/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2001-2002 NaN Holding BV. All rights reserved. */ /** \file * \ingroup bli */ #include "MEM_guardedalloc.h" #include "BLI_math.h" #include "BLI_math_bits.h" #include "BLI_utildefines.h" #include "BLI_strict_flags.h" /********************************** Polygons *********************************/ void cross_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3]) { float n1[3], n2[3]; n1[0] = v1[0] - v2[0]; n2[0] = v2[0] - v3[0]; n1[1] = v1[1] - v2[1]; n2[1] = v2[1] - v3[1]; n1[2] = v1[2] - v2[2]; n2[2] = v2[2] - v3[2]; n[0] = n1[1] * n2[2] - n1[2] * n2[1]; n[1] = n1[2] * n2[0] - n1[0] * n2[2]; n[2] = n1[0] * n2[1] - n1[1] * n2[0]; } float normal_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3]) { float n1[3], n2[3]; n1[0] = v1[0] - v2[0]; n2[0] = v2[0] - v3[0]; n1[1] = v1[1] - v2[1]; n2[1] = v2[1] - v3[1]; n1[2] = v1[2] - v2[2]; n2[2] = v2[2] - v3[2]; n[0] = n1[1] * n2[2] - n1[2] * n2[1]; n[1] = n1[2] * n2[0] - n1[0] * n2[2]; n[2] = n1[0] * n2[1] - n1[1] * n2[0]; return normalize_v3(n); } float normal_quad_v3( float n[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { /* real cross! */ float n1[3], n2[3]; n1[0] = v1[0] - v3[0]; n1[1] = v1[1] - v3[1]; n1[2] = v1[2] - v3[2]; n2[0] = v2[0] - v4[0]; n2[1] = v2[1] - v4[1]; n2[2] = v2[2] - v4[2]; n[0] = n1[1] * n2[2] - n1[2] * n2[1]; n[1] = n1[2] * n2[0] - n1[0] * n2[2]; n[2] = n1[0] * n2[1] - n1[1] * n2[0]; return normalize_v3(n); } float normal_poly_v3(float n[3], const float verts[][3], unsigned int nr) { cross_poly_v3(n, verts, nr); return normalize_v3(n); } float area_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { const float verts[4][3] = {{UNPACK3(v1)}, {UNPACK3(v2)}, {UNPACK3(v3)}, {UNPACK3(v4)}}; return area_poly_v3(verts, 4); } float area_squared_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { const float verts[4][3] = {{UNPACK3(v1)}, {UNPACK3(v2)}, {UNPACK3(v3)}, {UNPACK3(v4)}}; return area_squared_poly_v3(verts, 4); } float area_tri_v3(const float v1[3], const float v2[3], const float v3[3]) { float n[3]; cross_tri_v3(n, v1, v2, v3); return len_v3(n) * 0.5f; } float area_squared_tri_v3(const float v1[3], const float v2[3], const float v3[3]) { float n[3]; cross_tri_v3(n, v1, v2, v3); mul_v3_fl(n, 0.5f); return len_squared_v3(n); } float area_tri_signed_v3(const float v1[3], const float v2[3], const float v3[3], const float normal[3]) { float area, n[3]; cross_tri_v3(n, v1, v2, v3); area = len_v3(n) * 0.5f; /* negate area for flipped triangles */ if (dot_v3v3(n, normal) < 0.0f) { area = -area; } return area; } float area_poly_v3(const float verts[][3], unsigned int nr) { float n[3]; cross_poly_v3(n, verts, nr); return len_v3(n) * 0.5f; } float area_squared_poly_v3(const float verts[][3], unsigned int nr) { float n[3]; cross_poly_v3(n, verts, nr); mul_v3_fl(n, 0.5f); return len_squared_v3(n); } float cross_poly_v2(const float verts[][2], unsigned int nr) { unsigned int a; float cross; const float *co_curr, *co_prev; /* The Trapezium Area Rule */ co_prev = verts[nr - 1]; co_curr = verts[0]; cross = 0.0f; for (a = 0; a < nr; a++) { cross += (co_curr[0] - co_prev[0]) * (co_curr[1] + co_prev[1]); co_prev = co_curr; co_curr += 2; } return cross; } void cross_poly_v3(float n[3], const float verts[][3], unsigned int nr) { const float *v_prev = verts[nr - 1]; const float *v_curr = verts[0]; unsigned int i; zero_v3(n); /* Newell's Method */ for (i = 0; i < nr; v_prev = v_curr, v_curr = verts[++i]) { add_newell_cross_v3_v3v3(n, v_prev, v_curr); } } float area_poly_v2(const float verts[][2], unsigned int nr) { return fabsf(0.5f * cross_poly_v2(verts, nr)); } float area_poly_signed_v2(const float verts[][2], unsigned int nr) { return (0.5f * cross_poly_v2(verts, nr)); } float area_squared_poly_v2(const float verts[][2], unsigned int nr) { float area = area_poly_signed_v2(verts, nr); return area * area; } float cotangent_tri_weight_v3(const float v1[3], const float v2[3], const float v3[3]) { float a[3], b[3], c[3], c_len; sub_v3_v3v3(a, v2, v1); sub_v3_v3v3(b, v3, v1); cross_v3_v3v3(c, a, b); c_len = len_v3(c); if (c_len > FLT_EPSILON) { return dot_v3v3(a, b) / c_len; } return 0.0f; } /********************************* Planes **********************************/ void plane_from_point_normal_v3(float r_plane[4], const float plane_co[3], const float plane_no[3]) { copy_v3_v3(r_plane, plane_no); r_plane[3] = -dot_v3v3(r_plane, plane_co); } void plane_to_point_vector_v3(const float plane[4], float r_plane_co[3], float r_plane_no[3]) { mul_v3_v3fl(r_plane_co, plane, (-plane[3] / len_squared_v3(plane))); copy_v3_v3(r_plane_no, plane); } void plane_to_point_vector_v3_normalized(const float plane[4], float r_plane_co[3], float r_plane_no[3]) { const float length = normalize_v3_v3(r_plane_no, plane); mul_v3_v3fl(r_plane_co, r_plane_no, (-plane[3] / length)); } /********************************* Volume **********************************/ float volume_tetrahedron_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { float m[3][3]; sub_v3_v3v3(m[0], v1, v2); sub_v3_v3v3(m[1], v2, v3); sub_v3_v3v3(m[2], v3, v4); return fabsf(determinant_m3_array(m)) / 6.0f; } float volume_tetrahedron_signed_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { float m[3][3]; sub_v3_v3v3(m[0], v1, v2); sub_v3_v3v3(m[1], v2, v3); sub_v3_v3v3(m[2], v3, v4); return determinant_m3_array(m) / 6.0f; } float volume_tri_tetrahedron_signed_v3_6x(const float v1[3], const float v2[3], const float v3[3]) { float v_cross[3]; cross_v3_v3v3(v_cross, v1, v2); float tetra_volume = dot_v3v3(v_cross, v3); return tetra_volume; } float volume_tri_tetrahedron_signed_v3(const float v1[3], const float v2[3], const float v3[3]) { return volume_tri_tetrahedron_signed_v3_6x(v1, v2, v3) / 6.0f; } /********************************* Distance **********************************/ float dist_squared_to_line_v2(const float p[2], const float l1[2], const float l2[2]) { float closest[2]; closest_to_line_v2(closest, p, l1, l2); return len_squared_v2v2(closest, p); } float dist_to_line_v2(const float p[2], const float l1[2], const float l2[2]) { return sqrtf(dist_squared_to_line_v2(p, l1, l2)); } float dist_squared_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2]) { float closest[2]; closest_to_line_segment_v2(closest, p, l1, l2); return len_squared_v2v2(closest, p); } float dist_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2]) { return sqrtf(dist_squared_to_line_segment_v2(p, l1, l2)); } float closest_to_line_segment_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2]) { float lambda, cp[2]; lambda = closest_to_line_v2(cp, p, l1, l2); /* flip checks for !finite case (when segment is a point) */ if (lambda <= 0.0f) { copy_v2_v2(r_close, l1); return 0.0f; } if (lambda >= 1.0f) { copy_v2_v2(r_close, l2); return 1.0f; } copy_v2_v2(r_close, cp); return lambda; } float closest_to_line_segment_v3(float r_close[3], const float p[3], const float l1[3], const float l2[3]) { float lambda, cp[3]; lambda = closest_to_line_v3(cp, p, l1, l2); /* flip checks for !finite case (when segment is a point) */ if (lambda <= 0.0f) { copy_v3_v3(r_close, l1); return 0.0f; } if (lambda >= 1.0f) { copy_v3_v3(r_close, l2); return 1.0f; } copy_v3_v3(r_close, cp); return lambda; } void closest_to_plane_v3(float r_close[3], const float plane[4], const float pt[3]) { const float len_sq = len_squared_v3(plane); const float side = plane_point_side_v3(plane, pt); madd_v3_v3v3fl(r_close, pt, plane, -side / len_sq); } void closest_to_plane_normalized_v3(float r_close[3], const float plane[4], const float pt[3]) { const float side = plane_point_side_v3(plane, pt); BLI_ASSERT_UNIT_V3(plane); madd_v3_v3v3fl(r_close, pt, plane, -side); } void closest_to_plane3_v3(float r_close[3], const float plane[3], const float pt[3]) { const float len_sq = len_squared_v3(plane); const float side = dot_v3v3(plane, pt); madd_v3_v3v3fl(r_close, pt, plane, -side / len_sq); } void closest_to_plane3_normalized_v3(float r_close[3], const float plane[3], const float pt[3]) { const