/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup bli */ #include "BLI_hash.hh" #include "BLI_math_boolean.hh" #include "BLI_math_mpq.hh" #include "BLI_math_vec_types.hh" #include "BLI_span.hh" #include "BLI_utildefines.h" namespace blender { #ifdef WITH_GMP int orient2d(const mpq2 &a, const mpq2 &b, const mpq2 &c) { mpq_class detleft = (a[0] - c[0]) * (b[1] - c[1]); mpq_class detright = (a[1] - c[1]) * (b[0] - c[0]); mpq_class det = detleft - detright; return sgn(det); } int incircle(const mpq2 &a, const mpq2 &b, const mpq2 &c, const mpq2 &d) { mpq_class adx = a[0] - d[0]; mpq_class bdx = b[0] - d[0]; mpq_class cdx = c[0] - d[0]; mpq_class ady = a[1] - d[1]; mpq_class bdy = b[1] - d[1]; mpq_class cdy = c[1] - d[1]; mpq_class bdxcdy = bdx * cdy; mpq_class cdxbdy = cdx * bdy; mpq_class alift = adx * adx + ady * ady; mpq_class cdxady = cdx * ady; mpq_class adxcdy = adx * cdy; mpq_class blift = bdx * bdx + bdy * bdy; mpq_class adxbdy = adx * bdy; mpq_class bdxady = bdx * ady; mpq_class clift = cdx * cdx + cdy * cdy; mpq_class det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) + clift * (adxbdy - bdxady); return sgn(det); } int orient3d(const mpq3 &a, const mpq3 &b, const mpq3 &c, const mpq3 &d) { mpq_class adx = a[0] - d[0]; mpq_class bdx = b[0] - d[0]; mpq_class cdx = c[0] - d[0]; mpq_class ady = a[1] - d[1]; mpq_class bdy = b[1] - d[1]; mpq_class cdy = c[1] - d[1]; mpq_class adz = a[2] - d[2]; mpq_class bdz = b[2] - d[2]; mpq_class cdz = c[2] - d[2]; mpq_class bdxcdy = bdx * cdy; mpq_class cdxbdy = cdx * bdy; mpq_class cdxady = cdx * ady; mpq_class adxcdy = adx * cdy; mpq_class adxbdy = adx * bdy; mpq_class bdxady = bdx * ady; mpq_class det = adz * (bdxcdy - cdxbdy) + bdz * (cdxady - adxcdy) + cdz * (adxbdy - bdxady); return sgn(det); } #endif /* WITH_GMP */ /** * For double versions of orient and incircle functions, use robust predicates * that give exact answers for double inputs. * First, encapsulate functions from Jonathan Shewchuk's implementation. * After this name-space, see the implementation of the double3 primitives. */ namespace robust_pred { /* Using Shewchuk's file here, edited to removed unneeded functions, * change REAL to double everywhere, added const to some arguments, * and to export only the following declared non-static functions. * * Since this is C++, an instantiated singleton class is used to make * sure that #exactinit() is called once. * (Because it's undefined when this is called in initialization of all modules, * other modules shouldn't use these functions in initialization.) */ void exactinit(); double orient2dfast(const double *pa, const double *pb, const double *pc); double orient2d(const double *pa, const double *pb, const double *pc); double orient3dfast(const double *pa, const double *pb, const double *pc, const double *pd); double orient3d(const double *pa, const double *pb, const double *pc, const double *pd); double incirclefast(const double *pa, const double *pb, const double *pc, const double *pd); double incircle(const double *pa, const double *pb, const double *pc, const double *pd); double inspherefast( const double *pa, const double *pb, const double *pc, const double *pd, const double *pe); double insphere( const double *pa, const double *pb, const double *pc, const double *pd, const double *pe); class RobustInitCaller { public: RobustInitCaller() { exactinit(); } }; static RobustInitCaller init_caller; /* Routines for Arbitrary Precision Floating-point Arithmetic * and Fast Robust Geometric Predicates * (predicates.c) * * May 18, 1996 * * Placed in the public domain by * Jonathan Richard Shewchuk * School of Computer Science * Carnegie Mellon University * 5000 Forbes Avenue * Pittsburgh, Pennsylvania 15213-3891 * * * This file contains C implementation of algorithms for exact addition * and multiplication of floating-point numbers, and predicates for * robustly performing the orientation and incircle tests used in * computational geometry. The algorithms and underlying theory are * described in Jonathan Richard Shewchuk. "Adaptive Precision Floating- * Point Arithmetic and Fast Robust Geometric Predicates." Technical * Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon * University, Pittsburgh, Pennsylvania, May 1996. (Submitted to * Discrete & Computational Geometry.) * * This file, the paper listed above, and other information are available * from the Web page http://www.cs.cmu.edu/~quake/robust.html . * * * Using this code: * * First, read the short or long version of the paper (from the Web page above). * * Be sure to call #exactinit() once, before calling any of the arithmetic * functions or geometric predicates. Also be sure to turn on the * optimizer when compiling this file. */ /* On some machines, the exact arithmetic routines might be defeated by the * use of internal extended precision floating-point registers. Sometimes * this problem can be fixed by defining certain values to be volatile, * thus forcing them to be stored to memory and rounded off. This isn't * a great solution, though, as it slows the arithmetic down. * * To try this out, write "#define INEXACT volatile" below. Normally, * however, INEXACT should be defined to be nothing. ("#define INEXACT".) */ #define INEXACT /* Nothing */ /* #define INEXACT volatile */ /* Which of the following two methods of finding the absolute values is * fastest is compiler-dependent. A few compilers can inline and optimize * the fabs() call; but most will incur the overhead of a function call, * which is disastrously slow. A faster way on IEEE machines might be to * mask the appropriate bit, but that's difficult to do in C. */ #define Absolute(a) ((a) >= 0.0 ? (a) : -(a)) /* #define Absolute(a) fabs(a) */ /* Many of the operations are broken up into two pieces, a main part that * performs an approximate operation, and a "tail" that computes the * round-off error of that operation. * * The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), * Split(), and Two_Product() are all implemented as described in the * reference. Each of these macros requires certain variables to be * defined in the calling routine. The variables `bvirt', `c', `abig', * `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because * they store the result of an operation that may incur round-off error. * The input parameter `x' (or the highest numbered `x_' parameter) must * also be declared `INEXACT'. */ #define Fast_Two_Sum_Tail(a, b, x, y) \ bvirt = x - a; \ y = b - bvirt #define Fast_Two_Sum(a, b, x, y) \ x = double(a + b); \ Fast_Two_Sum_Tail(a, b, x, y) #define Fast_Two_Diff_Tail(a, b, x, y) \ bvirt = a - x; \ y = bvirt - b #define Fast_Two_Diff(a, b, x, y) \ x = (double)(a - b); \ Fast_Two_Diff_Tail(a, b, x, y) #define Two_Sum_Tail(a, b, x, y) \ bvirt = double(x - a); \ avirt = x - bvirt; \ bround = b - bvirt; \ around = a - avirt; \ y = around + bround #define Two_Sum(a, b, x, y) \ x = double(a + b); \ Two_Sum_Tail(a, b, x, y) #define Two_Diff_Tail(a, b, x, y) \ bvirt = double(a - x); \ avirt = x + bvirt; \ bround = bvirt - b; \ around = a - avirt; \ y = around + bround #define Two_Diff(a, b, x, y) \ x = double(a - b); \ Two_Diff_Tail(a, b, x, y) #define Split(a, ahi, alo) \ c = double(splitter * a); \ abig = double(c - a); \ ahi = c - abig; \ alo = a - ahi #define Two_Product_Tail(a, b, x, y) \ Split(a, ahi, alo); \ Split(b, bhi, blo); \ err1 = x - (ahi * bhi); \ err2 = err1 - (alo * bhi); \ err3 = err2 - (ahi * blo); \ y = (alo * blo) - err3 #define Two_Product(a, b, x, y) \ x = double(a * b); \ Two_Product_Tail(a, b, x, y) #define Two_Product_Presplit(a, b, bhi, blo, x, y) \ x = double(a * b); \ Split(a, ahi, alo); \ err1 = x - (ahi * bhi); \ err2 = err1 - (alo * bhi); \ err3 = err2 - (ahi * blo); \ y = (alo * blo) - err3 #define Two_Product_2Presplit(a, ahi, alo, b, bhi, blo, x, y) \ x = (double)(a * b); \ err1 = x - (ahi * bhi); \ err2 = err1 - (alo * bhi); \ err3 = err2 - (ahi * blo); \ y = (alo * blo) - err3 #define Square_Tail(a, x, y) \ Split(a, ahi, alo); \ err1 = x - (ahi * ahi); \ err3 = err1 - ((ahi + ahi) * alo); \ y = (alo * alo) - err3 #define Square(a, x, y) \ x = double(a * a); \ Square_Tail(a, x, y) #define Two_One_Sum(a1, a0, b, x2, x1, x0) \ Two_Sum(a0, b, _i, x0); \ Two_Sum(a1, _i, x2, x1) #define Two_One_Diff(a1, a0, b, x2, x1, x0) \ Two_Diff(a0, b, _i, x0); \ Two_Sum(a1, _i, x2, x1) #define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \ Two_One_Sum(a1, a0, b0, _j, _0, x0); \ Two_One_Sum(_j, _0, b1, x3, x2, x1) #define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \ Two_One_Diff(a1, a0, b0, _j, _0, x0); \ Two_One_Diff(_j, _0, b1, x3, x2, x1) #define Four_One_Sum(a3, a2, a1, a0, b, x4, x3, x2, x1, x0) \ Two_One_Sum(a1, a0, b, _j, x1, x0); \ Two_One_Sum(a3, a2, _j, x4, x3, x2) #define Four_Two_Sum(a3, a2, a1, a0, b1, b0, x5, x4, x3, x2, x1, x0) \ Four_One_Sum(a3, a2, a1, a0, b0, _k, _2, _1, _0, x0); \ Four_One_Sum(_k, _2, _1, _0, b1, x5, x4, x3, x2, x1) #define Four_Four_Sum(a3, a2, a1, a0, b4, b3, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \ Four_Two_Sum(a3, a2, a1, a0, b1, b0, _l, _2, _1, _0, x1, x0); \ Four_Two_Sum(_l, _2, _1, _0, b4, b3, x7, x6, x5, x4, x3, x2) #define Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b, x8, x7, x6, x5, x4, x3, x2, x1, x0) \ Four_One_Sum(a3, a2, a1, a0, b, _j, x3, x2, x1, x0); \ Four_One_Sum(a7, a6, a5, a4, _j, x8, x7, x6, x5, x4) #define Eight_Two_Sum( \ a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, x9, x8, x7, x6, x5, x4, x3, x2, x1, x0) \ Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b0, _k, _6, _5, _4, _3, _2, _1, _0, x0); \ Eight_One_Sum(_k, _6, _5, _4, _3, _2, _1, _0, b1, x9, x8, x7, x6, x5, x4, x3, x2, x1) #define Eight_Four_Sum(a7, \ a6, \ a5, \ a4, \ a3, \ a2, \ a1, \ a0, \ b4, \ b3, \ b1, \ b0, \ x11, \ x10, \ x9, \ x8, \ x7, \ x6, \ x5, \ x4, \ x3, \ x2, \ x1, \ x0) \ Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, _l, _6, _5, _4, _3, _2, _1, _0, x1, x0); \ Eight_Two_Sum(_l, _6, _5, _4, _3, _2, _1, _0, b4, b3, x11, x10, x9, x8, x7, x6, x5, x4, x3, x2) #define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \ Split(b, bhi, blo); \ Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \ Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \ Two_Sum(_i, _0, _k, x1); \ Fast_Two_Sum(_j, _k, x3, x2) #define Four_One_Product(a3, a2, a1, a0, b, x7, x6, x5, x4, x3, x2, x1, x0) \ Split(b, bhi, blo); \ Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \ Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \ Two_Sum(_i, _0, _k, x1); \ Fast_Two_Sum(_j, _k, _i, x2); \ Two_Product_Presplit(a2, b, bhi, blo, _j, _0); \ Two_Sum(_i, _0, _k, x3); \ Fast_Two_Sum(_j, _k, _i, x4); \ Two_Product_Presplit(a3, b, bhi, blo, _j, _0); \ Two_Sum(_i, _0, _k, x5); \ Fast_Two_Sum(_j, _k, x7, x6) #define Two_Two_Product(a1, a0, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \ Split(a0, a0hi, a0lo); \ Split(b0, bhi, blo); \ Two_Product_2Presplit(a0, a0hi, a0lo, b0, bhi, blo, _i, x0); \ Split(a1, a1hi, a1lo); \ Two_Product_2Presplit(a1, a1hi, a1lo, b0, bhi, blo, _j, _0); \ Two_Sum(_i, _0, _k, _1); \ Fast_Two_Sum(_j, _k, _l, _2); \ Split(b1, bhi, blo); \ Two_Product_2Presplit(a0, a0hi, a0lo, b1, bhi, blo, _i, _0); \ Two_Sum(_1, _0, _k, x1); \ Two_Sum(_2, _k, _j, _1); \ Two_Sum(_l, _j, _m, _2); \ Two_Product_2Presplit(a1, a1hi, a1lo, b1, bhi, blo, _j, _0); \ Two_Sum(_i, _0, _n, _0); \ Two_Sum(_1, _0, _i, x2); \ Two_Sum(_2, _i, _k, _1); \ Two_Sum(_m, _k, _l, _2); \ Two_Sum(_j, _n, _k, _0); \ Two_Sum(_1, _0, _j, x3); \ Two_Sum(_2, _j, _i, _1); \ Two_Sum(_l, _i, _m, _2); \ Two_Sum(_1, _k, _i, x4); \ Two_Sum(_2, _i, _k, x5); \ Two_Sum(_m, _k, x7, x6) #define Two_Square(a1, a0, x5, x4, x3, x2, x1, x0) \ Square(a0, _j, x0); \ _0 = a0 + a0; \ Two_Product(a1, _0, _k, _1); \ Two_One_Sum(_k, _1, _j, _l, _2, x1); \ Square(a1, _j, _1); \ Two_Two_Sum(_j, _1, _l, _2, x5, x4, x3, x2) static double splitter; /* = 2^ceiling(p / 2) + 1. Used to split floats in half. */ static double epsilon; /* = 2^(-p). Used to estimate round-off errors. */ /* A set of coefficients used to calculate maximum round-off errors. */ static double resulterrbound; static double ccwerrboundA, ccwerrboundB, ccwerrboundC; static double o3derrboundA, o3derrboundB, o3derrboundC; static double iccerrboundA, iccerrboundB, iccerrboundC; static double isperrboundA, isperrboundB, isperrboundC; /** * exactinit() Initialize the variables used for exact arithmetic. * * `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in * floating-point arithmetic. `epsilon' bounds the relative round-off * error. It is used for floating-point error analysis. * * `splitter' is used to split floating-point numbers into two half-length * significant for exact multiplication. * * I imagine that a highly optimizing compiler might be too smart for its * own good, and somehow cause this routine to fail, if it pretends that * floating-point arithmetic is too much like real arithmetic. * * Don't change this routine unless you fully understand it. */ void exactinit() { double half; double check, lastcheck; int every_other; every_other = 1; half = 0.5; epsilon = 1.0; splitter = 1.0; check = 1.0; /* Repeatedly divide `epsilon' by two until it is too small to add to * one without causing round-off. (Also check if the sum is equal to * the previous sum, for machines that round up instead of using exact * rounding. Not that this library will work on such machines anyway. */ do { lastcheck = check; epsilon *= half; if (every_other) { splitter *= 2.0; } every_other = !every_other; check = 1.0 + epsilon; } while (!ELEM(check, 1.0, lastcheck)); splitter += 1.0; /* Error bounds for orientation and #incircle tests. */ resulterrbound = (3.0 + 8.0 * epsilon) * epsilon; ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon; ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon; ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon; o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon; o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon; o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon; iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon; iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon; iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon; isperrboundA = (16.0 + 224.0 * epsilon) * epsilon; isperrboundB = (5.0 + 72.0 * epsilon) * epsilon; isperrboundC = (71.0 + 1408.0 * epsilon) * epsilon * epsilon; } /** * fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero * components from the output expansion. * * Sets h = e + f. See the long version of my paper for details. * h cannot be e or f. */ static int fast_expansion_sum_zeroelim( int elen, const double *e, int flen, const double *f, double *h) { double Q; INEXACT double Qnew; INEXACT double hh; INEXACT double bvirt; double avirt, bround, around; int eindex, findex, hindex; double enow, fnow; enow = e[0]; fnow = f[0]; eindex = findex = 0; if ((fnow > enow) == (fnow > -enow)) { Q = enow; enow = e[++eindex]; } else { Q = fnow; fnow = f[++findex]; } hindex = 0; if ((eindex < elen) && (findex < flen)) { if ((fnow > enow) == (fnow > -enow)) { Fast_Two_Sum(enow, Q, Qnew, hh); enow = e[++eindex]; } else { Fast_Two_Sum(fnow, Q, Qnew, hh); fnow = f[++findex]; } Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } while ((eindex < elen) && (findex < flen)) { if ((fnow > enow) == (fnow > -enow)) { Two_Sum(Q, enow, Qnew, hh); enow = e[++eindex]; } else { Two_Sum(Q, fnow, Qnew, hh); fnow = f[++findex]; } Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } } } while (eindex < elen) { Two_Sum(Q, enow, Qnew, hh); enow = e[++eindex]; Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } } while (findex < flen) { Two_Sum(Q, fnow, Qnew, hh); fnow = f[++findex]; Q = Qnew; if (hh != 0.0) { h[hindex++] = hh; } } if ((Q != 0.0) || (hindex == 0)) { h[hindex++] = Q; } return hindex; } /* scale_expansion_zeroelim() Multiply an expansion by a scalar, * eliminating zero components from the * output expansion. * * Sets h = be. See either version of my paper for details. * e and h cannot be the same. */ static int scale_expansion_zeroelim(int elen, const double *e, double b, double *h) { INEXACT double Q, sum; double hh; INEXACT double product1; double product0; int eindex, hindex; double enow; INEXACT double bvirt; double avirt, bround, around; INEXACT double c; INEXACT double abig; double ahi, alo, bhi, blo; double err1, err2, err3; Split(b, bhi, blo); Two_Product_Presplit(e[0], b, bhi, blo, Q, hh); hindex = 0; if (hh != 0) { h[hindex++] = hh; } for (eindex = 1; eindex < elen; eindex++) { enow = e[eindex]; Two_Product_Presplit(enow, b, bhi, blo, product1, product0); Two_Sum(Q, product0, sum, hh); if (hh != 0) { h[hindex++] = hh; } Fast_Two_Sum(product1, sum, Q, hh); if (hh != 0) { h[hindex++] = hh; } } if ((Q != 0.0) || (hindex == 0)) { h[hindex++] = Q; } return hindex; } /* estimate() Produce a one-word estimate of an expansion's value. */ static double estimate(int elen, const double *e) { double Q; int eindex; Q = e[0]; for (eindex = 1; eindex < elen; eindex++) { Q += e[eindex]; } return Q; } /** * orient2dfast() Approximate 2D orientation test. Non-robust. * orient2d() Adaptive exact 2D orientation test. Robust. * Return a positive value if the points pa, pb, and pc occur * in counterclockwise order; a negative value if they occur * in clockwise order; and zero if they are co-linear. The * result is also a rough approximation of twice the signed * area of the triangle defined by the three points. * * The second uses exact arithmetic to ensure a correct answer. The * result returned is the determinant of a matrix. In orient2d() only, * this determinant is computed adaptively, in the sense that exact * arithmetic is used only to the degree it is needed to ensure that the * returned value has the correct sign. Hence, orient2d() is usually quite * fast, but will run more slowly when the input points are co-linear or * nearly so. */ double orient2dfast(const double *pa, const double *pb, const double *pc) { double acx, bcx, acy, bcy; acx = pa[0] - pc[0]; bcx = pb[0] - pc[0]; acy = pa[1] - pc[1]; bcy = pb[1] - pc[1]; return acx * bcy - acy * bcx; } static double orient2dadapt(const double *pa, const double *pb, const double *pc, double detsum) { INEXACT double acx, acy, bcx, bcy; double acxtail, acytail, bcxtail, bcytail; INEXACT double detleft, detright; double detlefttail, detrighttail; double det, errbound; double B[4], C1[8], C2[12], D[16]; INEXACT double B3; int C1length, C2length, Dlength; double u[4]; INEXACT double u3; INEXACT double s1, t1; double s0, t0; INEXACT double bvirt; double avirt, bround, around; INEXACT double c; INEXACT double abig; double