/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 1995 Free Software Foundation, Inc. * Written by Ulrich Drepper . */ /** \file * \ingroup bli * * Functions to compute MD5 message digest of files or memory blocks * according to the definition of MD5 in RFC 1321 from April 1992. */ #include #include #include #include #include "BLI_hash_md5.h" /* own include */ #if defined HAVE_LIMITS_H || defined _LIBC # include #endif /* The following contortions are an attempt to use the C preprocessor to determine an unsigned * integral type that is 32 bits wide. * An alternative approach is to use autoconf's AC_CHECK_SIZEOF macro, but doing that would require * that the configure script compile and *run* the resulting executable. * Locally running cross-compiled executables is usually not possible. */ #if defined __STDC__ && __STDC__ # define UINT_MAX_32_BITS 4294967295U #else # define UINT_MAX_32_BITS 0xFFFFFFFF #endif /* If UINT_MAX isn't defined, assume it's a 32-bit type. * This should be valid for all systems GNU cares about * because that doesn't include 16-bit systems, and only modern systems * (that certainly have ) have 64+-bit integral types. */ #ifndef UINT_MAX # define UINT_MAX UINT_MAX_32_BITS #endif #if UINT_MAX == UINT_MAX_32_BITS typedef unsigned int md5_uint32; #else # if USHRT_MAX == UINT_MAX_32_BITS typedef unsigned short md5_uint32; # else # if ULONG_MAX == UINT_MAX_32_BITS typedef unsigned long md5_uint32; # else /* The following line is intended to evoke an error. Using #error is not portable enough. */ "Cannot determine unsigned 32-bit data type." # endif # endif #endif /* Following code is low level, upon which are built up the functions * 'BLI_hash_md5_stream' and 'BLI_hash_md5_buffer'. */ /* Structure to save state of computation between the single steps. */ struct md5_ctx { md5_uint32 A; md5_uint32 B; md5_uint32 C; md5_uint32 D; }; #ifdef __BIG_ENDIAN__ # define SWAP(n) (((n) << 24) | (((n)&0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) #else # define SWAP(n) (n) #endif /* This array contains the bytes used to pad the buffer to the next 64-byte boundary. * (RFC 1321, 3.1: Step 1) */ static const unsigned char fillbuf[64] = {0x80, 0 /* , 0, 0, ... */}; /** * Initialize structure containing state of computation. * (RFC 1321, 3.3: Step 3) */ static void md5_init_ctx(struct md5_ctx *ctx) { ctx->A = 0x67452301; ctx->B = 0xefcdab89; ctx->C = 0x98badcfe; ctx->D = 0x10325476; } /** * Starting with the result of former calls of this function (or the initialization), * this function updates the 'ctx' context for the next 'len' bytes starting at 'buffer'. * It is necessary that 'len' is a multiple of 64!!! */ static void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx) { /* These are the four functions used in the four steps of the MD5 algorithm and defined in the * RFC 1321. The first function is a little bit optimized * (as found in Colin Plumbs public domain implementation). */ /* #define FF(b, c, d) ((b & c) | (~b & d)) */ #define FF(b, c, d) (d ^ (b & (c ^ d))) #define FG(b, c, d) FF(d, b, c) #define FH(b, c, d) (b ^ c ^ d) #define FI(b, c, d) (c ^ (b | ~d)) /* It is unfortunate that C does not provide an operator for cyclic rotation. * Hope the C compiler is smart enough. */ #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) md5_uint32 correct_words[16]; const md5_uint32 *words = buffer; size_t nwords = len / sizeof(md5_uint32); const md5_uint32 *endp = words + nwords; md5_uint32 A = ctx->A; md5_uint32 B = ctx->B; md5_uint32 C = ctx->C; md5_uint32 D = ctx->D; /* Process all bytes in the buffer with 64 bytes in each round of the loop. */ while (words < endp) { md5_uint32 *cwp = correct_words; md5_uint32 A_save = A; md5_uint32 B_save = B; md5_uint32 C_save = C; md5_uint32 D_save = D; /* First round: using the given function, the context and a constant the next context is * computed. Because the algorithms processing unit is a 32-bit word and it is determined * to work on words in little endian byte order we perhaps have to change the byte order * before the computation. To reduce the work for the next steps we store the swapped words * in the array CORRECT_WORDS. */ #define OP(a, b, c, d, s, T) \ a += FF(b, c, d) + (*cwp++ = SWAP(*words)) + T; \ words++; \ CYCLIC(a, s); \ a += b; \ (void)0 /* Before we start, one word to the strange constants. They are defined in RFC 1321 as: * `T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64` */ /* Round 1. */ OP(A, B, C, D, 7, 0xd76aa478); OP(D, A, B, C, 12, 0xe8c7b756); OP(C, D, A, B, 17, 0x242070db); OP(B, C, D, A, 22, 0xc1bdceee); OP(A, B, C, D, 7, 0xf57c0faf); OP(D, A, B, C, 12, 0x4787c62a); OP(C, D, A, B, 17, 0xa8304613); OP(B, C, D, A, 22, 0xfd469501); OP(A, B, C, D, 7, 0x698098d8); OP(D, A, B, C, 12, 0x8b44f7af); OP(C, D, A, B, 17, 0xffff5bb1); OP(B, C, D, A, 22, 0x895cd7be); OP(A, B, C, D, 7, 0x6b901122); OP(D, A, B, C, 12, 0xfd987193); OP(C, D, A, B, 17, 0xa679438e); OP(B, C, D, A, 22, 0x49b40821); #undef OP /* For the second to fourth round we have the possibly swapped words in CORRECT_WORDS. * Redefine the macro to take an additional first argument specifying the function to use. */ #define OP(f, a, b, c, d, k, s, T) \ a += f(b, c, d) + correct_words[k] + T; \ CYCLIC(a, s); \ a += b; \ (void)0 /* Round 2. */ OP(FG, A, B, C, D, 1, 5, 0xf61e2562); OP(FG, D, A, B, C, 6, 9, 0xc040b340); OP(FG, C, D, A, B, 11, 14, 0x265e5a51); OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); OP(FG, A, B, C, D, 5, 5, 0xd62f105d); OP(FG, D, A, B, C, 10, 9, 0x02441453); OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); OP(FG, D, A, B, C, 14, 9, 0xc33707d6); OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); OP(FG, B, C, D, A, 8, 20, 0x455a14ed); OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); OP(FG, C, D, A, B, 7, 14, 0x676f02d9); OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); /* Round 3. */ OP(FH, A, B, C, D, 5, 4, 0xfffa3942); OP(FH, D, A, B, C, 8, 11, 0x8771f681); OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); OP(FH, B, C, D, A, 14, 23, 0xfde5380c); OP(FH, A, B, C, D, 1, 4, 0xa4beea44); OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); OP(FH, B, C, D, A, 6, 23, 0x04881d05); OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); /* Round 4. */ OP(FI, A, B, C, D, 0, 6, 0xf4292244); OP(FI, D, A, B, C, 7, 10, 0x432aff97); OP(FI, C, D, A, B, 14, 15, 0xab9423a7); OP(FI, B, C, D, A, 5, 21, 0xfc93a039); OP(FI, A, B, C, D, 12, 6, 0x655b59c3); OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); OP(FI, C, D, A, B, 10, 15, 0xffeff47d); OP(FI, B, C, D, A, 1, 21, 0x85845dd1); OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); OP(FI, C, D, A, B, 6, 15, 0xa3014314); OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); OP(FI, A, B, C, D, 4, 6, 0xf7537e82); OP(FI, D, A, B, C, 11, 10, 0xbd3af235); OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); OP(FI, B, C, D, A, 9, 21, 0xeb86d391); #undef OP /* Add the starting values of the context. */ A += A_save; B += B_save; C += C_save; D += D_save; } /* Put checksum in context given as argument. */ ctx->A = A; ctx->B = B; ctx->C = C; ctx->D = D; #undef FF #undef FG #undef FH #undef FI #undef CYCLIC } /** * Put result from 'ctx' in first 16 bytes of 'resbuf'. * The result is always in little endian byte order, * so that a byte-wise output yields to the