float side = dot_v3v3(plane, pt); BLI_ASSERT_UNIT_V3(plane); madd_v3_v3v3fl(r_close, pt, plane, -side); } float dist_signed_squared_to_plane_v3(const float pt[3], const float plane[4]) { const float len_sq = len_squared_v3(plane); const float side = plane_point_side_v3(plane, pt); const float fac = side / len_sq; return copysignf(len_sq * (fac * fac), side); } float dist_squared_to_plane_v3(const float pt[3], const float plane[4]) { const float len_sq = len_squared_v3(plane); const float side = plane_point_side_v3(plane, pt); const float fac = side / len_sq; /* only difference to code above - no 'copysignf' */ return len_sq * (fac * fac); } float dist_signed_squared_to_plane3_v3(const float pt[3], const float plane[3]) { const float len_sq = len_squared_v3(plane); const float side = dot_v3v3(plane, pt); /* only difference with 'plane[4]' version */ const float fac = side / len_sq; return copysignf(len_sq * (fac * fac), side); } float dist_squared_to_plane3_v3(const float pt[3], const float plane[3]) { const float len_sq = len_squared_v3(plane); const float side = dot_v3v3(plane, pt); /* only difference with 'plane[4]' version */ const float fac = side / len_sq; /* only difference to code above - no 'copysignf' */ return len_sq * (fac * fac); } float dist_signed_to_plane_v3(const float pt[3], const float plane[4]) { const float len_sq = len_squared_v3(plane); const float side = plane_point_side_v3(plane, pt); const float fac = side / len_sq; return sqrtf(len_sq) * fac; } float dist_to_plane_v3(const float pt[3], const float plane[4]) { return fabsf(dist_signed_to_plane_v3(pt, plane)); } float dist_signed_to_plane3_v3(const float pt[3], const float plane[3]) { const float len_sq = len_squared_v3(plane); const float side = dot_v3v3(plane, pt); /* only difference with 'plane[4]' version */ const float fac = side / len_sq; return sqrtf(len_sq) * fac; } float dist_to_plane3_v3(const float pt[3], const float plane[3]) { return fabsf(dist_signed_to_plane3_v3(pt, plane)); } float dist_squared_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3]) { float closest[3]; closest_to_line_segment_v3(closest, p, l1, l2); return len_squared_v3v3(closest, p); } float dist_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3]) { return sqrtf(dist_squared_to_line_segment_v3(p, l1, l2)); } float dist_squared_to_line_v3(const float p[3], const float l1[3], const float l2[3]) { float closest[3]; closest_to_line_v3(closest, p, l1, l2); return len_squared_v3v3(closest, p); } float dist_to_line_v3(const float p[3], const float l1[3], const float l2[3]) { return sqrtf(dist_squared_to_line_v3(p, l1, l2)); } float dist_signed_squared_to_corner_v3v3v3(const float p[3], const float v1[3], const float v2[3], const float v3[3], const float axis_ref[3]) { float dir_a[3], dir_b[3]; float plane_a[3], plane_b[3]; float dist_a, dist_b; float axis[3]; float s_p_v2[3]; bool flip = false; sub_v3_v3v3(dir_a, v1, v2); sub_v3_v3v3(dir_b, v3, v2); cross_v3_v3v3(axis, dir_a, dir_b); if ((len_squared_v3(axis) < FLT_EPSILON)) { copy_v3_v3(axis, axis_ref); } else if (dot_v3v3(axis, axis_ref) < 0.0f) { /* concave */ flip = true; negate_v3(axis); } cross_v3_v3v3(plane_a, dir_a, axis); cross_v3_v3v3(plane_b, axis, dir_b); #if 0 plane_from_point_normal_v3(plane_a, v2, plane_a); plane_from_point_normal_v3(plane_b, v2, plane_b); dist_a = dist_signed_squared_to_plane_v3(p, plane_a); dist_b = dist_signed_squared_to_plane_v3(p, plane_b); #else /* calculate without the planes 4th component to avoid float precision issues */ sub_v3_v3v3(s_p_v2, p, v2); dist_a = dist_signed_squared_to_plane3_v3(s_p_v2, plane_a); dist_b = dist_signed_squared_to_plane3_v3(s_p_v2, plane_b); #endif if (flip) { return min_ff(dist_a, dist_b); } return max_ff(dist_a, dist_b); } float dist_squared_to_ray_v3_normalized(const float ray_origin[3], const float ray_direction[3], const float co[3]) { float origin_to_co[3]; sub_v3_v3v3(origin_to_co, co, ray_origin); float origin_to_proj[3]; project_v3_v3v3_normalized(origin_to_proj, origin_to_co, ray_direction); float co_projected_on_ray[3]; add_v3_v3v3(co_projected_on_ray, ray_origin, origin_to_proj); return len_squared_v3v3(co, co_projected_on_ray); } float dist_squared_ray_to_seg_v3(const float ray_origin[3], const float ray_direction[3], const float v0[3], const float v1[3], float r_point[3], float *r_depth) { float lambda, depth; if (isect_ray_line_v3(ray_origin, ray_direction, v0, v1, &lambda)) { if (lambda <= 0.0f) { copy_v3_v3(r_point, v0); } else if (lambda >= 1.0f) { copy_v3_v3(r_point, v1); } else { interp_v3_v3v3(r_point, v0, v1, lambda); } } else { /* has no nearest point, only distance squared. */ /* Calculate the distance to the point v0 then */ copy_v3_v3(r_point, v0); } float dvec[3]; sub_v3_v3v3(dvec, r_point, ray_origin); depth = dot_v3v3(dvec, ray_direction); if (r_depth) { *r_depth = depth; } return len_squared_v3(dvec) - square_f(depth); } void aabb_get_near_far_from_plane(const float plane_no[3], const float bbmin[3], const float bbmax[3], float bb_near[3], float bb_afar[3]) { if (plane_no[0] < 0.0f) { bb_near[0] = bbmax[0]; bb_afar[0] = bbmin[0]; } else { bb_near[0] = bbmin[0]; bb_afar[0] = bbmax[0]; } if (plane_no[1] < 0.0f) { bb_near[1] = bbmax[1]; bb_afar[1] = bbmin[1]; } else { bb_near[1] = bbmin[1]; bb_afar[1] = bbmax[1]; } if (plane_no[2] < 0.0f) { bb_near[2] = bbmax[2]; bb_afar[2] = bbmin[2]; } else { bb_near[2] = bbmin[2]; bb_afar[2] = bbmax[2]; } } /* -------------------------------------------------------------------- */ /** \name dist_squared_to_ray_to_aabb and helpers * \{ */ void dist_squared_ray_to_aabb_v3_precalc(struct DistRayAABB_Precalc *neasrest_precalc, const float ray_origin[3], const float ray_direction[3]) { copy_v3_v3(neasrest_precalc->ray_origin, ray_origin); copy_v3_v3(neasrest_precalc->ray_direction, ray_direction); for (int i = 0; i < 3; i++) { neasrest_precalc->ray_inv_dir[i] = (neasrest_precalc->ray_direction[i] != 0.0f) ? (1.0f / neasrest_precalc->ray_direction[i]) : FLT_MAX; } } float dist_squared_ray_to_aabb_v3(const struct DistRayAABB_Precalc *data, const float bb_min[3], const float bb_max[3], float r_point[3], float *r_depth) { // bool r_axis_closest[3]; float local_bvmin[3], local_bvmax[3]; aabb_get_near_far_from_plane(data->ray_direction, bb_min, bb_max, local_bvmin, local_bvmax); const float tmin[3] = { (local_bvmin[0] - data->ray_origin[0]) * data->ray_inv_dir[0], (local_bvmin[1] - data->ray_origin[1]) * data->ray_inv_dir[1], (local_bvmin[2] - data->ray_origin[2]) * data->ray_inv_dir[2], }; const float tmax[3] = { (local_bvmax[0] - data->ray_origin[0]) * data->ray_inv_dir[0], (local_bvmax[1] - data->ray_origin[1]) * data->ray_inv_dir[1], (local_bvmax[2] - data->ray_origin[2]) * data->ray_inv_dir[2], }; /* `va` and `vb` are the coordinates of the AABB edge closest to the ray */ float va[3], vb[3]; /* `rtmin` and `rtmax` are the minimum and maximum distances of the ray hits on the AABB */ float rtmin, rtmax; int main_axis; if ((tmax[0] <= tmax[1]) && (tmax[0] <= tmax[2])) { rtmax = tmax[0]; va[0] = vb[0] = local_bvmax[0]; main_axis = 3; // r_axis_closest[0] = neasrest_precalc->ray_direction[0] < 0.0f; } else if ((tmax[1] <= tmax[0]) && (tmax[1] <= tmax[2])) { rtmax = tmax[1]; va[1] = vb[1] = local_bvmax[1]; main_axis = 2; // r_axis_closest[1] = neasrest_precalc->ray_direction[1] < 0.0f; } else { rtmax = tmax[2]; va[2] = vb[2] = local_bvmax[2]; main_axis = 1; // r_axis_closest[2] = neasrest_precalc->ray_direction[2] < 0.0f; } if ((tmin[0] >= tmin[1]) && (tmin[0] >= tmin[2])) { rtmin = tmin[0]; va[0] = vb[0] = local_bvmin[0]; main_axis -= 3; // r_axis_closest[0] = neasrest_precalc->ray_direction[0] >= 0.0f; } else if ((tmin[1] >= tmin[0]) && (tmin[1] >= tmin[2])) { rtmin = tmin[1]; va[1] = vb[1] = local_bvmin[1]; main_axis -= 1; // r_axis_closest[1] = neasrest_precalc->ray_direction[1] >= 0.0f; } else { rtmin = tmin[2]; va[2] = vb[2] = local_bvmin[2]; main_axis -= 2; // r_axis_closest[2] = neasrest_precalc->ray_direction[2] >= 0.0f; } if (main_axis < 0) { main_axis += 