNLIKELY(cur + 3 > totstack)) { stack = realloc_nodes(stack, &totstack, defaultstack != stack); } } for (i = 0; i < found; i++) r_nearest[i].dist = sqrtf(r_nearest[i].dist); if (stack != defaultstack) MEM_freeN(stack); return (int)found; } static int range_compare(const void *a, const void *b) { const KDTreeNearest *kda = a; const KDTreeNearest *kdb = b; if (kda->dist < kdb->dist) return -1; else if (kda->dist > kdb->dist) return 1; else return 0; } static void add_in_range( KDTreeNearest **r_foundstack, uint *r_foundstack_tot_alloc, uint found, const int index, const float dist, const float *co) { KDTreeNearest *to; if (UNLIKELY(found >= *r_foundstack_tot_alloc)) { *r_foundstack = MEM_reallocN_id( *r_foundstack, (*r_foundstack_tot_alloc += KD_FOUND_ALLOC_INC) * sizeof(KDTreeNode), __func__); } to = (*r_foundstack) + found; to->index = index; to->dist = sqrtf(dist); copy_v3_v3(to->co, co); } /** * Range search returns number of points found, with results in nearest * Normal is optional, but if given will limit results to points in normal direction from co. * Remember to free nearest after use! */ int BLI_kdtree_range_search__normal( const KDTree *tree, const float co[3], const float nor[3], KDTreeNearest **r_nearest, float range) { const KDTreeNode *nodes = tree->nodes; uint *stack, defaultstack[KD_STACK_INIT]; KDTreeNearest *foundstack = NULL; float range_sq = range * range, dist_sq; uint totstack, cur = 0, found = 0, totfoundstack = 0; #ifdef DEBUG BLI_assert(tree->is_balanced == true); #endif if (UNLIKELY(tree->root == KD_NODE_UNSET)) return 0; stack = defaultstack; totstack = KD_STACK_INIT; stack[cur++] = tree->root; while (cur--) { const KDTreeNode *node = &nodes[stack[cur]]; if (co[node->d] + range < node->co[node->d]) { if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } else if (co[node->d] - range > node->co[node->d]) { if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } else { dist_sq = squared_distance(node->co, co, nor); if (dist_sq <= range_sq) { add_in_range(&foundstack, &totfoundstack, found++, node->index, dist_sq, node->co); } if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } if (UNLIKELY(cur + 3 > totstack)) { stack = realloc_nodes(stack, &totstack, defaultstack != stack); } } if (stack != defaultstack) MEM_freeN(stack); if (found) qsort(foundstack, found, sizeof(KDTreeNearest), range_compare); *r_nearest = foundstack; return (int)found; } /** * A version of #BLI_kdtree_range_search which runs a callback * instead of allocating an array. * * \param search_cb: Called for every node found in \a range, false return value performs an early exit. * * \note the order of calls isn't sorted based on distance. */ void BLI_kdtree_range_search_cb( const KDTree *tree, const float co[3], float range, bool (*search_cb)(void *user_data, int index, const float co[3], float dist_sq), void *user_data) { const KDTreeNode *nodes = tree->nodes; uint *stack, defaultstack[KD_STACK_INIT]; float range_sq = range * range, dist_sq; uint totstack, cur = 0; #ifdef DEBUG BLI_assert(tree->is_balanced == true); #endif if (UNLIKELY(tree->root == KD_NODE_UNSET)) return; stack = defaultstack; totstack = KD_STACK_INIT; stack[cur++] = tree->root; while (cur--) { const KDTreeNode *node = &nodes[stack[cur]]; if (co[node->d] + range < node->co[node->d]) { if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; } else if (co[node->d] - range > node->co[node->d]) { if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } else { dist_sq = len_squared_v3v3(node->co, co); if (dist_sq <= range_sq) { if (search_cb(user_data, node->index, node->co, dist_sq) == false) { goto finally; } } if (node->left != KD_NODE_UNSET) stack[cur++] = node->left; if (node->right != KD_NODE_UNSET) stack[cur++] = node->right; } if (UNLIKELY(cur + 3 > totstack)) { stack = realloc_nodes(stack, &totstack, defaultstack != stack); } } finally: if (stack != defaultstack) MEM_freeN(stack); } /** * Use when we want to loop over nodes ordered by index. * Requires indices to be aligned with nodes. */ static uint *kdtree_order(const KDTree *tree) { const KDTreeNode *nodes = tree->nodes; uint *order = MEM_mallocN(sizeof(uint) * tree->totnode, __func__); for (uint i = 0; i < tree->totnode; i++) { order[nodes[i].index] = i; } return order; } /* -------------------------------------------------------------------- */ /** \name BLI_kdtree_calc_duplicates_fast * \{ */ struct DeDuplicateParams { /* Static */ const KDTreeNode *nodes; float range; float range_sq; int *duplicates; int *duplicates_found; /* Per Search */ float search_co[3]; int search; }; static void deduplicate_recursive(const struct DeDuplicateParams *p, uint i) { const KDTreeNode *node = &p->nodes[i]; if (p->search_co[node->d] + p->range <= node->co[node->d]) { if (node->left != KD_NODE_UNSET) { deduplicate_recursive(p, node->left); } } else if (p->search_co[node->d] - p->range >= node->co[node->d]) { if (node->right != KD_NODE_UNSET) { deduplicate_recursive(p, node->right); } } else { if ((p->search != node->index) && (p->duplicates[node->index] == -1)) { if (compare_len_squared_v3v3(node->co, p->search_co, p->range_sq)) { p->duplicates[node->index] = (int)p->search; *p->duplicates_found += 1; } } if (node->left != KD_NODE_UNSET) { deduplicate_recursive(p, node->left); } if (node->right != KD_NODE_UNSET) { deduplicate_recursive(p, node->right); } } } /** * Find duplicate points in \a range. * Favors speed over quality since it doesn't find the best target vertex for merging. * Nodes are looped over, duplicates are added when found. * Nevertheless results are predictable. * * \param range: Coordinates in this range are candidates to be merged. * \param use_index_order: Loop over the coordinates ordered by #KDTreeNode.index * At the expense of some performance, this ensures the layout of the tree doesn't influence * the iteration order. * \param duplicates: An array of int's the length of #KDTree.totnode * Values initialized to -1 are candidates to me merged. * Setting the index to it's own position in the array prevents it from being touched, * although it can still be used as a target. * \returns The numebr of merges found (includes any merges already in the \a duplicates array). * * \note Merging is always a single step (target indices wont be marked for merging). */ int BLI_kdtree_calc_duplicates_fast( const KDTree *tree, const float range, bool use_index_order, int *duplicates) { int found = 0; struct DeDuplicateParams p = { .nodes = tree->nodes, .range = range, .range_sq = range * range, .duplicates = duplicates, .duplicates_found = &found, }; if (use_index_order) { uint *order = kdtree_order(tree); for (uint i = 0; i < tree->totnode; i++) { const uint node_index = order[i]; const int index = (int)i; if (ELEM(duplicates[index], -1, index)) { p.search = index; copy_v3_v3(p.search_co, tree->nodes[node_index].co); int found_prev = found; deduplicate_recursive(&p, tree->root); if (found != found_prev) { /* Prevent chains of doubles. */ duplicates[index] = index; } } } MEM_freeN(order); } else { for (uint i = 0; i < tree->totnode; i++) { const uint node_index = i; const int index = p.nodes[node_index].index; if (ELEM(duplicates[index], -1, index)) { p.search = index; copy_v3_v3(p.search_co, tree->nodes[node_index].co); int found_prev = found; deduplicate_recursive(&p, tree->root); if (found != found_prev) { /* Prevent chains of doubles. */ duplicates[index] = index; } } } } return found; } /** \} */