wanted ASCII representation of the message digest. */ static void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf) { md5_uint32 *digest = resbuf; digest[0] = SWAP(ctx->A); digest[1] = SWAP(ctx->B); digest[2] = SWAP(ctx->C); digest[3] = SWAP(ctx->D); return resbuf; } /* Top level public functions. */ int BLI_hash_md5_stream(FILE *stream, void *resblock) { #define BLOCKSIZE 4096 /* IMPORTANT: must be a multiple of 64. */ struct md5_ctx ctx; md5_uint32 len[2]; char buffer[BLOCKSIZE + 72]; size_t pad, sum; /* Initialize the computation context. */ md5_init_ctx(&ctx); len[0] = 0; len[1] = 0; /* Iterate over full file contents. */ while (1) { /* We read the file in blocks of BLOCKSIZE bytes. * One call of the computation function processes the whole buffer * so that with the next round of the loop another block can be read. */ size_t n; sum = 0; /* Read block. Take care for partial reads. */ do { n = fread(buffer, 1, BLOCKSIZE - sum, stream); sum += n; } while (sum < BLOCKSIZE && n != 0); if (n == 0 && ferror(stream)) { return 1; } /* RFC 1321 specifies the possible length of the file up to 2^64 bits. * Here we only compute the number of bytes. Do a double word increment. */ len[0] += sum; if (len[0] < sum) { ++len[1]; } /* If end of file is reached, end the loop. */ if (n == 0) { break; } /* Process buffer with BLOCKSIZE bytes. Note that `BLOCKSIZE % 64 == 0`. */ md5_process_block(buffer, BLOCKSIZE, &ctx); } /* We can copy 64 bytes because the buffer is always big enough. * 'fillbuf' contains the needed bits. */ memcpy(&buffer[sum], fillbuf, 64); /* Compute amount of padding bytes needed. Alignment is done to `(N + PAD) % 64 == 56`. * There is always at least one byte padded, i.e. if the alignment is correctly aligned, * 64 padding bytes are added. */ pad = sum & 63; pad = pad >= 56 ? 64 + 56 - pad : 56 - pad; /* Put the 64-bit file length in *bits* at the end of the buffer. */ *(md5_uint32 *)&buffer[sum + pad] = SWAP(len[0] << 3); *(md5_uint32 *)&buffer[sum + pad + 4] = SWAP((len[1] << 3) | (len[0] >> 29)); /* Process last bytes. */ md5_process_block(buffer, sum + pad + 8, &ctx); /* Construct result in desired memory. */ md5_read_ctx(&ctx, resblock); return 0; } void *BLI_hash_md5_buffer(const char *buffer, size_t len, void *resblock) { struct md5_ctx ctx; char restbuf[64 + 72]; size_t blocks = len & ~63; size_t pad, rest; /* Initialize the computation context. */ md5_init_ctx(&ctx); /* Process whole buffer but last len % 64 bytes. */ md5_process_block(buffer, blocks, &ctx); /* REST bytes are not processed yet. */ rest = len - blocks; /* Copy to own buffer. */ memcpy(restbuf, &buffer[blocks], rest); /* Append needed fill bytes at end of buffer. * We can copy 64 bytes because the buffer is always big enough. */ memcpy(&restbuf[rest], fillbuf, 64); /* PAD bytes are used for padding to correct alignment. * Note that always at least one byte is padded. */ pad = rest >= 56 ? 64 + 56 - rest : 56 - rest; /* Put length of buffer in *bits* in last eight bytes. */ *(md5_uint32 *)&restbuf[rest + pad] = (md5_uint32)SWAP(len << 3); *(md5_uint32 *)&restbuf[rest + pad + 4] = (md5_uint32)SWAP(len >> 29); /* Process last bytes. */ md5_process_block(restbuf, rest + pad + 8, &ctx); /* Put result in desired memory area. */ return md5_read_ctx(&ctx, resblock); } char *BLI_hash_md5_to_hexdigest(void *resblock, char r_hex_digest[33]) { static const char hex_map[17] = "0123456789abcdef"; const unsigned char *p; char *q; short len; for (q = r_hex_digest, p = (const unsigned char *)resblock, len = 0; len < 16; p++, len++) { const unsigned char c = *p; *q++ = hex_map[c >> 4]; *q++ = hex_map[c & 15]; } *q = '\0'; return r_hex_digest; }