3; } /* if rtmin <= rtmax, ray intersect `AABB` */ if (rtmin <= rtmax) { float dvec[3]; copy_v3_v3(r_point, local_bvmax); sub_v3_v3v3(dvec, local_bvmax, data->ray_origin); *r_depth = dot_v3v3(dvec, data->ray_direction); return 0.0f; } if (data->ray_direction[main_axis] >= 0.0f) { va[main_axis] = local_bvmin[main_axis]; vb[main_axis] = local_bvmax[main_axis]; } else { va[main_axis] = local_bvmax[main_axis]; vb[main_axis] = local_bvmin[main_axis]; } return dist_squared_ray_to_seg_v3( data->ray_origin, data->ray_direction, va, vb, r_point, r_depth); } float dist_squared_ray_to_aabb_v3_simple(const float ray_origin[3], const float ray_direction[3], const float bb_min[3], const float bb_max[3], float r_point[3], float *r_depth) { struct DistRayAABB_Precalc data; dist_squared_ray_to_aabb_v3_precalc(&data, ray_origin, ray_direction); return dist_squared_ray_to_aabb_v3(&data, bb_min, bb_max, r_point, r_depth); } /** \} */ /* -------------------------------------------------------------------- */ /** \name dist_squared_to_projected_aabb and helpers * \{ */ void dist_squared_to_projected_aabb_precalc(struct DistProjectedAABBPrecalc *precalc, const float projmat[4][4], const float winsize[2], const float mval[2]) { float win_half[2], relative_mval[2], px[4], py[4]; mul_v2_v2fl(win_half, winsize, 0.5f); sub_v2_v2v2(precalc->mval, mval, win_half); relative_mval[0] = precalc->mval[0] / win_half[0]; relative_mval[1] = precalc->mval[1] / win_half[1]; copy_m4_m4(precalc->pmat, projmat); for (int i = 0; i < 4; i++) { px[i] = precalc->pmat[i][0] - precalc->pmat[i][3] * relative_mval[0]; py[i] = precalc->pmat[i][1] - precalc->pmat[i][3] * relative_mval[1]; precalc->pmat[i][0] *= win_half[0]; precalc->pmat[i][1] *= win_half[1]; } #if 0 float projmat_trans[4][4]; transpose_m4_m4(projmat_trans, projmat); if (!isect_plane_plane_plane_v3( projmat_trans[0], projmat_trans[1], projmat_trans[3], precalc->ray_origin)) { /* Orthographic projection. */ isect_plane_plane_v3(px, py, precalc->ray_origin, precalc->ray_direction); } else { /* Perspective projection. */ cross_v3_v3v3(precalc->ray_direction, py, px); //normalize_v3(precalc->ray_direction); } #else if (!isect_plane_plane_v3(px, py, precalc->ray_origin, precalc->ray_direction)) { /* Matrix with weird co-planar planes. Undetermined origin. */ zero_v3(precalc->ray_origin); precalc->ray_direction[0] = precalc->pmat[0][3]; precalc->ray_direction[1] = precalc->pmat[1][3]; precalc->ray_direction[2] = precalc->pmat[2][3]; } #endif for (int i = 0; i < 3; i++) { precalc->ray_inv_dir[i] = (precalc->ray_direction[i] != 0.0f) ? (1.0f / precalc->ray_direction[i]) : FLT_MAX; } } float dist_squared_to_projected_aabb(struct DistProjectedAABBPrecalc *data, const float bbmin[3], const float bbmax[3], bool r_axis_closest[3]) { float local_bvmin[3], local_bvmax[3]; aabb_get_near_far_from_plane(data->ray_direction, bbmin, bbmax, local_bvmin, local_bvmax); const float tmin[3] = { (local_bvmin[0] - data->ray_origin[0]) * data->ray_inv_dir[0], (local_bvmin[1] - data->ray_origin[1]) * data->ray_inv_dir[1], (local_bvmin[2] - data->ray_origin[2]) * data->ray_inv_dir[2], }; const float tmax[3] = { (local_bvmax[0] - data->ray_origin[0]) * data->ray_inv_dir[0], (local_bvmax[1] - data->ray_origin[1]) * data->ray_inv_dir[1], (local_bvmax[2] - data->ray_origin[2]) * data->ray_inv_dir[2], }; /* `va` and `vb` are the coordinates of the AABB edge closest to the ray */ float va[3], vb[3]; /* `rtmin` and `rtmax` are the minimum and maximum distances of the ray hits on the AABB */ float rtmin, rtmax; int main_axis; r_axis_closest[0] = false; r_axis_closest[1] = false; r_axis_closest[2] = false; if ((tmax[0] <= tmax[1]) && (tmax[0] <= tmax[2])) { rtmax = tmax[0]; va[0] = vb[0] = local_bvmax[0]; main_axis = 3; r_axis_closest[0] = data->ray_direction[0] < 0.0f; } else if ((tmax[1] <= tmax[0]) && (tmax[1] <= tmax[2])) { rtmax = tmax[1]; va[1] = vb[1] = local_bvmax[1]; main_axis = 2; r_axis_closest[1] = data->ray_direction[1] < 0.0f; } else { rtmax = tmax[2]; va[2] = vb[2] = local_bvmax[2]; main_axis = 1; r_axis_closest[2] = data->ray_direction[2] < 0.0f; } if ((tmin[0] >= tmin[1]) && (tmin[0] >= tmin[2])) { rtmin = tmin[0]; va[0] = vb[0] = local_bvmin[0]; main_axis -= 3; r_axis_closest[0] = data->ray_direction[0] >= 0.0f; } else if ((tmin[1] >= tmin[0]) && (tmin[1] >= tmin[2])) { rtmin = tmin[1]; va[1] = vb[1] = local_bvmin[1]; main_axis -= 1; r_axis_closest[1] = data->ray_direction[1] >= 0.0f; } else { rtmin = tmin[2]; va[2] = vb[2] = local_bvmin[2]; main_axis -= 2; r_axis_closest[2] = data->ray_direction[2] >= 0.0f; } if (main_axis < 0) { main_axis += 3; } /* if rtmin <= rtmax, ray intersect `AABB` */ if (rtmin <= rtmax) { return 0; } if (data->ray_direction[main_axis] >= 0.0f) { va[main_axis] = local_bvmin[main_axis]; vb[main_axis] = local_bvmax[main_axis]; } else { va[main_axis] = local_bvmax[main_axis]; vb[main_axis] = local_bvmin[main_axis]; } float scale = fabsf(local_bvmax[main_axis] - local_bvmin[main_axis]); float va2d[2] = { (dot_m4_v3_row_x(data->pmat, va) + data->pmat[3][0]), (dot_m4_v3_row_y(data->pmat, va) + data->pmat[3][1]), }; float vb2d[2] = { (va2d[0] + data->pmat[main_axis][0] * scale), (va2d[1] + data->pmat[main_axis][1] * scale), }; float w_a = mul_project_m4_v3_zfac(data->pmat, va); if (w_a != 1.0f) { /* Perspective Projection. */ float w_b = w_a + data->pmat[main_axis][3] * scale; va2d[0] /= w_a; va2d[1] /= w_a; vb2d[0] /= w_b; vb2d[1] /= w_b; } float dvec[2], edge[2], lambda, rdist_sq; sub_v2_v2v2(dvec, data->mval, va2d); sub_v2_v2v2(edge, vb2d, va2d); lambda = dot_v2v2(dvec, edge); if (lambda != 0.0f) { lambda /= len_squared_v2(edge); if (lambda <= 0.0f) { rdist_sq = len_squared_v2v2(data->mval, va2d); r_axis_closest[main_axis] = true; } else if (lambda >= 1.0f) { rdist_sq = len_squared_v2v2(data->mval, vb2d); r_axis_closest[main_axis] = false; } else { madd_v2_v2fl(va2d, edge, lambda); rdist_sq = len_squared_v2v2(data->mval, va2d); r_axis_closest[main_axis] = lambda < 0.5f; } } else { rdist_sq = len_squared_v2v2(data->mval, va2d); } return rdist_sq; } float dist_squared_to_projected_aabb_simple(const float projmat[4][4], const float winsize[2], const float mval[2], const float bbmin[3], const float bbmax[3]) { struct DistProjectedAABBPrecalc data; dist_squared_to_projected_aabb_precalc(&data, projmat, winsize, mval); bool dummy[3] = {true, true, true}; return dist_squared_to_projected_aabb(&data, bbmin, bbmax, dummy); } /** \} */ float dist_seg_seg_v2(const float a1[3], const float a2[3], const float b1[3], const float b2[3]) { if (isect_seg_seg_v2_simple(a1, a2, b1, b2)) { return 0.0f; } const float d1 = dist_squared_to_line_segment_v2(a1, b1, b2); const float d2 = dist_squared_to_line_segment_v2(a2, b1, b2); const float d3 = dist_squared_to_line_segment_v2(b1, a1, a2); const float d4 = dist_squared_to_line_segment_v2(b2, a1, a2); return sqrtf(min_ffff(d1, d2, d3, d4)); } void closest_on_tri_to_point_v3( float r[3], const float p[3], const float v1[3], const float v2[3], const float v3[3]) { /* Adapted from "Real-Time Collision Detection" by Christer Ericson, * published by Morgan Kaufmann Publishers, copyright 2005 Elsevier Inc. */ float ab[3], ac[3], ap[3], d1, d2; float bp[3], d3, d4, vc, cp[3], d5, d6, vb, va; float denom, v, w; /* Check if P in vertex region outside A */ sub_v3_v3v3(ab, v2, v1); sub_v3_v3v3(ac, v3, v1); sub_v3_v3v3(ap, p, v1); d1 = dot_v3v3(ab, ap); d2 = dot_v3v3(ac, ap); if (d1 <= 0.0f && d2 <= 0.0f) { /* barycentric coordinates (1,0,0) */ copy_v3_v3(r, v1); return; } /* Check if P in vertex region outside B */ sub_v3_v3v3(bp, p, v2); d3 = dot_v3v3(ab, bp); d4 = dot_v3v3(ac, bp); if (d3 >= 0.0f && d4 <= d3) { /* barycentric coordinates (0,1,0) */ copy_v3_v3(r, v2); return; } /* Check if P in edge region of AB, if so return projection of P onto AB */ vc = d1 * d4 - d3 * d2; if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f) { v = d1 / (d1 - d3); /* barycentric coordinates (1-v,v,0) */ madd_v3_v3v3fl(r, v1, ab, v); return; } /* Check if P in vertex region