ahi, alo, bhi, blo; double err1, err2, err3; INEXACT double _i, _j; double _0; acx = double(pa[0] - pc[0]); bcx = double(pb[0] - pc[0]); acy = double(pa[1] - pc[1]); bcy = double(pb[1] - pc[1]); Two_Product(acx, bcy, detleft, detlefttail); Two_Product(acy, bcx, detright, detrighttail); Two_Two_Diff(detleft, detlefttail, detright, detrighttail, B3, B[2], B[1], B[0]); B[3] = B3; det = estimate(4, B); errbound = ccwerrboundB * detsum; if ((det >= errbound) || (-det >= errbound)) { return det; } Two_Diff_Tail(pa[0], pc[0], acx, acxtail); Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail); Two_Diff_Tail(pa[1], pc[1], acy, acytail); Two_Diff_Tail(pb[1], pc[1], bcy, bcytail); if ((acxtail == 0.0) && (acytail == 0.0) && (bcxtail == 0.0) && (bcytail == 0.0)) { return det; } errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det); det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail); if ((det >= errbound) || (-det >= errbound)) { return det; } Two_Product(acxtail, bcy, s1, s0); Two_Product(acytail, bcx, t1, t0); Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); u[3] = u3; C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1); Two_Product(acx, bcytail, s1, s0); Two_Product(acy, bcxtail, t1, t0); Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); u[3] = u3; C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2); Two_Product(acxtail, bcytail, s1, s0); Two_Product(acytail, bcxtail, t1, t0); Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); u[3] = u3; Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D); return (D[Dlength - 1]); } double orient2d(const double *pa, const double *pb, const double *pc) { double detleft, detright, det; double detsum, errbound; detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]); detright = (pa[1] - pc[1]) * (pb[0] - pc[0]); det = detleft - detright; if (detleft > 0.0) { if (detright <= 0.0) { return det; } detsum = detleft + detright; } else if (detleft < 0.0) { if (detright >= 0.0) { return det; } detsum = -detleft - detright; } else { return det; } errbound = ccwerrboundA * detsum; if ((det >= errbound) || (-det >= errbound)) { return det; } return orient2dadapt(pa, pb, pc, detsum); } /** * orient3dfast() Approximate 3D orientation test. Non-robust. * orient3d() Adaptive exact 3D orientation test. Robust. * * Return a positive value if the point pd lies below the * plane passing through pa, pb, and pc; "below" is defined so * that pa, pb, and pc appear in counterclockwise order when * viewed from above the plane. Returns a negative value if * pd lies above the plane. Returns zero if the points are * co-planar. The result is also a rough approximation of six * times the signed volume of the tetrahedron defined by the * four points. * * The second uses exact arithmetic to ensure a correct answer. The * result returned is the determinant of a matrix. In orient3d() only, * this determinant is computed adaptively, in the sense that exact * arithmetic is used only to the degree it is needed to ensure that the * returned value has the correct sign. Hence, orient3d() is usually quite * fast, but will run more slowly when the input points are co-planar or * nearly so. */ double orient3dfast(const double *pa, const double *pb, const double *pc, const double *pd) { double adx, bdx, cdx; double ady, bdy, cdy; double adz, bdz, cdz; adx = pa[0] - pd[0]; bdx = pb[0] - pd[0]; cdx = pc[0] - pd[0]; ady = pa[1] - pd[1]; bdy = pb[1] - pd[1]; cdy = pc[1] - pd[1]; adz = pa[2] - pd[2]; bdz = pb[2] - pd[2]; cdz = pc[2] - pd[2]; return adx * (bdy * cdz - bdz * cdy) + bdx * (cdy * adz - cdz * ady) + cdx * (ady * bdz - adz * bdy); } /** * \note since this code comes from an external source, prefer not to break it * up to fix this clang-tidy warning. */ /* NOLINTNEXTLINE: readability-function-size */ static double orient3dadapt( const double *pa, const double *pb, const double *pc, const double *pd, double permanent) { INEXACT double adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz; double det, errbound; INEXACT double bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; double bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; double bc[4], ca[4], ab[4]; INEXACT double bc3, ca3, ab3; double adet[8], bdet[8], cdet[8]; int alen, blen, clen; double abdet[16]; int ablen; double *finnow, *finother, *finswap; double fin1[192], fin2[192]; int finlength; double adxtail, bdxtail, cdxtail; double adytail, bdytail, cdytail; double adztail, bdztail, cdztail; INEXACT double at_blarge, at_clarge; INEXACT double bt_clarge, bt_alarge; INEXACT double ct_alarge, ct_blarge; double at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4]; int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen; INEXACT double bdxt_cdy1, cdxt_bdy1, cdxt_ady1; INEXACT double adxt_cdy1, adxt_bdy1, bdxt_ady1; double bdxt_cdy0, cdxt_bdy0, cdxt_ady0; double adxt_cdy0, adxt_bdy0, bdxt_ady0; INEXACT double bdyt_cdx1, cdyt_bdx1, cdyt_adx1; INEXACT double adyt_cdx1, adyt_bdx1, bdyt_adx1; double bdyt_cdx0, cdyt_bdx0, cdyt_adx0; double adyt_cdx0, adyt_bdx0, bdyt_adx0; double bct[8], cat[8], abt[8]; int bctlen, catlen, abtlen; INEXACT double bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1; INEXACT double adxt_cdyt1, adxt_bdyt1, bdxt_adyt1; double bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0; double adxt_cdyt0, adxt_bdyt0, bdxt_adyt0; double u[4], v[12], w[16]; INEXACT double u3; int vlength, wlength; double negate; INEXACT double bvirt; double avirt, bround, around; INEXACT double c; INEXACT double abig; double ahi, alo, bhi, blo; double err1, err2, err3; INEXACT double _i, _j, _k; double _0; adx = double(pa[0] - pd[0]); bdx = double(pb[0] - pd[0]); cdx = double(pc[0] - pd[0]); ady = double(pa[1] - pd[1]); bdy = double(pb[1] - pd[1]); cdy = double(pc[1] - pd[1]); adz = double(pa[2] - pd[2]); bdz = double(pb[2] - pd[2]); cdz = double(pc[2] - pd[2]); Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); bc[3] = bc3; alen = scale_expansion_zeroelim(4, bc, adz, adet); Two_Product(cdx, ady, cdxady1, cdxady0); Two_Product(adx, cdy, adxcdy1, adxcdy0); Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); ca[3] = ca3; blen = scale_expansion_zeroelim(4, ca, bdz, bdet); Two_Product(adx, bdy, adxbdy1, adxbdy0); Two_Product(bdx, ady, bdxady1, bdxady0); Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); ab[3] = ab3; clen = scale_expansion_zeroelim(4, ab, cdz, cdet); ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); det = estimate(finlength, fin1); errbound = o3derrboundB * permanent; if ((det >= errbound) || (-det >= errbound)) { return det; } Two_Diff_Tail(pa[0], pd[0], adx, adxtail); Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); Two_Diff_Tail(pa[1], pd[1], ady, adytail); Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); Two_Diff_Tail(pa[2], pd[2], adz, adztail); Two_Diff_Tail(pb[2], pd[2], bdz, bdztail); Two_Diff_Tail(pc[2], pd[2], cdz, cdztail); if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) && (adztail == 0.0) && (bdztail == 0.0) && (cdztail == 0.0)) { return det; } errbound = o3derrboundC * permanent + resulterrbound * Absolute(det); det += (adz * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) + adztail * (bdx * cdy - bdy * cdx)) + (bdz * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) + bdztail * (cdx * ady - cdy * adx)) + (cdz * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) + cdztail * (adx * bdy - ady * bdx)); if ((det >= errbound) || (-det >= errbound)) { return det; } finnow = fin1; finother = fin2; if (adxtail == 0.0) { if (adytail == 0.0) { at_b[0] = 0.0; at_blen = 1; at_c[0] = 0.0; at_clen = 1; } else { negate = -adytail; Two_Product(negate, bdx, at_blarge, at_b[0]); at_b[1] = at_blarge; at_blen = 2; Two_Product(adytail, cdx, at_clarge, at_c[0]); at_c[1] = at_clarge; at_clen = 2; } } else { if (adytail == 0.0) { Two_Product(adxtail, bdy, at_blarge, at_b[0]); at_b[1] = at_blarge; at_blen = 2; negate = -adxtail; Two_Product(negate, cdy, at_clarge, at_c[0]); at_c[1] = at_clarge; at_clen = 2; } else { Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0); Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0); Two_Two_Diff( adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0, at_blarge, at_b[2], at_b[1], at_b[0]); at_b[3] = at_blarge; at_blen = 4; Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0); Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0); Two_Two_Diff( adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0, at_clarge, at_c[2], at_c[1], at_c[0]); at_c[3] = at_clarge; at_clen = 4; } } if (bdxtail == 0.0) { if (bdytail == 0.0) { bt_c[0] = 0.0; bt_clen = 1; bt_a[0] = 0.0; bt_alen = 1; } else { negate = -bdytail; Two_Product(negate, cdx, bt_clarge, bt_c[0]); bt_c[1] = bt_clarge; bt_clen = 2; Two_Product(bdytail, adx, bt_alarge, bt_a[0]); bt_a[1] = bt_alarge; bt_alen = 2; } } else { if (bdytail == 0.0) { Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]); bt_c[1] = bt_clarge; bt_clen = 2; negate = -bdxtail; Two_Product(negate, ady, bt_alarge, bt_a[0]); bt_a[1] = bt_alarge; bt_alen = 2; } else { Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0); Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0); Two_Two_Diff( bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0, bt_clarge, bt_c[2], bt_c[1], bt_c[0]); bt_c[3] = bt_clarge; bt_clen = 4; Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0); Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0); Two_Two_Diff( bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0, bt_alarge, bt_a[2], bt_a[1], bt_a[0]); bt_a[3] = bt_alarge; bt_alen = 4; } } if (cdxtail == 0.0) { if (cdytail == 0.0) { ct_a[0] = 0.0; ct_alen = 1; ct_b[0] = 0.0; ct_blen = 1; } else { negate = -cdytail; Two_Product(negate, adx, ct_alarge, ct_a[0]); ct_a[1] = ct_alarge; ct_alen = 2; Two_Product(cdytail, bdx, ct_blarge, ct_b[0]); ct_b[1] = ct_blarge; ct_blen = 2; } } else { if (cdytail == 0.0) { Two_Product(cdxtail, ady, ct_alarge, ct_a[0]); ct_a[1] = ct_alarge; ct_alen = 2; negate = -cdxtail; Two_Product(negate, bdy, ct_blarge, ct_b[0]); ct_b[1] = ct_blarge; ct_blen = 2; } else { Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0); Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0); Two_Two_Diff( cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0, ct_alarge, ct_a[2], ct_a[1], ct_a[0]); ct_a[3] = ct_alarge; ct_alen = 4; Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0); Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0); Two_Two_Diff( cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0, ct_blarge, ct_b[2], ct_b[1], ct_b[0]); ct_b[3] = ct_blarge; ct_blen = 4; } } bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct); wlength = scale_expansion_zeroelim(bctlen, bct, adz, w); finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother); finswap = finnow; finnow = finother; finother = finswap; catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat); wlength = scale_expansion_zeroelim(catlen, cat, bdz, w); finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother); finswap = finnow; finnow = finother; finother = finswap; abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt); wlength = scale_expansion_zeroelim(abtlen, abt, cdz, w); finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother); finswap = finnow; finnow = finother; finother = finswap; if (adztail != 0.0) { vlength = scale_expansion_zeroelim(4, bc, adztail, v); finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdztail != 0.0) { vlength = scale_expansion_zeroelim(4, ca, bdztail, v); finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdztail != 0.0) { vlength = scale_expansion_zeroelim(4, ab, cdztail, v); finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, finother); finswap = finnow; finnow = finother; finother = finswap; } if (adxtail != 0.0) { if (bdytail != 0.0) { Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0); Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdz, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; if (cdztail != 0.0) { Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdztail, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; } } if (cdytail != 0.0) { negate = -adxtail; Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0); Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdz, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; if (bdztail != 0.0) { Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdztail, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; } } } if (bdxtail != 0.0) { if (cdytail != 0.0) { Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0); Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adz, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; if (adztail != 0.0) { Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adztail, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; } } if (adytail != 0.0) { negate = -bdxtail; Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0); Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdz, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; if (cdztail != 0.0) { Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdztail, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; } } } if (cdxtail != 0.0) { if (adytail != 0.0) { Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0); Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdz, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; if (bdztail != 0.0) { Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdztail, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; } } if (bdytail != 0.0) { negate = -cdxtail; Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0); Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adz, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; if (adztail != 0.0) { Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adztail, u3, u[2], u[1], u[0]); u[3] = u3; finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, finother); finswap = finnow; finnow = finother; finother = finswap; } } } if (adztail != 0.0) { wlength = scale_expansion_zeroelim(bctlen, bct, adztail, w); finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdztail != 0.0) { wlength = scale_expansion_zeroelim(catlen, cat, bdztail, w); finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdztail != 0.0) { wlength = scale_expansion_zeroelim(abtlen, abt, cdztail, w); finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, finother); finswap = finnow; finnow = finother; finother = finswap; } return finnow[finlength - 1]; } double orient3d(const double *pa, const double *pb, const double *pc, const double *pd) { double adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz; double bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; double det; double permanent, errbound; adx = pa[0] - pd[0]; bdx = pb[0] - pd[0]; cdx = pc[0] - pd[0]; ady = pa[1] - pd[1]; bdy = pb[1] - pd[1]; cdy = pc[1] - pd[1]; adz = pa[2] - pd[2]; bdz = pb[2] - pd[2]; cdz = pc[2] - pd[2]; bdxcdy = bdx * cdy; cdxbdy = cdx * bdy; cdxady = cdx * ady; adxcdy = adx * cdy; adxbdy = adx * bdy; bdxady = bdx * ady; det = adz * (bdxcdy - cdxbdy) + bdz * (cdxady - adxcdy) + cdz * (adxbdy - bdxady); permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adz) + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdz) + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdz); errbound = o3derrboundA * permanent; if ((det > errbound) || (-det > errbound)) { return det; } return orient3dadapt(pa, pb, pc, pd, permanent); } /** * incirclefast() Approximate 2D incircle test. Non-robust. * incircle() * * Return a positive value if the point pd lies inside the * circle passing through pa, pb, and pc; a negative value if * it lies outside; and zero if the four points are co-circular. * The points pa, pb, and pc must be in counterclockwise * order, or the sign of the result will be reversed. * * The second uses exact arithmetic to ensure a correct answer. The * result returned is the determinant of a matrix. In incircle() only, * this determinant is computed adaptively, in the sense that exact * arithmetic is used only to the degree it is needed to ensure that the * returned value has the correct sign. Hence, incircle() is usually quite * fast, but will run more slowly when the input points are co-circular or * nearly so. */ double incirclefast(const double *pa, const double *pb, const double *pc, const double *pd) { double adx, ady, bdx, bdy, cdx, cdy; double abdet, bcdet, cadet; double alift, blift, clift; adx = pa[0] - pd[0]; ady = pa[1] - pd[1]; bdx = pb[0] - pd[0]; bdy = pb[1] - pd[1]; cdx = pc[0] - pd[0]; cdy = pc[1] - pd[1]; abdet = adx * bdy - bdx * ady; bcdet = bdx * cdy - cdx * bdy; cadet = cdx * ady - adx * cdy; alift = adx * adx + ady * ady; blift = bdx * bdx + bdy * bdy; clift = cdx * cdx + cdy * cdy; return alift * bcdet + blift * cadet + clift * abdet; } /** * \note since this code comes from an external source, prefer not to break it * up to fix this clang-tidy warning. */ /* NOLINTNEXTLINE: readability-function-size */ static double incircleadapt( const double *pa, const double *pb, const double *pc, const double *pd, double permanent) { INEXACT double adx, bdx, cdx, ady, bdy, cdy; double det, errbound; INEXACT double bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; double bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; double bc[4], ca[4], ab[4]; INEXACT double bc3, ca3, ab3; double axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32]; int axbclen, axxbclen, aybclen, ayybclen, alen; double bxca[8], bxxca[16], byca[8], byyca[16], bdet[32]; int bxcalen, bxxcalen, bycalen, byycalen, blen; double cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32]; int cxablen, cxxablen, cyablen, cyyablen, clen; double abdet[64]; int ablen; double fin1[1152], fin2[1152]; double *finnow, *finother, *finswap; int finlength; double adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail; INEXACT double adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1; double adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0; double aa[4], bb[4], cc[4]; INEXACT double aa3, bb3, cc3; INEXACT double ti1, tj1; double ti0, tj0; double u[4], v[4]; INEXACT double u3, v3; double temp8[8], temp16a[16], temp16b[16], temp16c[16]; double temp32a[32], temp32b[32], temp48[48], temp64[64]; int temp8len, temp16alen, temp16blen, temp16clen; int temp32alen, temp32blen, temp48len, temp64len; double axtbb[8], axtcc[8], aytbb[8], aytcc[8]; int axtbblen, axtcclen, aytbblen, aytcclen; double bxtaa[8], bxtcc[8], bytaa[8], bytcc[8]; int bxtaalen, bxtcclen, bytaalen, bytcclen; double cxtaa[8], cxtbb[8], cytaa[8], cytbb[8]; int cxtaalen, cxtbblen, cytaalen, cytbblen; double axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8]; int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen; double axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16]; int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen; double axtbctt[8], aytbctt[8], bxtcatt[8]; double bytcatt[8], cxtabtt[8], cytabtt[8]; int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen; double abt[8], bct[8], cat[8]; int abtlen, bctlen, catlen; double abtt[4], bctt[4], catt[4]; int abttlen, bcttlen, cattlen; INEXACT double abtt3, bctt3, catt3; double negate; INEXACT double bvirt; double avirt, bround, around; INEXACT double c; INEXACT double abig; double ahi, alo, bhi, blo; double err1, err2, err3; INEXACT double _i, _j; double _0; adx = double(pa[0] - pd[0]); bdx = double(pb[0] - pd[0]); cdx = double(pc[0] - pd[0]); ady = double(pa[1] - pd[1]); bdy = double(pb[1] - pd[1]); cdy = double(pc[1] - pd[1]); Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); bc[3] = bc3; axbclen = scale_expansion_zeroelim(4, bc, adx, axbc); axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc); aybclen = scale_expansion_zeroelim(4, bc, ady, aybc); ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc); alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet); Two_Product(cdx, ady, cdxady1, cdxady0); Two_Product(adx, cdy, adxcdy1, adxcdy0); Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); ca[3] = ca3; bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca); bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca); bycalen = scale_expansion_zeroelim(4, ca, bdy, byca); byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca); blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet); Two_Product(adx, bdy, adxbdy1, adxbdy0); Two_Product(bdx, ady, bdxady1, bdxady0); Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); ab[3] = ab3; cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab); cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab); cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab); cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab); clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet); ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); det = estimate(finlength, fin1); errbound = iccerrboundB * permanent; if ((det >= errbound) || (-det >= errbound)) { return det; } Two_Diff_Tail(pa[0], pd[0], adx, adxtail); Two_Diff_Tail(pa[1], pd[1], ady, adytail); Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) { return det; } errbound = iccerrboundC * permanent + resulterrbound * Absolute(det); det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx)); if ((det >= errbound) || (-det >= errbound)) { return det; } finnow = fin1; finother = fin2; if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) { Square(adx, adxadx1, adxadx0); Square(ady, adyady1, adyady0); Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]); aa[3] = aa3; } if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) { Square(bdx, bdxbdx1, bdxbdx0); Square(bdy, bdybdy1, bdybdy0); Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]); bb[3] = bb3; } if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) { Square(cdx, cdxcdx1, cdxcdx0); Square(cdy, cdycdy1, cdycdy0); Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]); cc[3] = cc3; } if (adxtail != 0.0) { axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc); temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, temp16a); axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc); temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b); axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb); temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c); temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (adytail != 0.0) { aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc); temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, temp16a); aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb); temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b); aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc); temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c); temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdxtail != 0.0) { bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca); temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, temp16a); bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa); temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b); bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc); temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c); temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdytail != 0.0) { bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca); temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, temp16a); bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc); temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b); bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa); temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c); temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdxtail != 0.0) { cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab); temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, temp16a); cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb); temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b); cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa); temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c); temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdytail != 0.0) { cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab); temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, temp16a); cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa); temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b); cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb); temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c); temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; } if ((adxtail != 0.0) || (adytail != 0.0)) { if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0)) { Two_Product(bdxtail, cdy, ti1, ti0); Two_Product(bdx, cdytail, tj1, tj0); Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); u[3] = u3; negate = -bdy; Two_Product(cdxtail, negate, ti1, ti0); negate = -bdytail; Two_Product(cdx, negate, tj1, tj0); Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); v[3] = v3; bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct); Two_Product(bdxtail, cdytail, ti1, ti0); Two_Product(cdxtail, bdytail, tj1, tj0); Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]); bctt[3] = bctt3; bcttlen = 4; } else { bct[0] = 0.0; bctlen = 1; bctt[0] = 0.0; bcttlen = 1; } if (adxtail != 0.0) { temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a); axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct); temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; if (bdytail != 0.0) { temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8); temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdytail != 0.0) { temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8); temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, temp32a); axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt); temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, temp16a); temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, temp16b); temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } if (adytail != 0.0) { temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a); aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct); temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, temp32a); aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt); temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, temp16a); temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, temp16b); temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } } if ((bdxtail != 0.0) || (bdytail != 0.0)) { if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0)) { Two_Product(cdxtail, ady, ti1, ti0); Two_Product(cdx, adytail, tj1, tj0); Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); u[3] = u3; negate = -cdy; Two_Product(adxtail, negate, ti1, ti0); negate = -cdytail; Two_Product(adx, negate, tj1, tj0); Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); v[3] = v3; catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat); Two_Product(cdxtail, adytail, ti1, ti0); Two_Product(adxtail, cdytail, tj1, tj0); Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]); catt[3] = catt3; cattlen = 4; } else { cat[0] = 0.0; catlen = 1; catt[0] = 0.0; cattlen = 1; } if (bdxtail != 0.0) { temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a); bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat); temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; if (cdytail != 0.0) { temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8); temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } if (adytail != 0.0) { temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8); temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, temp32a); bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt); temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a); temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, temp16b); temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdytail != 0.0) { temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a); bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat); temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, temp32a); bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt); temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, temp16a); temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, temp16b); temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } } if ((cdxtail != 0.0) || (cdytail != 0.0)) { if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0)) { Two_Product(adxtail, bdy, ti1, ti0); Two_Product(adx, bdytail, tj1, tj0); Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); u[3] = u3; negate = -ady; Two_Product(bdxtail, negate, ti1, ti0); negate = -adytail; Two_Product(bdx, negate, tj1, tj0); Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); v[3] = v3; abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt); Two_Product(adxtail, bdytail, ti1, ti0); Two_Product(bdxtail, adytail, tj1, tj0); Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]); abtt[3] = abtt3; abttlen = 4; } else { abt[0] = 0.0; abtlen = 1; abtt[0] = 0.0; abttlen = 1; } if (cdxtail != 0.0) { temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a); cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt); temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; if (adytail != 0.0) { temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8); temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } if (bdytail != 0.0) { temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8); temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother); finswap = finnow; finnow = finother; finother = finswap; } temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, temp32a); cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt); temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a); temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, temp16b); temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } if (cdytail != 0.0) { temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a); cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt); temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, temp32a); temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother); finswap = finnow; finnow = finother; finother = finswap; temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, temp32a); cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt); temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, temp16a); temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, temp16b); temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b); temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64); finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother); finswap = finnow; finnow = finother; finother = finswap; } } return finnow[finlength - 1]; } double incircle(const double *pa, const double *pb, const double *pc, const double *pd) { double adx, bdx, cdx, ady, bdy, cdy; double bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; double alift, blift, clift; double det; double permanent, errbound; adx = pa[0] - pd[0]; bdx = pb[0] - pd[0]; cdx = pc[0] - pd[0]; ady = pa[1] - pd[1]; bdy = pb[1] - pd[1]; cdy = pc[1] - pd[1]; bdxcdy = bdx * cdy; cdxbdy = cdx * bdy; alift = adx * adx + ady * ady; cdxady = cdx * ady; adxcdy = adx * cdy; blift = bdx * bdx + bdy * bdy; adxbdy = adx * bdy; bdxady = bdx * ady; clift = cdx * cdx + cdy * cdy; det = alift * (bdxcdy - cdxbdy) + blift * (cdxady - adxcdy) + clift * (adxbdy - bdxady); permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift + (Absolute(cdxady) + Absolute(adxcdy)) * blift + (Absolute(adxbdy) + Absolute(bdxady)) * clift; errbound = iccerrboundA * permanent; if ((det > errbound) || (-det > errbound)) { return det; } return incircleadapt(pa, pb, pc, pd, permanent); } /** * inspherefast() Approximate 3D insphere test. Non-robust. * insphere() Adaptive exact 3D insphere test. Robust. * * Return a positive value if the point pe lies inside the * sphere passing through pa, pb, pc, and pd; a negative value * if it lies outside; and zero if the five points are * co-spherical. The points pa, pb, pc, and pd must be ordered * so that they have a positive orientation (as defined by * orient3d()), or the sign of the result will be reversed. * * The second uses exact arithmetic to ensure a correct answer. The * result returned is the determinant of a matrix. In insphere() only, * this determinant is computed adaptively, in the sense that exact * arithmetic is used only to the degree it is needed to ensure that the * returned value has the correct sign. Hence, insphere() is usually quite * fast, but will run more slowly when the input points are co-spherical or * nearly so. */ double inspherefast( const double *pa, const double *pb, const double *pc, const double *pd, const double *pe) { double aex, bex, cex, dex; double aey, bey, cey, dey; double aez, bez, cez, dez; double alift, blift, clift, dlift; double ab, bc, cd, da, ac, bd; double abc, bcd, cda, dab; aex = pa[0] - pe[0]; bex = pb[0] - pe[0]; cex = pc[0] - pe[0]; dex = pd[0] - pe[0]; aey = pa[1] - pe[1]; bey = pb[1] - pe[1]; cey = pc[1] - pe[1]; dey = pd[1] - pe[1]; aez = pa[2] - pe[2]; bez = pb[2] - pe[2]; cez = pc[2] - pe[2]; dez = pd[2] - pe[2]; ab = aex * bey - bex * aey; bc = bex * cey - cex * bey; cd = cex * dey - dex * cey; da = dex * aey - aex * dey; ac = aex * cey - cex * aey; bd = bex * dey - dex * bey; abc = aez * bc - bez * ac + cez * ab; bcd = bez * cd - cez * bd + dez * bc; cda = cez * da + dez * ac + aez * cd; dab = dez * ab + aez * bd + bez * da; alift = aex * aex + aey * aey + aez * aez; blift = bex * bex + bey * bey + bez * bez; clift = cex * cex + cey * cey + cez * cez; dlift = dex * dex + dey * dey + dez * dez; return (dlift * abc - clift * dab) + (blift * cda - alift * bcd); } static double insphereexact( const double *pa, const double *pb, const double *pc, const double *pd, const double *pe) { INEXACT double axby1, bxcy1, cxdy1, dxey1, exay1; INEXACT double bxay1, cxby1, dxcy1, exdy1, axey1; INEXACT double axcy1, bxdy1, cxey1, dxay1, exby1; INEXACT double cxay1, dxby1, excy1, axdy1, bxey1; double axby0, bxcy0, cxdy0, dxey0, exay0; double bxay0, cxby0, dxcy0, exdy0, axey0; double axcy0, bxdy0, cxey0, dxay0, exby0; double cxay0, dxby0, excy0, axdy0, bxey0; double ab[4], bc[4], cd[4], de[4], ea[4]; double ac[4], bd[4], ce[4], da[4], eb[4]; double temp8a[8], temp8b[8], temp16[16]; int temp8alen, temp8blen, temp16len; double abc[24], bcd[24], cde[24], dea[24], eab[24]; double abd[24], bce[24], cda[24], deb[24], eac[24]; int abclen, bcdlen, cdelen, dealen, eablen; int abdlen, bcelen, cdalen, deblen, eaclen; double temp48a[48], temp48b[48]; int temp48alen, temp48blen; double abcd[96], bcde[96], cdea[96], deab[96], eabc[96]; int abcdlen, bcdelen, cdealen, deablen, eabclen; double temp192[192]; double det384x[384], det384y[384], det384z[384]; int xlen, ylen, zlen; double detxy[768]; int xylen; double adet[1152], bdet[1152], cdet[1152], ddet[1152], edet[1152]; int alen, blen, clen, dlen, elen; double abdet[2304], cddet[2304], cdedet[3456]; int ablen, cdlen; double deter[5760]; int deterlen; int i; INEXACT double bvirt; double avirt, bround, around; INEXACT double c; INEXACT double abig; double ahi, alo, bhi, blo; double err1, err2, err3; INEXACT double _i, _j; double _0; Two_Product(pa[0], pb[1], axby1, axby0); Two_Product(pb[0], pa[1], bxay1, bxay0); Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]); Two_Product(pb[0], pc[1], bxcy1, bxcy0); Two_Product(pc[0], pb[1], cxby1, cxby0); Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]); Two_Product(pc[0], pd[1], cxdy1, cxdy0); Two_Product(pd[0], pc[1], dxcy1, dxcy0); Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]); Two_Product(pd[0], pe[1], dxey1, dxey0); Two_Product(pe[0], pd[1], exdy1, exdy0); Two_Two_Diff(dxey1, dxey0, exdy1, exdy0, de[3], de[2], de[1], de[0]); Two_Product(pe[0], pa[1], exay1, exay0); Two_Product(pa[0], pe[1], axey1, axey0); Two_Two_Diff(exay1, exay0, axey1, axey0, ea[3], ea[2], ea[1], ea[0]); Two_Product(pa[0], pc[1], axcy1, axcy0); Two_Product(pc[0], pa[1], cxay1, cxay0); Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]); Two_Product(pb[0], pd[1], bxdy1, bxdy0); Two_Product(pd[0], pb[1], dxby1, dxby0); Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]); Two_Product(pc[0], pe[1], cxey1, cxey0); Two_Product(pe[0], pc[1], excy1, excy0); Two_Two_Diff(cxey1, cxey0, excy1, excy0, ce[3], ce[2], ce[1], ce[0]); Two_Product(pd[0], pa[1], dxay1, dxay0); Two_Product(pa[0], pd[1], axdy1, axdy0); Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]); Two_Product(pe[0], pb[1], exby1, exby0); Two_Product(pb[0], pe[1], bxey1, bxey0); Two_Two_Diff(exby1, exby0, bxey1, bxey0, eb[3], eb[2], eb[1], eb[0]); temp8alen = scale_expansion_zeroelim(4, bc, pa[2], temp8a); temp8blen = scale_expansion_zeroelim(4, ac, -pb[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, ab, pc[2], temp8a); abclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, abc); temp8alen = scale_expansion_zeroelim(4, cd, pb[2], temp8a); temp8blen = scale_expansion_zeroelim(4, bd, -pc[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, bc, pd[2], temp8a); bcdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, bcd); temp8alen = scale_expansion_zeroelim(4, de, pc[2], temp8a); temp8blen = scale_expansion_zeroelim(4, ce, -pd[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, cd, pe[2], temp8a); cdelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, cde); temp8alen = scale_expansion_zeroelim(4, ea, pd[2], temp8a); temp8blen = scale_expansion_zeroelim(4, da, -pe[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, de, pa[2], temp8a); dealen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, dea); temp8alen = scale_expansion_zeroelim(4, ab, pe[2], temp8a); temp8blen = scale_expansion_zeroelim(4, eb, -pa[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, ea, pb[2], temp8a); eablen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, eab); temp8alen = scale_expansion_zeroelim(4, bd, pa[2], temp8a); temp8blen = scale_expansion_zeroelim(4, da, pb[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, ab, pd[2], temp8a); abdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, abd); temp8alen = scale_expansion_zeroelim(4, ce, pb[2], temp8a); temp8blen = scale_expansion_zeroelim(4, eb, pc[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, bc, pe[2], temp8a); bcelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, bce); temp8alen = scale_expansion_zeroelim(4, da, pc[2], temp8a); temp8blen = scale_expansion_zeroelim(4, ac, pd[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, cd, pa[2], temp8a); cdalen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, cda); temp8alen = scale_expansion_zeroelim(4, eb, pd[2], temp8a); temp8blen = scale_expansion_zeroelim(4, bd, pe[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, de, pb[2], temp8a); deblen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, deb); temp8alen = scale_expansion_zeroelim(4, ac, pe[2], temp8a); temp8blen = scale_expansion_zeroelim(4, ce, pa[2], temp8b); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp8alen = scale_expansion_zeroelim(4, ea, pc[2], temp8a); eaclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, eac); temp48alen = fast_expansion_sum_zeroelim(cdelen, cde, bcelen, bce, temp48a); temp48blen = fast_expansion_sum_zeroelim(deblen, deb, bcdlen, bcd, temp48b); for (i = 0; i < temp48blen; i++) { temp48b[i] = -temp48b[i]; } bcdelen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, bcde); xlen = scale_expansion_zeroelim(bcdelen, bcde, pa[0], temp192); xlen = scale_expansion_zeroelim(xlen, temp192, pa[0], det384x); ylen = scale_expansion_zeroelim(bcdelen, bcde, pa[1], temp192); ylen = scale_expansion_zeroelim(ylen, temp192, pa[1], det384y); zlen = scale_expansion_zeroelim(bcdelen, bcde, pa[2], temp192); zlen = scale_expansion_zeroelim(zlen, temp192, pa[2], det384z); xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); alen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, adet); temp48alen = fast_expansion_sum_zeroelim(dealen, dea, cdalen, cda, temp48a); temp48blen = fast_expansion_sum_zeroelim(eaclen, eac, cdelen, cde, temp48b); for (i = 0; i < temp48blen; i++) { temp48b[i] = -temp48b[i]; } cdealen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, cdea); xlen = scale_expansion_zeroelim(cdealen, cdea, pb[0], temp192); xlen = scale_expansion_zeroelim(xlen, temp192, pb[0], det384x); ylen = scale_expansion_zeroelim(cdealen, cdea, pb[1], temp192); ylen = scale_expansion_zeroelim(ylen, temp192, pb[1], det384y); zlen = scale_expansion_zeroelim(cdealen, cdea, pb[2], temp192); zlen = scale_expansion_zeroelim(zlen, temp192, pb[2], det384z); xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); blen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, bdet); temp48alen = fast_expansion_sum_zeroelim(eablen, eab, deblen, deb, temp48a); temp48blen = fast_expansion_sum_zeroelim(abdlen, abd, dealen, dea, temp48b); for (i = 0; i < temp48blen; i++) { temp48b[i] = -temp48b[i]; } deablen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, deab); xlen = scale_expansion_zeroelim(deablen, deab, pc[0], temp192); xlen = scale_expansion_zeroelim(xlen, temp192, pc[0], det384x); ylen = scale_expansion_zeroelim(deablen, deab, pc[1], temp192); ylen = scale_expansion_zeroelim(ylen, temp192, pc[1], det384y); zlen = scale_expansion_zeroelim(deablen, deab, pc[2], temp192); zlen = scale_expansion_zeroelim(zlen, temp192, pc[2], det384z); xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); clen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, cdet); temp48alen = fast_expansion_sum_zeroelim(abclen, abc, eaclen, eac, temp48a); temp48blen = fast_expansion_sum_zeroelim(bcelen, bce, eablen, eab, temp48b); for (i = 0; i < temp48blen; i++) { temp48b[i] = -temp48b[i]; } eabclen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, eabc); xlen = scale_expansion_zeroelim(eabclen, eabc, pd[0], temp192); xlen = scale_expansion_zeroelim(xlen, temp192, pd[0], det384x); ylen = scale_expansion_zeroelim(eabclen, eabc, pd[1], temp192); ylen = scale_expansion_zeroelim(ylen, temp192, pd[1], det384y); zlen = scale_expansion_zeroelim(eabclen, eabc, pd[2], temp192); zlen = scale_expansion_zeroelim(zlen, temp192, pd[2], det384z); xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); dlen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, ddet); temp48alen = fast_expansion_sum_zeroelim(bcdlen, bcd, abdlen, abd, temp48a); temp48blen = fast_expansion_sum_zeroelim(cdalen, cda, abclen, abc, temp48b); for (i = 0; i < temp48blen; i++) { temp48b[i] = -temp48b[i]; } abcdlen = fast_expansion_sum_zeroelim(temp48alen, temp48a, temp48blen, temp48b, abcd); xlen = scale_expansion_zeroelim(abcdlen, abcd, pe[0], temp192); xlen = scale_expansion_zeroelim(xlen, temp192, pe[0], det384x); ylen = scale_expansion_zeroelim(abcdlen, abcd, pe[1], temp192); ylen = scale_expansion_zeroelim(ylen, temp192, pe[1], det384y); zlen = scale_expansion_zeroelim(abcdlen, abcd, pe[2], temp192); zlen = scale_expansion_zeroelim(zlen, temp192, pe[2], det384z); xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); elen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, edet); ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); cdelen = fast_expansion_sum_zeroelim(cdlen, cddet, elen, edet, cdedet); deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdelen, cdedet, deter); return deter[deterlen - 1]; } static double insphereadapt(const double *pa, const double *pb, const double *pc, const double *pd, const double *pe, double permanent) { INEXACT double aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez; double det, errbound; INEXACT double aexbey1, bexaey1, bexcey1, cexbey1; INEXACT double cexdey1, dexcey1, dexaey1, aexdey1; INEXACT double aexcey1, cexaey1, bexdey1, dexbey1; double aexbey0, bexaey0, bexcey0, cexbey0; double cexdey0, dexcey0, dexaey0, aexdey0; double aexcey0, cexaey0, bexdey0, dexbey0; double ab[4], bc[4], cd[4], da[4], ac[4], bd[4]; INEXACT double ab3, bc3, cd3, da3, ac3, bd3; double abeps, bceps, cdeps, daeps, aceps, bdeps; double temp8a[8], temp8b[8], temp8c[8], temp16[16], temp24[24], temp48[48]; int temp8alen, temp8blen, temp8clen, temp16len, temp24len, temp48len; double xdet[96], ydet[96], zdet[96], xydet[192]; int xlen, ylen, zlen, xylen; double adet[288], bdet[288], cdet[288], ddet[288]; int alen, blen, clen, dlen; double abdet[576], cddet[576]; int ablen, cdlen; double fin1[1152]; int finlength; double aextail, bextail, cextail, dextail; double aeytail, beytail, ceytail, deytail; double aeztail, beztail, ceztail, deztail; INEXACT double bvirt; double avirt, bround, around; INEXACT double c; INEXACT double abig; double ahi, alo, bhi, blo; double err1, err2, err3; INEXACT double _i, _j; double _0; aex = double(pa[0] - pe[0]); bex = double(pb[0] - pe[0]); cex = double(pc[0] - pe[0]); dex = double(pd[0] - pe[0]); aey = double(pa[1] - pe[1]); bey = double(pb[1] - pe[1]); cey = double(pc[1] - pe[1]); dey = double(pd[1] - pe[1]); aez = double(pa[2] - pe[2]); bez = double(pb[2] - pe[2]); cez = double(pc[2] - pe[2]); dez = double(pd[2] - pe[2]); Two_Product(aex, bey, aexbey1, aexbey0); Two_Product(bex, aey, bexaey1, bexaey0); Two_Two_Diff(aexbey1, aexbey0, bexaey1, bexaey0, ab3, ab[2], ab[1], ab[0]); ab[3] = ab3; Two_Product(bex, cey, bexcey1, bexcey0); Two_Product(cex, bey, cexbey1, cexbey0); Two_Two_Diff(bexcey1, bexcey0, cexbey1, cexbey0, bc3, bc[2], bc[1], bc[0]); bc[3] = bc3; Two_Product(cex, dey, cexdey1, cexdey0); Two_Product(dex, cey, dexcey1, dexcey0); Two_Two_Diff(cexdey1, cexdey0, dexcey1, dexcey0, cd3, cd[2], cd[1], cd[0]); cd[3] = cd3; Two_Product(dex, aey, dexaey1, dexaey0); Two_Product(aex, dey, aexdey1, aexdey0); Two_Two_Diff(dexaey1, dexaey0, aexdey1, aexdey0, da3, da[2], da[1], da[0]); da[3] = da3; Two_Product(aex, cey, aexcey1, aexcey0); Two_Product(cex, aey, cexaey1, cexaey0); Two_Two_Diff(aexcey1, aexcey0, cexaey1, cexaey0, ac3, ac[2], ac[1], ac[0]); ac[3] = ac3; Two_Product(bex, dey, bexdey1, bexdey0); Two_Product(dex, bey, dexbey1, dexbey0); Two_Two_Diff(bexdey1, bexdey0, dexbey1, dexbey0, bd3, bd[2], bd[1], bd[0]); bd[3] = bd3; temp8alen = scale_expansion_zeroelim(4, cd, bez, temp8a); temp8blen = scale_expansion_zeroelim(4, bd, -cez, temp8b); temp8clen = scale_expansion_zeroelim(4, bc, dez, temp8c); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24); temp48len = scale_expansion_zeroelim(temp24len, temp24, aex, temp48); xlen = scale_expansion_zeroelim(temp48len, temp48, -aex, xdet); temp48len = scale_expansion_zeroelim(temp24len, temp24, aey, temp48); ylen = scale_expansion_zeroelim(temp48len, temp48, -aey, ydet); temp48len = scale_expansion_zeroelim(temp24len, temp24, aez, temp48); zlen = scale_expansion_zeroelim(temp48len, temp48, -aez, zdet); xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); alen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, adet); temp8alen = scale_expansion_zeroelim(4, da, cez, temp8a); temp8blen = scale_expansion_zeroelim(4, ac, dez, temp8b); temp8clen = scale_expansion_zeroelim(4, cd, aez, temp8c); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24); temp48len = scale_expansion_zeroelim(temp24len, temp24, bex, temp48); xlen = scale_expansion_zeroelim(temp48len, temp48, bex, xdet); temp48len = scale_expansion_zeroelim(temp24len, temp24, bey, temp48); ylen = scale_expansion_zeroelim(temp48len, temp48, bey, ydet); temp48len = scale_expansion_zeroelim(temp24len, temp24, bez, temp48); zlen = scale_expansion_zeroelim(temp48len, temp48, bez, zdet); xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); blen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, bdet); temp8alen = scale_expansion_zeroelim(4, ab, dez, temp8a); temp8blen = scale_expansion_zeroelim(4, bd, aez, temp8b); temp8clen = scale_expansion_zeroelim(4, da, bez, temp8c); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24); temp48len = scale_expansion_zeroelim(temp24len, temp24, cex, temp48); xlen = scale_expansion_zeroelim(temp48len, temp48, -cex, xdet); temp48len = scale_expansion_zeroelim(temp24len, temp24, cey, temp48); ylen = scale_expansion_zeroelim(temp48len, temp48, -cey, ydet); temp48len = scale_expansion_zeroelim(temp24len, temp24, cez, temp48); zlen = scale_expansion_zeroelim(temp48len, temp48, -cez, zdet); xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); clen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, cdet); temp8alen = scale_expansion_zeroelim(4, bc, aez, temp8a); temp8blen = scale_expansion_zeroelim(4, ac, -bez, temp8b); temp8clen = scale_expansion_zeroelim(4, ab, cez, temp8c); temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, temp16); temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, temp16len, temp16, temp24); temp48len = scale_expansion_zeroelim(temp24len, temp24, dex, temp48); xlen = scale_expansion_zeroelim(temp48len, temp48, dex, xdet); temp48len = scale_expansion_zeroelim(temp24len, temp24, dey, temp48); ylen = scale_expansion_zeroelim(temp48len, temp48, dey, ydet); temp48len = scale_expansion_zeroelim(temp24len, temp24, dez, temp48); zlen = scale_expansion_zeroelim(temp48len, temp48, dez, zdet); xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); dlen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, ddet); ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); finlength = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, fin1); det = estimate(finlength, fin1); errbound = isperrboundB * permanent; if ((det >= errbound) || (-det >= errbound)) { return det; } Two_Diff_Tail(pa[0], pe[0], aex, aextail); Two_Diff_Tail(pa[1], pe[1], aey, aeytail); Two_Diff_Tail(pa[2], pe[2], aez, aeztail); Two_Diff_Tail(pb[0], pe[0], bex, bextail); Two_Diff_Tail(pb[1], pe[1], bey, beytail); Two_Diff_Tail(pb[2], pe[2], bez, beztail); Two_Diff_Tail(pc[0], pe[0], cex, cextail); Two_Diff_Tail(pc[1], pe[1], cey, ceytail); Two_Diff_Tail(pc[2], pe[2], cez, ceztail); Two_Diff_Tail(pd[0], pe[0], dex, dextail); Two_Diff_Tail(pd[1], pe[1], dey, deytail); Two_Diff_Tail(pd[2], pe[2], dez, deztail); if ((aextail == 0.0) && (aeytail == 0.0) && (aeztail == 0.0) && (bextail == 0.0) && (beytail == 0.0) && (beztail == 0.0) && (cextail == 0.0) && (ceytail == 0.0) && (ceztail == 0.0) && (dextail == 0.0) && (deytail == 0.0) && (deztail == 0.0)) { return det; } errbound = isperrboundC * permanent + resulterrbound * Absolute(det); abeps = (aex * beytail + bey * aextail) - (aey * bextail + bex * aeytail); bceps = (bex * ceytail + cey * bextail) - (bey * cextail + cex * beytail); cdeps = (cex * deytail + dey * cextail) - (cey * dextail + dex * ceytail); daeps = (dex * aeytail + aey * dextail) - (dey * aextail + aex * deytail); aceps = (aex * ceytail + cey * aextail) - (aey * cextail + cex * aeytail); bdeps = (bex * deytail + dey * bextail) - (bey * dextail + dex * beytail); det += (((bex * bex + bey * bey + bez * bez) * ((cez * daeps + dez * aceps + aez * cdeps) + (ceztail * da3 + deztail * ac3 + aeztail * cd3)) + (dex * dex + dey * dey + dez * dez) * ((aez * bceps - bez * aceps + cez * abeps) + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) - ((aex * aex + aey * aey + aez * aez) * ((bez * cdeps - cez * bdeps + dez * bceps) + (beztail * cd3 - ceztail * bd3 + deztail * bc3)) + (cex * cex + cey * cey + cez * cez) * ((dez * abeps + aez * bdeps + bez * daeps) + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) + 2.0 * (((bex * bextail + bey * beytail + bez * beztail) * (cez * da3 + dez * ac3 + aez * cd3) + (dex * dextail + dey * deytail + dez * deztail) * (aez * bc3 - bez * ac3 + cez * ab3)) - ((aex * aextail + aey * aeytail + aez * aeztail) * (bez * cd3 - cez * bd3 + dez * bc3) + (cex * cextail + cey * ceytail + cez * ceztail) * (dez * ab3 + aez * bd3 + bez * da3))); if ((det >= errbound) || (-det >= errbound)) { return det; } return insphereexact(pa, pb, pc, pd, pe); } double insphere( const double *pa, const double *pb, const double *pc, const double *pd, const double *pe) { double aex, bex, cex, dex; double aey, bey, cey, dey; double aez, bez, cez, dez; double aexbey, bexaey, bexcey, cexbey, cexdey, dexcey, dexaey, aexdey; double aexcey, cexaey, bexdey, dexbey; double alift, blift, clift, dlift; double ab, bc, cd, da, ac, bd; double abc, bcd, cda, dab; double aezplus, bezplus, cezplus, dezplus; double aexbeyplus, bexaeyplus, bexceyplus, cexbeyplus; double cexdeyplus, dexceyplus, dexaeyplus, aexdeyplus; double aexceyplus, cexaeyplus, bexdeyplus, dexbeyplus; double det; double permanent, errbound; aex = pa[0] - pe[0]; bex = pb[0] - pe[0]; cex = pc[0] - pe[0]; dex = pd[0] - pe[0]; aey = pa[1] - pe[1]; bey = pb[1] - pe[1]; cey = pc[1] - pe[1]; dey = pd[1] - pe[1]; aez = pa[2] - pe[2]; bez = pb[2] - pe[2]; cez = pc[2] - pe[2]; dez = pd[2] - pe[2]; aexbey = aex * bey; bexaey = bex * aey; ab = aexbey - bexaey; bexcey = bex * cey; cexbey = cex * bey; bc = bexcey - cexbey; cexdey = cex * dey; dexcey = dex * cey; cd = cexdey - dexcey; dexaey = dex * aey; aexdey = aex * dey; da = dexaey - aexdey; aexcey = aex * cey; cexaey = cex * aey; ac = aexcey - cexaey; bexdey = bex * dey; dexbey = dex * bey; bd = bexdey - dexbey; abc = aez * bc - bez * ac + cez * ab; bcd = bez * cd - cez * bd + dez * bc; cda = cez * da + dez * ac + aez * cd; dab = dez * ab + aez * bd + bez * da; alift = aex * aex + aey * aey + aez * aez; blift = bex * bex + bey * bey + bez * bez; clift = cex * cex + cey * cey + cez * cez; dlift = dex * dex + dey * dey + dez * dez; det = (dlift * abc - clift * dab) + (blift * cda - alift * bcd); aezplus = Absolute(aez); bezplus = Absolute(bez); cezplus = Absolute(cez); dezplus = Absolute(dez); aexbeyplus = Absolute(aexbey); bexaeyplus = Absolute(bexaey); bexceyplus = Absolute(bexcey); cexbeyplus = Absolute(cexbey); cexdeyplus = Absolute(cexdey); dexceyplus = Absolute(dexcey); dexaeyplus = Absolute(dexaey); aexdeyplus = Absolute(aexdey); aexceyplus = Absolute(aexcey); cexaeyplus = Absolute(cexaey); bexdeyplus = Absolute(bexdey); dexbeyplus = Absolute(dexbey); permanent = ((cexdeyplus + dexceyplus) * bezplus + (dexbeyplus + bexdeyplus) * cezplus + (bexceyplus + cexbeyplus) * dezplus) * alift + ((dexaeyplus + aexdeyplus) * cezplus + (aexceyplus + cexaeyplus) * dezplus + (cexdeyplus + dexceyplus) * aezplus) * blift + ((aexbeyplus + bexaeyplus) * dezplus + (bexdeyplus + dexbeyplus) * aezplus + (dexaeyplus + aexdeyplus) * bezplus) * clift + ((bexceyplus + cexbeyplus) * aezplus + (cexaeyplus + aexceyplus) * bezplus + (aexbeyplus + bexaeyplus) * cezplus) * dlift; errbound = isperrboundA * permanent; if ((det > errbound) || (-det > errbound)) { return det; } return insphereadapt(pa, pb, pc, pd, pe, permanent); } } /* namespace robust_pred */ static int sgn(double x) { return (x > 0) ? 1 : ((x < 0) ? -1 : 0); } int orient2d(const double2 &a, const double2 &b, const double2 &c) { return sgn(blender::robust_pred::orient2d(a, b, c)); } int orient2d_fast(const double2 &a, const double2 &b, const double2 &c) { return sgn(blender::robust_pred::orient2dfast(a, b, c)); } int incircle(const double2 &a, const double2 &b, const double2 &c, const double2 &d) { return sgn(robust_pred::incircle(a, b, c, d)); } int incircle_fast(const double2 &a, const double2 &b, const double2 &c, const double2 &d) { return sgn(robust_pred::incirclefast(a, b, c, d)); } int orient3d(const double3 &a, const double3 &b, const double3 &c, const double3 &d) { return sgn(robust_pred::orient3d(a, b, c, d)); } int orient3d_fast(const double3 &a, const double3 &b, const double3 &c, const double3 &d) { return sgn(robust_pred::orient3dfast(a, b, c, d)); } int insphere( const double3 &a, const double3 &b, const double3 &c, const double3 &d, const double3 &e) { return sgn(robust_pred::insphere(a, b, c, d, e)); } int insphere_fast( const double3 &a, const double3 &b, const double3 &c, const double3 &d, const double3 &e) { return sgn(robust_pred::inspherefast(a, b, c, d, e)); } } // namespace blender