outside C */ sub_v3_v3v3(cp, p, v3); d5 = dot_v3v3(ab, cp); d6 = dot_v3v3(ac, cp); if (d6 >= 0.0f && d5 <= d6) { /* barycentric coordinates (0,0,1) */ copy_v3_v3(r, v3); return; } /* Check if P in edge region of AC, if so return projection of P onto AC */ vb = d5 * d2 - d1 * d6; if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) { w = d2 / (d2 - d6); /* barycentric coordinates (1-w,0,w) */ madd_v3_v3v3fl(r, v1, ac, w); return; } /* Check if P in edge region of BC, if so return projection of P onto BC */ va = d3 * d6 - d5 * d4; if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f) { w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); /* barycentric coordinates (0,1-w,w) */ sub_v3_v3v3(r, v3, v2); mul_v3_fl(r, w); add_v3_v3(r, v2); return; } /* P inside face region. Compute Q through its barycentric coordinates (u,v,w) */ denom = 1.0f / (va + vb + vc); v = vb * denom; w = vc * denom; /* = u*a + v*b + w*c, u = va * denom = 1.0f - v - w */ /* ac * w */ mul_v3_fl(ac, w); /* a + ab * v */ madd_v3_v3v3fl(r, v1, ab, v); /* a + ab * v + ac * w */ add_v3_v3(r, ac); } /******************************* Intersection ********************************/ int isect_seg_seg_v2_int(const int v1[2], const int v2[2], const int v3[2], const int v4[2]) { float div, lambda, mu; div = (float)((v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0])); if (div == 0.0f) { return ISECT_LINE_LINE_COLINEAR; } lambda = (float)((v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div; mu = (float)((v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div; if (lambda >= 0.0f && lambda <= 1.0f && mu >= 0.0f && mu <= 1.0f) { if (lambda == 0.0f || lambda == 1.0f || mu == 0.0f || mu == 1.0f) { return ISECT_LINE_LINE_EXACT; } return ISECT_LINE_LINE_CROSS; } return ISECT_LINE_LINE_NONE; } int isect_line_line_v2_point( const float v0[2], const float v1[2], const float v2[2], const float v3[2], float r_vi[2]) { float s10[2], s32[2]; float div; sub_v2_v2v2(s10, v1, v0); sub_v2_v2v2(s32, v3, v2); div = cross_v2v2(s10, s32); if (div != 0.0f) { const float u = cross_v2v2(v1, v0); const float v = cross_v2v2(v3, v2); r_vi[0] = ((s32[0] * u) - (s10[0] * v)) / div; r_vi[1] = ((s32[1] * u) - (s10[1] * v)) / div; return ISECT_LINE_LINE_CROSS; } return ISECT_LINE_LINE_COLINEAR; } int isect_seg_seg_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2]) { float div, lambda, mu; div = (v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0]); if (div == 0.0f) { return ISECT_LINE_LINE_COLINEAR; } lambda = ((float)(v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div; mu = ((float)(v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div; if (lambda >= 0.0f && lambda <= 1.0f && mu >= 0.0f && mu <= 1.0f) { if (lambda == 0.0f || lambda == 1.0f || mu == 0.0f || mu == 1.0f) { return ISECT_LINE_LINE_EXACT; } return ISECT_LINE_LINE_CROSS; } return ISECT_LINE_LINE_NONE; } void isect_seg_seg_v3(const float a0[3], const float a1[3], const float b0[3], const float b1[3], float r_a[3], float r_b[3]) { float fac_a, fac_b; float a_dir[3], b_dir[3], a0b0[3], crs_ab[3]; sub_v3_v3v3(a_dir, a1, a0); sub_v3_v3v3(b_dir, b1, b0); sub_v3_v3v3(a0b0, b0, a0); cross_v3_v3v3(crs_ab, b_dir, a_dir); const float nlen = len_squared_v3(crs_ab); if (nlen == 0.0f) { /* Parallel Lines */ /* In this case return any point that * is between the closest segments. */ float a0b1[3], a1b0[3], len_a, len_b, fac1, fac2; sub_v3_v3v3(a0b1, b1, a0); sub_v3_v3v3(a1b0, b0, a1); len_a = len_squared_v3(a_dir); len_b = len_squared_v3(b_dir); if (len_a) { fac1 = dot_v3v3(a0b0, a_dir); fac2 = dot_v3v3(a0b1, a_dir); CLAMP(fac1, 0.0f, len_a); CLAMP(fac2, 0.0f, len_a); fac_a = (fac1 + fac2) / (2 * len_a); } else { fac_a = 0.0f; } if (len_b) { fac1 = -dot_v3v3(a0b0, b_dir); fac2 = -dot_v3v3(a1b0, b_dir); CLAMP(fac1, 0.0f, len_b); CLAMP(fac2, 0.0f, len_b); fac_b = (fac1 + fac2) / (2 * len_b); } else { fac_b = 0.0f; } } else { float c[3], cray[3]; sub_v3_v3v3(c, crs_ab, a0b0); cross_v3_v3v3(cray, c, b_dir); fac_a = dot_v3v3(cray, crs_ab) / nlen; cross_v3_v3v3(cray, c, a_dir); fac_b = dot_v3v3(cray, crs_ab) / nlen; CLAMP(fac_a, 0.0f, 1.0f); CLAMP(fac_b, 0.0f, 1.0f); } madd_v3_v3v3fl(r_a, a0, a_dir, fac_a); madd_v3_v3v3fl(r_b, b0, b_dir, fac_b); } int isect_seg_seg_v2_point_ex(const float v0[2], const float v1[2], const float v2[2], const float v3[2], const float endpoint_bias, float r_vi[2]) { float s10[2], s32[2], s30[2], d; const float eps = 1e-6f; const float endpoint_min = -endpoint_bias; const float endpoint_max = endpoint_bias + 1.0f; sub_v2_v2v2(s10, v1, v0); sub_v2_v2v2(s32, v3, v2); sub_v2_v2v2(s30, v3, v0); d = cross_v2v2(s10, s32); if (d != 0) { float u, v; u = cross_v2v2(s30, s32) / d; v = cross_v2v2(s10, s30) / d; if ((u >= endpoint_min && u <= endpoint_max) && (v >= endpoint_min && v <= endpoint_max)) { /* intersection */ float vi_test[2]; float s_vi_v2[2]; madd_v2_v2v2fl(vi_test, v0, s10, u); /* When 'd' approaches zero, float precision lets non-overlapping co-linear segments * detect as an intersection. So re-calculate 'v' to ensure the point overlaps both. * see T45123 */ /* inline since we have most vars already */ #if 0 v = line_point_factor_v2(ix_test, v2, v3); #else sub_v2_v2v2(s_vi_v2, vi_test, v2); v = (dot_v2v2(s32, s_vi_v2) / dot_v2v2(s32, s32)); #endif if (v >= endpoint_min && v <= endpoint_max) { copy_v2_v2(r_vi, vi_test); return 1; } } /* out of segment intersection */ return -1; } if ((cross_v2v2(s10, s30) == 0.0f) && (cross_v2v2(s32, s30) == 0.0f)) { /* equal lines */ float s20[2]; float u_a, u_b; if (equals_v2v2(v0, v1)) { if (len_squared_v2v2(v2, v3) > square_f(eps)) { /* use non-point segment as basis */ SWAP(const float *, v0, v2); SWAP(const float *, v1, v3); sub_v2_v2v2(s10, v1, v0); sub_v2_v2v2(s30, v3, v0); } else { /* both of segments are points */ if (equals_v2v2(v0, v2)) { /* points are equal */ copy_v2_v2(r_vi, v0); return 1; } /* two different points */ return -1; } } sub_v2_v2v2(s20, v2, v0); u_a = dot_v2v2(s20, s10) / dot_v2v2(s10, s10); u_b = dot_v2v2(s30, s10) / dot_v2v2(s10, s10); if (u_a > u_b) { SWAP(float, u_a, u_b); } if (u_a > endpoint_max || u_b < endpoint_min) { /* non-overlapping segments */ return -1; } if (max_ff(0.0f, u_a) == min_ff(1.0f, u_b)) { /* one common point: can return result */ madd_v2_v2v2fl(r_vi, v0, s10, max_ff(0, u_a)); return 1; } } /* lines are collinear */ return -1; } int isect_seg_seg_v2_point( const float v0[2], const float v1[2], const float v2[2], const float v3[2], float r_vi[2]) { const float endpoint_bias = 1e-6f; return isect_seg_seg_v2_point_ex(v0, v1, v2, v3, endpoint_bias, r_vi); } bool isect_seg_seg_v2_simple(const float v1[2], const float v2[2], const float v3[2], const float v4[2]) { #define CCW(A, B, C) ((C[1] - A[1]) * (B[0] - A[0]) > (B[1] - A[1]) * (C[0] - A[0])) return CCW(v1, v3, v4) != CCW(v2, v3, v4) && CCW(v1, v2, v3) != CCW(v1, v2, v4); #undef CCW } int isect_seg_seg_v2_lambda_mu_db(const double v1[2], const double v2[2], const double v3[2], const double v4[2], double *r_lambda, double *r_mu) { double div, lambda, mu; div = (v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0]); if (fabs(div) < DBL_EPSILON) { return ISECT_LINE_LINE_COLINEAR; } lambda = ((v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div; mu = ((v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div; if (r_lambda) { *r_lambda = lambda; } if (r_mu) { *r_mu = mu; } if (lambda >= 0.0 && lambda <= 1.0 && mu >= 0.0 && mu <= 1.0) { if (lambda == 0.0 || lambda == 1.0 || mu == 0.0 || mu == 1.0) { return ISECT_LINE_LINE_EXACT; } return ISECT_LINE_LINE_CROSS; } return ISECT_LINE_LINE_NONE; } int isect_line_sphere_v3(const float l1[3], const float l2[3], const float sp[3], const float r, float r_p1[3], float r_p2[3]) { /* adapted for use in blender by Campbell Barton - 2011 * * atelier iebele abel - 2001 * * http://www.iebele.nl * * sphere_line_intersection function adapted from: * http://astronomy.swin.edu.au/pbourke/geometry/sphereline * Paul Bourke */ const float ldir[3] = { l2[0] - l1[0], l2[1] - l1[1], l2[2] - l1[2], }; const float a = len_squared_v3(ldir); const float b = 2.0f * (ldir[0] * (l1[0] - sp[0]) + ldir[1] * (l1[1] - sp[1]) + ldir[2] * (l1[2] - sp[2])); const float c = len_squared_v3(sp) + len_squared_v3(l1) - (2.0f * dot_v3v3(sp, l1)) - (r * r); const float i = b * b - 4.0f * a * c; float mu; if (i < 0.0f) { /* no intersections */ return 0; } if (i == 0.0f) { /* one intersection */ mu = -b / (2.0f * a); madd_v3_v3v3fl(r_p1, l1, ldir, mu); return 1; } if (i > 0.0f) { const float i_sqrt = sqrtf(i); /* avoid calc twice */ /* first intersection */ mu = (-b + i_sqrt) / (2.0f * a); madd_v3_v3v3fl(r_p1, l1, ldir, mu); /* second intersection */ mu = (-b - i_sqrt) / (2.0f * a); madd_v3_v3v3fl(r_p2, l1, ldir, mu); return 2; } /* math domain error - nan */ return -1; } int isect_line_sphere_v2(const float l1[2], const float l2[2], const float sp[2], const float r, float r_p1[2], float r_p2[2]) { /* Keep in sync with #isect_line_sphere_v3. */ const float ldir[2] = {l2[0] - l1[0], l2[1] - l1[1]}; const float a = dot_v2v2(ldir, ldir); const float b = 2.0f * (ldir[0] * (l1[0] - sp[0]) + ldir[1] * (l1[1] - sp[1])); const float c = dot_v2v2(sp, sp) + dot_v2v2(l1, l1) - (2.0f * dot_v2v2(sp, l1)) - (r * r); const float i = b * b - 4.0f * a * c; float mu; if (i < 0.0f) { /* no intersections */ return 0; } if (i == 0.0f) { /* one intersection */ mu = -b / (2.0f * a); madd_v2_v2v2fl(r_p1, l1, ldir, mu); return 1; } if (i > 0.0f) { const float i_sqrt = sqrtf(i); /* avoid calc twice */ /* first intersection */ mu = (-b + i_sqrt) / (2.0f * a); madd_v2_v2v2fl(r_p1, l1, ldir, mu); /* second intersection */ mu = (-b - i_sqrt) / (2.0f * a); madd_v2_v2v2fl(r_p2, l1, ldir, mu); return 2; } /* math domain error - nan */ return -1; } bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr, const bool UNUSED(use_holes)) { /* Keep in sync with #isect_point_poly_v2_int. */ unsigned int i, j; bool isect = false; for (i = 0, j = nr - 1; i < nr; j = i++) { if (((verts[i][1] > pt[1]) != (verts[j][1] > pt[1])) && (pt[0] < (verts[j][0] - verts[i][0]) * (pt[1] - verts[i][1]) / (verts[j][1] - verts[i][1]) + verts[i][0])) { isect = !isect; } } return isect; } bool isect_point_poly_v2_int(const int pt[2], const int verts[][2], const unsigned int nr, const bool UNUSED(use_holes)) { /* Keep in sync with #isect_point_poly_v2. */ unsigned int i, j; bool isect = false; for (i = 0, j = nr - 1; i < nr; j = i++) { if (((verts[i][1] > pt[1]) != (verts[j][1] > pt[1])) && (pt[0] < (verts[j][0] - verts[i][0]) * (pt[1] - verts[i][1]) / (verts[j][1] - verts[i][1]) + verts[i][0])) { isect = !isect; } } return isect; } /* point in tri */ bool isect_point_tri_v2_cw(const float pt[2], const float v1[2], const float v2[2], const float v3[2]) { if (line_point_side_v2(v1, v2, pt) >= 0.0f) { if (line_point_side_v2(v2, v3, pt) >= 0.0f) { if (line_point_side_v2(v3, v1, pt) >= 0.0f) { return true; } } } return false; } int isect_point_tri_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2]) { if (line_point_side_v2(v1, v2, pt) >= 0.0f) { if (line_point_side_v2(v2, v3, pt) >= 0.0f) { if (line_point_side_v2(v3, v1, pt) >= 0.0f) { return 1; } } } else { if (!(line_point_side_v2(v2, v3, pt) >= 0.0f)) { if (!(line_point_side_v2(v3, v1, pt) >= 0.0f)) { return -1; } } } return 0; } int isect_point_quad_v2( const float pt[2], const float v1[2], const float v2[2], const float v3[2], const float v4[2]) { if (line_point_side_v2(v1, v2, pt) >= 0.0f) { if (line_point_side_v2(v2, v3, pt) >= 0.0f) { if (line_point_side_v2(v3, v4, pt) >= 0.0f) { if (line_point_side_v2(v4, v1, pt) >= 0.0f) { return 1; } } } } else { if (!(line_point_side_v2(v2, v3, pt) >= 0.0f)) { if (!(line_point_side_v2(v3, v4, pt) >= 0.0f)) { if (!(line_point_side_v2(v4, v1, pt) >= 0.0f)) { return -1; } } } } return 0; } bool isect_line_segment_tri_v3(const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float r_uv[2]) { float p[3], s[3], d[3], e1[3], e2[3], q[3]; float a, f, u, v; sub_v3_v3v3(e1, v1, v0); sub_v3_v3v3(e2, v2, v0); sub_v3_v3v3(d, p2, p1); cross_v3_v3v3(p, d, e2); a = dot_v3v3(e1, p); if (a == 0.0f) { return false; } f = 1.0f / a; sub_v3_v3v3(s, p1, v0); u = f * dot_v3v3(s, p); if ((u < 0.0f) || (u > 1.0f)) { return false; } cross_v3_v3v3(q, s, e1); v = f * dot_v3v3(d, q); if ((v < 0.0f) || ((u + v) > 1.0f)) { return false; } *r_lambda = f * dot_v3v3(e2, q); if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f)) { return false; } if (r_uv) { r_uv[0] = u; r_uv[1] = v; } return true; } bool isect_line_segment_tri_epsilon_v3(const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float r_uv[2], const float epsilon) { float p[3], s[3], d[3], e1[3], e2[3], q[3]; float a, f, u, v; sub_v3_v3v3(e1, v1, v0); sub_v3_v3v3(e2, v2, v0); sub_v3_v3v3(d, p2, p1); cross_v3_v3v3(p, d, e2); a = dot_v3v3(e1, p); if (a == 0.0f) { return false; } f = 1.0f / a; sub_v3_v3v3(s, p1, v0); u = f * dot_v3v3(s, p); if ((u < -epsilon) || (u > 1.0f + epsilon)) { return false; } cross_v3_v3v3(q, s, e1); v = f * dot_v3v3(d, q); if ((v < -epsilon) || ((u + v) > 1.0f + epsilon)) { return false; } *r_lambda = f * dot_v3v3(e2, q); if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f)) { return false; } if (r_uv) { r_uv[0] = u; r_uv[1] = v; } return true; } bool isect_ray_tri_v3(const float ray_origin[3], const float ray_direction[3], const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float r_uv[2]) { /* NOTE(campbell): these values were 0.000001 in 2.4x but for projection snapping on * a human head (1BU == 1m), subsurf level 2, this gave many errors. */ const float epsilon = 0.00000001f; float p[3], s[3], e1[3], e2[3], q[3]; float a, f, u, v; sub_v3_v3v3(e1, v1, v0); sub_v3_v3v3(e2, v2, v0); cross_v3_v3v3(p, ray_direction, e2); a = dot_v3v3(e1, p); if ((a > -epsilon) && (a < epsilon)) { return false; } f = 1.0f / a; sub_v3_v3v3(s, ray_origin, v0); u = f * dot_v3v3(s, p); if ((u < 0.0f) || (u > 1.0f)) { return false; } cross_v3_v3v3(q, s, e1); v = f * dot_v3v3(ray_direction, q); if ((v < 0.0f) || ((u + v) > 1.0f)) { return false; } *r_lambda = f * dot_v3v3(e2, q); if (*r_lambda < 0.0f) { return false; } if (r_uv) { r_uv[0] = u; r_uv[1] = v; } return true; } bool isect_ray_plane_v3(const float ray_origin[3], const float ray_direction[3], const float plane[4], float *r_lambda, const bool clip) { float h[3], plane_co[3]; float dot; dot = dot_v3v3(plane, ray_direction); if (dot == 0.0f) { return false; } mul_v3_v3fl(plane_co, plane, (-plane[3] / len_squared_v3(plane))); sub_v3_v3v3(h, ray_origin, plane_co); *r_lambda = -dot_v3v3(plane, h) / dot; if (clip && (*r_lambda < 0.0f)) { return false; } return true; } bool isect_ray_tri_epsilon_v3(const float ray_origin[3], const float ray_direction[3], const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float r_uv[2], const float epsilon) { float p[3], s[3], e1[3], e2[3], q[3]; float a, f, u, v; sub_v3_v3v3(e1, v1, v0); sub_v3_v3v3(e2, v2, v0); cross_v3_v3v3(p, ray_direction, e2); a = dot_v3v3(e1, p); if (a == 0.0f) { return false; } f = 1.0f / a; sub_v3_v3v3(s, ray_origin, v0); u = f * dot_v3v3(s, p); if ((u < -epsilon) || (u > 1.0f + epsilon)) { return false; } cross_v3_v3v3(q, s, e1); v = f * dot_v3v3(ray_direction, q); if ((v < -epsilon) || ((u + v) > 1.0f + epsilon)) { return false; } *r_lambda = f * dot_v3v3(e2, q); if (*r_lambda < 0.0f) { return false; } if (r_uv) { r_uv[0] = u; r_uv[1] = v; } return true; } void isect_ray_tri_watertight_v3_precalc(struct IsectRayPrecalc *isect_precalc, const float ray_direction[3]) { float inv_dir_z; /* Calculate dimension where the ray direction is maximal. */ int kz = axis_dominant_v3_single(ray_direction); int kx = (kz != 2) ? (kz + 1) : 0; int ky = (kx != 2) ? (kx + 1) : 0; /* Swap kx and ky dimensions to preserve winding direction of triangles. */ if (ray_direction[kz] < 0.0f) { SWAP(int, kx, ky); } /* Calculate the shear constants. */ inv_dir_z = 1.0f / ray_direction[kz]; isect_precalc->sx = ray_direction[kx] * inv_dir_z; isect_precalc->sy = ray_direction[ky] * inv_dir_z; isect_precalc->sz = inv_dir_z; /* Store the dimensions. */ isect_precalc->kx = kx; isect_precalc->ky = ky; isect_precalc->kz = kz; } bool isect_ray_tri_watertight_v3(const float ray_origin[3], const struct IsectRayPrecalc *isect_precalc, const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float r_uv[2]) { const int kx = isect_precalc->kx; const int ky = isect_precalc->ky; const int kz = isect_precalc->kz; const float sx = isect_precalc->sx; const float sy = isect_precalc->sy; const float sz = isect_precalc->sz; /* Calculate vertices relative to ray origin. */ const float a[3] = {v0[0] - ray_origin[0], v0[1] - ray_origin[1], v0[2] - ray_origin[2]}; const float b[3] = {v1[0] - ray_origin[0], v1[1] - ray_origin[1], v1[2] - ray_origin[2]}; const float c[3] = {v2[0] - ray_origin[0], v2[1] - ray_origin[1], v2[2] - ray_origin[2]}; const float a_kx = a[kx], a_ky = a[ky], a_kz = a[kz]; const float b_kx = b[kx], b_ky = b[ky], b_kz = b[kz]; const float c_kx = c[kx], c_ky = c[ky], c_kz = c[kz]; /* Perform shear and scale of vertices. */ const float ax = a_kx - sx * a_kz; const float ay = a_ky - sy * a_kz; const float bx = b_kx - sx * b_kz; const float by = b_ky - sy * b_kz; const float cx = c_kx - sx * c_kz; const float cy = c_ky - sy * c_kz; /* Calculate scaled barycentric coordinates. */ const float u = cx * by - cy * bx; const float v = ax * cy - ay * cx; const float w = bx * ay - by * ax; float det; if ((u < 0.0f || v < 0.0f || w < 0.0f) && (u > 0.0f || v > 0.0f || w > 0.0f)) { return false; } /* Calculate determinant. */ det = u + v + w; if (UNLIKELY(det == 0.0f || !isfinite(det))) { return false; } /* Calculate scaled z-coordinates of vertices and use them to calculate * the hit distance. */ const int sign_det = (float_as_int(det) & (int)0x80000000); const float t = (u * a_kz + v * b_kz + w * c_kz) * sz; const float sign_t = xor_fl(t, sign_det); if ((sign_t < 0.0f) /* Differ from Cycles, don't read r_lambda's original value * otherwise we won't match any of the other intersect functions here... * which would be confusing. */ #if 0 || (sign_T > *r_lambda * xor_signmask(det, sign_mask)) #endif ) { return false; } /* Normalize u, v and t. */ const float inv_det = 1.0f / det; if (r_uv) { r_uv[0] = u * inv_det; r_uv[1] = v * inv_det; } *r_lambda = t * inv_det; return true; } bool isect_ray_tri_watertight_v3_simple(const float ray_origin[3], const float ray_direction[3], const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float r_uv[2]) { struct IsectRayPrecalc isect_precalc; isect_ray_tri_watertight_v3_precalc(&isect_precalc, ray_direction); return isect_ray_tri_watertight_v3(ray_origin, &isect_precalc, v0, v1, v2, r_lambda, r_uv); } #if 0 /* UNUSED */ /** * A version of #isect_ray_tri_v3 which takes a threshold argument * so rays slightly outside the triangle to be considered as intersecting. */ bool isect_ray_tri_threshold_v3(const float ray_origin[3], const float ray_direction[3], const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float r_uv[2], const float threshold) { const float epsilon = 0.00000001f; float p[3], s[3], e1[3], e2[3], q[3]; float a, f, u, v; float du, dv; sub_v3_v3v3(e1, v1, v0); sub_v3_v3v3(e2, v2, v0); cross_v3_v3v3(p, ray_direction, e2); a = dot_v3v3(e1, p); if ((a > -epsilon) && (a < epsilon)) { return false; } f = 1.0f / a; sub_v3_v3v3(s, ray_origin, v0); cross_v3_v3v3(q, s, e1); *r_lambda = f * dot_v3v3(e2, q); if (*r_lambda < 0.0f) { return false; } u = f * dot_v3v3(s, p); v = f * dot_v3v3(ray_direction, q); if (u > 0 && v > 0 && u + v > 1) { float t = (u + v - 1) / 2; du = u - t; dv = v - t; } else { if (u < 0) { du = u; } else if (u > 1) { du = u - 1; } else { du = 0.0f; } if (v < 0) { dv = v; } else if (v > 1) { dv = v - 1; } else { dv = 0.0f; } } mul_v3_fl(e1, du); mul_v3_fl(e2, dv); if (len_squared_v3(e1) + len_squared_v3(e2) > threshold * threshold) { return false; } if (r_uv) { r_uv[0] = u; r_uv[1] = v; } return true; } #endif bool isect_ray_seg_v2(const float ray_origin[2], const float ray_direction[2], const float v0[2], const float v1[2], float *r_lambda, float *r_u) { float v0_local[2], v1_local[2]; sub_v2_v2v2(v0_local, v0, ray_origin); sub_v2_v2v2(v1_local, v1, ray_origin); float s10[2]; float det; sub_v2_v2v2(s10, v1_local, v0_local); det = cross_v2v2(ray_direction, s10); if (det != 0.0f) { const float v = cross_v2v2(v0_local, v1_local); const float p[2] = {(ray_direction[0] * v) / det, (ray_direction[1] * v) / det}; const float t = (dot_v2v2(p, ray_direction) / dot_v2v2(ray_direction, ray_direction)); if ((t >= 0.0f) == 0) { return false; } float h[2]; sub_v2_v2v2(h, v1_local, p); const float u = (dot_v2v2(s10, h) / dot_v2v2(s10, s10)); if ((u >= 0.0f && u <= 1.0f) == 0) { return false; } if (r_lambda) { *r_lambda = t; } if (r_u) { *r_u = u; } return true; } return false; } bool isect_ray_line_v3(const float ray_origin[3], const float ray_direction[3], const float v0[3], const float v1[3], float *r_lambda) { float a[3], t[3], n[3]; sub_v3_v3v3(a, v1, v0); sub_v3_v3v3(t, v0, ray_origin); cross_v3_v3v3(n, a, ray_direction); const float nlen = len_squared_v3(n); if (nlen == 0.0f) { /* The lines are parallel. */ return false; } float c[3], cray[3]; sub_v3_v3v3(c, n, t); cross_v3_v3v3(cray, c, ray_direction); *r_lambda = dot_v3v3(cray, n) / nlen; return true; } bool isect_point_planes_v3(float (*planes)[4], int totplane, const float p[3]) { int i; for (i = 0; i < totplane; i++) { if (plane_point_side_v3(planes[i], p) > 0.0f) { return false; } } return true; } bool isect_point_planes_v3_negated(const float (*planes)[4], const int totplane, const float p[3]) { for (int i = 0; i < totplane; i++) { if (plane_point_side_v3(planes[i], p) <= 0.0f) { return false; } } return true; } bool isect_line_plane_v3(float r_isect_co[3], const float l1[3], const float l2[3], const float plane_co[3], const float plane_no[3]) { float u[3], h[3]; float dot; sub_v3_v3v3(u, l2, l1); sub_v3_v3v3(h, l1, plane_co); dot = dot_v3v3(plane_no, u); if (fabsf(dot) > FLT_EPSILON) { float lambda = -dot_v3v3(plane_no, h) / dot; madd_v3_v3v3fl(r_isect_co, l1, u, lambda); return true; } /* The segment is parallel to plane */ return false; } bool isect_plane_plane_plane_v3(const float plane_a[4], const float plane_b[4], const float plane_c[4], float r_isect_co[3]) { float det; det = determinant_m3(UNPACK3(plane_a), UNPACK3(plane_b), UNPACK3(plane_c)); if (det != 0.0f) { float tmp[3]; /* (plane_b.xyz.cross(plane_c.xyz) * -plane_a[3] + * plane_c.xyz.cross(plane_a.xyz) * -plane_b[3] + * plane_a.xyz.cross(plane_b.xyz) * -plane_c[3]) / det; */ cross_v3_v3v3(tmp, plane_c, plane_b); mul_v3_v3fl(r_isect_co, tmp, plane_a[3]); cross_v3_v3v3(tmp, plane_a, plane_c); madd_v3_v3fl(r_isect_co, tmp, plane_b[3]); cross_v3_v3v3(tmp, plane_b, plane_a); madd_v3_v3fl(r_isect_co, tmp, plane_c[3]); mul_v3_fl(r_isect_co, 1.0f / det); return true; } return false; } bool isect_plane_plane_v3(const float plane_a[4], const float plane_b[4], float r_isect_co[3], float r_isect_no[3]) { float det, plane_c[3]; /* direction is simply the cross product */ cross_v3_v3v3(plane_c, plane_a, plane_b); /* in this case we don't need to use 'determinant_m3' */ det = len_squared_v3(plane_c); if (det != 0.0f) { float tmp[3]; /* (plane_b.xyz.cross(plane_c.xyz) * -plane_a[3] + * plane_c.xyz.cross(plane_a.xyz) * -plane_b[3]) / det; */ cross_v3_v3v3(tmp, plane_c, plane_b); mul_v3_v3fl(r_isect_co, tmp, plane_a[3]); cross_v3_v3v3(tmp, plane_a, plane_c); madd_v3_v3fl(r_isect_co, tmp, plane_b[3]); mul_v3_fl(r_isect_co, 1.0f / det); copy_v3_v3(r_isect_no, plane_c); return true; } return false; } bool isect_planes_v3_fn( const float planes[][4], const int planes_len, const float eps_coplanar, const float eps_isect, void (*callback_fn)(const float co[3], int i, int j, int k, void *user_data), void *user_data) { bool found = false; float n1n2[3], n2n3[3], n3n1[3]; for (int i = 0; i < planes_len; i++) { const float *n1 = planes[i]; for (int j = i + 1; j < planes_len; j++) { const float *n2 = planes[j]; cross_v3_v3v3(n1n2, n1, n2); if (len_squared_v3(n1n2) <= eps_coplanar) { continue; } for (int k = j + 1; k < planes_len; k++) { const float *n3 = planes[k]; cross_v3_v3v3(n2n3, n2, n3); if (len_squared_v3(n2n3) <= eps_coplanar) { continue; } cross_v3_v3v3(n3n1, n3, n1); if (len_squared_v3(n3n1) <= eps_coplanar) { continue; } const float quotient = -dot_v3v3(n1, n2n3); if (fabsf(quotient) < eps_coplanar) { continue; } const float co_test[3] = { ((n2n3[0] * n1[3]) + (n3n1[0] * n2[3]) + (n1n2[0] * n3[3])) / quotient, ((n2n3[1] * n1[3]) + (n3n1[1] * n2[3]) + (n1n2[1] * n3[3])) / quotient, ((n2n3[2] * n1[3]) + (n3n1[2] * n2[3]) + (n1n2[2] * n3[3])) / quotient, }; int i_test; for (i_test = 0; i_test < planes_len; i_test++) { const float *np_test = planes[i_test]; if (((dot_v3v3(np_test, co_test) + np_test[3]) > eps_isect)) { /* For low epsilon values the point could intersect its own plane. */ if (!ELEM(i_test, i, j, k)) { break; } } } if (i_test == planes_len) { /* ok */ callback_fn(co_test, i, j, k, user_data); found = true; } } } } return found; } bool isect_tri_tri_v3_ex(const float tri_a[3][3], const float tri_b[3][3], float r_i1[3], float r_i2[3], int *r_tri_a_edge_isect_count) { struct { /* Factor that indicates the position of the intersection point on the line * that intersects the planes of the triangles. */ float min, max; /* Intersection point location. */ float loc[2][3]; } range[2]; float side[2][3]; double ba[3], bc[3], plane_a[4], plane_b[4]; *r_tri_a_edge_isect_count = 0; sub_v3db_v3fl_v3fl(ba, tri_a[0], tri_a[1]); sub_v3db_v3fl_v3fl(bc, tri_a[2], tri_a[1]); cross_v3_v3v3_db(plane_a, ba, bc); plane_a[3] = -dot_v3db_v3fl(plane_a, tri_a[1]); side[1][0] = (float)(dot_v3db_v3fl(plane_a, tri_b[0]) + plane_a[3]); side[1][1] = (float)(dot_v3db_v3fl(plane_a, tri_b[1]) + plane_a[3]); side[1][2] = (float)(dot_v3db_v3fl(plane_a, tri_b[2]) + plane_a[3]); if (!side[1][0] && !side[1][1] && !side[1][2]) { /* Coplanar case is not supported. */ return false; } if ((side[1][0] && side[1][1] && side[1][2]) && (side[1][0] < 0.0f) == (side[1][1] < 0.0f) && (side[1][0] < 0.0f) == (side[1][2] < 0.0f)) { /* All vertices of the 2nd triangle are positioned on the same side to the * plane defined by the 1st triangle. */ return false; } sub_v3db_v3fl_v3fl(ba, tri_b[0], tri_b[1]); sub_v3db_v3fl_v3fl(bc, tri_b[2], tri_b[1]); cross_v3_v3v3_db(plane_b, ba, bc); plane_b[3] = -dot_v3db_v3fl(plane_b, tri_b[1]); side[0][0] = (float)(dot_v3db_v3fl(plane_b, tri_a[0]) + plane_b[3]); side[0][1] = (float)(dot_v3db_v3fl(plane_b, tri_a[1]) + plane_b[3]); side[0][2] = (float)(dot_v3db_v3fl(plane_b, tri_a[2]) + plane_b[3]); if ((side[0][0] && side[0][1] && side[0][2]) && (side[0][0] < 0.0f) == (side[0][1] < 0.0f) && (side[0][0] < 0.0f) == (side[0][2] < 0.0f)) { /* All vertices of the 1st triangle are positioned on the same side to the * plane defined by the 2nd triangle. */ return false; } /* Direction of the line that intersects the planes of the triangles. */ double isect_dir[3]; cross_v3_v3v3_db(isect_dir, plane_a, plane_b); for (int i = 0; i < 2; i++) { const float(*tri)[3] = i == 0 ? tri_a : tri_b; /* Rearrange the triangle so that the vertex that is alone on one side * of the plane is located at index 1. */ int tri_i[3]; if ((side[i][0] && side[i][1]) && (side[i][0] < 0.0f) == (side[i][1] < 0.0f)) { tri_i[0] = 1; tri_i[1] = 2; tri_i[2] = 0; } else if ((side[i][1] && side[i][2]) && (side[i][1] < 0.0f) == (side[i][2] < 0.0f)) { tri_i[0] = 2; tri_i[1] = 0; tri_i[2] = 1; } else { tri_i[0] = 0; tri_i[1] = 1; tri_i[2] = 2; } double dot_b = dot_v3db_v3fl(isect_dir, tri[tri_i[1]]); float sidec = side[i][tri_i[1]]; if (sidec) { double dot_a = dot_v3db_v3fl(isect_dir, tri[tri_i[0]]); double dot_c = dot_v3db_v3fl(isect_dir, tri[tri_i[2]]); float fac0 = sidec / (sidec - side[i][tri_i[0]]); float fac1 = sidec / (sidec - side[i][tri_i[2]]); double offset0 = fac0 * (dot_a - dot_b); double offset1 = fac1 * (dot_c - dot_b); if (offset0 > offset1) { /* Sort min max. */ SWAP(double, offset0, offset1); SWAP(float, fac0, fac1); SWAP(int, tri_i[0], tri_i[2]); } range[i].min = (float)(dot_b + offset0); range[i].max = (float)(dot_b + offset1); interp_v3_v3v3(range[i].loc[0], tri[tri_i[1]], tri[tri_i[0]], fac0); interp_v3_v3v3(range[i].loc[1], tri[tri_i[1]], tri[tri_i[2]], fac1); } else { range[i].min = range[i].max = (float)dot_b; copy_v3_v3(range[i].loc[0], tri[tri_i[1]]); copy_v3_v3(range[i].loc[1], tri[tri_i[1]]); } } if ((range[0].max > range[1].min) && (range[0].min < range[1].max)) { /* The triangles intersect because they overlap on the intersection line. * Now identify the two points of intersection that are in the middle to get the actual * intersection between the triangles. (B--C from A--B--C--D) */ if (range[0].min >= range[1].min) { copy_v3_v3(r_i1, range[0].loc[0]); if (range[0].max <= range[1].max) { copy_v3_v3(r_i2, range[0].loc[1]); *r_tri_a_edge_isect_count = 2; } else { copy_v3_v3(r_i2, range[1].loc[1]); *r_tri_a_edge_isect_count = 1; } } else { if (range[0].max <= range[1].max) { copy_v3_v3(r_i1, range[0].loc[1]); copy_v3_v3(r_i2, range[1].loc[0]); *r_tri_a_edge_isect_count = 1; } else { copy_v3_v3(r_i1, range[1].loc[0]); copy_v3_v3(r_i2, range[1].loc[1]); } } return true; } return false; } bool isect_tri_tri_v3(const float t_a0[3], const float t_a1[3], const float t_a2[3], const float t_b0[3], const float t_b1[3], const float t_b2[3], float r_i1[3], float r_i2[3]) { float tri_a[3][3], tri_b[3][3]; int dummy; copy_v3_v3(tri_a[0], t_a0); copy_v3_v3(tri_a[1], t_a1); copy_v3_v3(tri_a[2], t_a2); copy_v3_v3(tri_b[0], t_b0); copy_v3_v3(tri_b[1], t_b1); copy_v3_v3(tri_b[2], t_b2); return isect_tri_tri_v3_ex(tri_a, tri_b, r_i1, r_i2, &dummy); } /* -------------------------------------------------------------------- */ /** \name Tri-Tri Intersect 2D * * "Fast and Robust Triangle-Triangle Overlap Test * Using Orientation Predicates" P. Guigue - O. Devillers * Journal of Graphics Tools, 8(1), 2003. * * \{ */ static bool isect_tri_tri_v2_impl_vert(const float t_a0[2], const float t_a1[2], const float t_a2[2], const float t_b0[2], const float t_b1[2], const float t_b2[2]) { if (line_point_side_v2(t_b2, t_b0, t_a1) >= 0.0f) { if (line_point_side_v2(t_b2, t_b1, t_a1) <= 0.0f) { if (line_point_side_v2(t_a0, t_b0, t_a1) > 0.0f) { if (line_point_side_v2(t_a0, t_b1, t_a1) <= 0.0f) { return 1; } return 0; } if (line_point_side_v2(t_a0, t_b0, t_a2) >= 0.0f) { if (line_point_side_v2(t_a1, t_a2, t_b0) >= 0.0f) { return 1; } return 0; } return 0; } if (line_point_side_v2(t_a0, t_b1, t_a1) <= 0.0f) { if (line_point_side_v2(t_b2, t_b1, t_a2) <= 0.0f) { if (line_point_side_v2(t_a1, t_a2, t_b1) >= 0.0f) { return 1; } return 0; } return 0; } return 0; } if (line_point_side_v2(t_b2, t_b0, t_a2) >= 0.0f) { if (line_point_side_v2(t_a1, t_a2, t_b2) >= 0.0f) { if (line_point_side_v2(t_a0, t_b0, t_a2) >= 0.0f) { return 1; } return 0; } if (line_point_side_v2(t_a1, t_a2, t_b1) >= 0.0f) { if (line_point_side_v2(t_b2, t_a2, t_b1) >= 0.0f) { return 1; } return 0; } return 0; } return 0; } static bool isect_tri_tri_v2_impl_edge(const float t_a0[2], const float t_a1[2], const float t_a2[2], const float t_b0[2], const float t_b1[2], const float t_b2[2]) { UNUSED_VARS(t_b1); if (line_point_side_v2(t_b2, t_b0, t_a1) >= 0.0f) { if (line_point_side_v2(t_a0, t_b0, t_a1) >= 0.0f) { if (line_point_side_v2(t_a0, t_a1, t_b2) >= 0.0f) { return 1; } return 0; } if (line_point_side_v2(t_a1, t_a2, t_b0) >= 0.0f) { if (line_point_side_v2(t_a2, t_a0, t_b0) >= 0.0f) { return 1; } return 0; } return 0; } if (line_point_side_v2(t_b2, t_b0, t_a2) >= 0.0f) { if (line_point_side_v2(t_a0, t_b0, t_a2) >= 0.0f) { if (line_point_side_v2(t_a0, t_a2, t_b2) >= 0.0f) { return 1; } if (line_point_side_v2(t_a1, t_a2, t_b2) >= 0.0f) { return 1; } return 0; } return 0; } return 0; } static int isect_tri_tri_impl_ccw_v2(const float t_a0[2], const float t_a1[2], const float t_a2[2], const float t_b0[2], const float t_b1[2], const float t_b2[2]) { if (line_point_side_v2(t_b0, t_b1, t_a0) >= 0.0f) { if (line_point_side_v2(t_b1, t_b2, t_a0) >= 0.0f) { if (line_point_side_v2(t_b2, t_b0, t_a0) >= 0.0f) { return 1; } return isect_tri_tri_v2_impl_edge(t_a0, t_a1, t_a2, t_b0, t_b1, t_b2); } if (line_point_side_v2(t_b2, t_b0, t_a0) >= 0.0f) { return isect_tri_tri_v2_impl_edge(t_a0, t_a1, t_a2, t_b2, t_b0, t_b1); } return isect_tri_tri_v2_impl_vert(t_a0, t_a1, t_a2, t_b0, t_b1, t_b2); } if (line_point_side_v2(t_b1, t_b2, t_a0) >= 0.0f) { if (line_point_side_v2(t_b2, t_b0, t_a0) >= 0.0f) { return isect_tri_tri_v2_impl_edge(t_a0, t_a1, t_a2, t_b1, t_b2, t_b0); } return isect_tri_tri_v2_impl_vert(t_a0, t_a1, t_a2, t_b1, t_b2, t_b0); } return isect_tri_tri_v2_impl_vert(t_a0, t_a1, t_a2, t_b2, t_b0, t_b1); } bool isect_tri_tri_v2(const float t_a0[2], const float t_a1[2], const float t_a2[2], const float t_b0[2], const float t_b1[2], const float t_b2[2]) { if (line_point_side_v2(t_a0, t_a1, t_a2) < 0.0f) { if (line_point_side_v2(t_b0, t_b1, t_b2) < 0.0f) { return isect_tri_tri_impl_ccw_v2(t_a0, t_a2, t_a1, t_b0, t_b2, t_b1); } return isect_tri_tri_impl_ccw_v2(t_a0, t_a2, t_a1, t_b0, t_b1, t_b2); } if (line_point_side_v2(t_b0, t_b1, t_b2) < 0.0f) { return isect_tri_tri_impl_ccw_v2(t_a0, t_a1, t_a2, t_b0, t_b2, t_b1); } return isect_tri_tri_impl_ccw_v2(t_a0, t_a1, t_a2, t_b0, t_b1, t_b2); } /** \} */ /* Adapted from the paper by Kasper Fauerby */ /* "Improved Collision detection and Response" */ static bool getLowestRoot( const float a, const float b, const float c, const float maxR, float *root) { /* Check if a solution exists */ const float determinant = b * b - 4.0f * a * c; /* If determinant is negative it means no solutions. */ if (determinant >= 0.0f) { /* calculate the two roots: (if determinant == 0 then * x1==x2 but lets disregard that slight optimization) */ const float sqrtD = sqrtf(determinant); float r1 = (-b - sqrtD) / (2.0f * a); float r2 = (-b + sqrtD) / (2.0f * a); /* Sort so x1 <= x2 */ if (r1 > r2) { SWAP(float, r1, r2); } /* Get lowest root: */ if (r1 > 0.0f && r1 < maxR) { *root = r1; return true; } /* It is possible that we want x2 - this can happen */ /* if x1 < 0 */ if (r2 > 0.0f && r2 < maxR) { *root = r2; return true; } } /* No (valid) solutions */ return false; } int isect_aabb_planes_v3(const float (*planes)[4], const int totplane, const float bbmin[3], const float bbmax[3]) { int ret = ISECT_AABB_PLANE_IN_FRONT_ALL; float bb_near[3], bb_far[3]; for (int i = 0; i < totplane; i++) { aabb_get_near_far_from_plane(planes[i], bbmin, bbmax, bb_near, bb_far); if (plane_point_side_v3(planes[i], bb_far) < 0.0f) { return ISECT_AABB_PLANE_BEHIND_ANY; } if ((ret != ISECT_AABB_PLANE_CROSS_ANY) && (plane_point_side_v3(planes[i], bb_near) < 0.0f)) { ret = ISECT_AABB_PLANE_CROSS_ANY; } } return ret; } bool isect_sweeping_sphere_tri_v3(const float p1[3], const float p2[3], const float radius, const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float ipoint[3]) { float e1[3], e2[3], e3[3], point[3], vel[3], /*dist[3],*/ nor[3], temp[3], bv[3]; float a, b, c, d, e, x, y, z, radius2 = radius * radius; float elen2, edotv, edotbv, nordotv; float newLambda; bool found_by_sweep = false; sub_v3_v3v3(e1, v1, v0); sub_v3_v3v3(e2, v2, v0); sub_v3_v3v3(vel, p2, p1); /*---test plane of tri---*/ cross_v3_v3v3(nor, e1, e2); normalize_v3(nor); /* flip normal */ if (dot_v3v3(nor, vel) > 0.0f) { negate_v3(nor); } a = dot_v3v3(p1, nor) - dot_v3v3(v0, nor); nordotv = dot_v3v3(nor, vel); if (fabsf(nordotv) < 0.000001f) { if (fabsf(a) >= radius) { return false; } } else { float t0 = (-a + radius) / nordotv; float t1 = (-a - radius) / nordotv; if (t0 > t1) { SWAP(float, t0, t1); } if (t0 > 1.0f || t1 < 0.0f) { return false; } /* clamp to [0, 1] */ CLAMP(t0, 0.0f, 1.0f); CLAMP(t1, 0.0f, 1.0f); /*---test inside of tri---*/ /* plane intersection point */ point[0] = p1[0] + vel[0] * t0 - nor[0] * radius; point[1] = p1[1] + vel[1] * t0 - nor[1] * radius; point[2] = p1[2] + vel[2] * t0 - nor[2] * radius; /* is the point in the tri? */ a = dot_v3v3(e1, e1); b = dot_v3v3(e1, e2); c = dot_v3v3(e2, e2); sub_v3_v3v3(temp, point, v0); d = dot_v3v3(temp, e1); e = dot_v3v3(temp, e2); x = d * c - e * b; y = e * a - d * b; z = x + y - (a * c - b * b); if (z <= 0.0f && (x >= 0.0f && y >= 0.0f)) { //(((unsigned int)z)& ~(((unsigned int)x)|((unsigned int)y))) & 0x80000000) { *r_lambda = t0; copy_v3_v3(ipoint, point); return true; } } *r_lambda = 1.0f; /*---test points---*/ a = dot_v3v3(vel, vel); /*v0*/ sub_v3_v3v3(temp, p1, v0); b = 2.0f * dot_v3v3(vel, temp); c = dot_v3v3(temp, temp) - radius2; if (getLowestRoot(a, b, c, *r_lambda, r_lambda)) { copy_v3_v3(ipoint, v0); found_by_sweep = true; } /*v1*/ sub_v3_v3v3(temp, p1, v1); b = 2.0f * dot_v3v3(vel, temp); c = dot_v3v3(temp, temp) - radius2; if (getLowestRoot(a, b, c, *r_lambda, r_lambda)) { copy_v3_v3(ipoint, v1); found_by_sweep = true; } /*v2*/ sub_v3_v3v3(temp, p1, v2); b = 2.0f * dot_v3v3(vel, temp); c = dot_v3v3(temp, temp) - radius2; if (getLowestRoot(a, b, c, *r_lambda, r_lambda)) { copy_v3_v3(ipoint, v2); found_by_sweep = true; } /*---test edges---*/ sub_v3_v3v3(e3, v2, v1); /* wasn't yet calculated */ /* `e1` */ sub_v3_v3v3(bv, v0, p1); elen2 = dot_v3v3(e1, e1); edotv = dot_v3v3(e1, vel); edotbv = dot_v3v3(e1, bv); a = elen2 * (-dot_v3v3(vel, vel)) + edotv * edotv; b = 2.0f * (elen2 * dot_v3v3(vel, bv) - edotv * edotbv); c = elen2 * (radius2 - dot_v3v3(bv, bv)) + edotbv * edotbv; if (getLowestRoot(a, b, c, *r_lambda, &newLambda)) { e = (edotv * newLambda - edotbv) / elen2; if (e >= 0.0f && e <= 1.0f) { *r_lambda = newLambda; copy_v3_v3(ipoint, e1); mul_v3_fl(ipoint, e); add_v3_v3(ipoint, v0); found_by_sweep = true; } } /* `e2` */ /* `bv` is same. */ elen2 = dot_v3v3(e2, e2); edotv = dot_v3v3(e2, vel); edotbv = dot_v3v3(e2, bv); a = elen2 * (-dot_v3v3(vel, vel)) + edotv * edotv; b = 2.0f * (elen2 * dot_v3v3(vel, bv) - edotv * edotbv); c = elen2 * (radius2 - dot_v3v3(bv, bv)) + edotbv * edotbv; if (getLowestRoot(a, b, c, *r_lambda, &newLambda)) { e = (edotv * newLambda - edotbv) / elen2; if (e >= 0.0f && e <= 1.0f) { *r_lambda = newLambda; copy_v3_v3(ipoint, e2); mul_v3_fl(ipoint, e); add_v3_v3(ipoint, v0); found_by_sweep = true; } } /* `e3` */ // sub_v3_v3v3(bv, v0, p1); /* UNUSED */ // elen2 = dot_v3v3(e1, e1); /* UNUSED */ // edotv = dot_v3v3(e1, vel); /* UNUSED */ // edotbv = dot_v3v3(e1, bv); /* UNUSED */ sub_v3_v3v3(bv, v1, p1); elen2 = dot_v3v3(e3, e3); edotv = dot_v3v3(e3, vel); edotbv = dot_v3v3(e3, bv); a = elen2 * (-dot_v3v3(vel, vel)) + edotv * edotv; b = 2.0f * (elen2 * dot_v3v3(vel, bv) - edotv * edotbv); c = elen2 * (radius2 - dot_v3v3(bv, bv)) + edotbv * edotbv; if (getLowestRoot(a, b, c, *r_lambda, &newLambda)) { e = (edotv * newLambda - edotbv) / elen2; if (e >= 0.0f && e <= 1.0f) { *r_lambda = newLambda; copy_v3_v3(ipoint, e3); mul_v3_fl(ipoint, e); add_v3_v3(ipoint, v1); found_by_sweep = true; } } return found_by_sweep; } bool isect_axial_line_segment_tri_v3(const int axis, const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3], float *r_lambda) { const float epsilon = 0.000001f; float p[3], e1[3], e2[3]; float u, v, f; int a0 = axis, a1 = (axis + 1) % 3, a2 = (axis + 2) % 3; sub_v3_v3v3(e1, v1, v0); sub_v3_v3v3(e2, v2, v0); sub_v3_v3v3(p, v0, p1); f = (e2[a1] * e1[a2] - e2[a2] * e1[a1]); if ((f > -epsilon) && (f < epsilon)) { return false; } v = (p[a2] * e1[a1] - p[a1] * e1[a2]) / f; if ((v < 0.0f) || (v > 1.0f)) { return false; } f = e1[a1]; if ((f > -epsilon) && (f < epsilon)) { f = e1[a2]; if ((f > -epsilon) && (f < epsilon)) { return false; } u = (-p[a2] - v * e2[a2]) / f; } else { u = (-p[a1] - v * e2[a1]) / f; } if ((u < 0.0f) || ((u + v) > 1.0f)) { return false; } *r_lambda = (p[a0] + u * e1[a0] + v * e2[a0]) / (p2[a0] - p1[a0]); if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f)) { return false; } return true; } int isect_line_line_epsilon_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3], float r_i1[3], float r_i2[3], const float epsilon) { float a[3], b[3], c[3], ab[3], cb[3]; float d, div; sub_v3_v3v3(c, v3, v1); sub_v3_v3v3(a, v2, v1); sub_v3_v3v3(b, v4, v3); cross_v3_v3v3(ab, a, b); d = dot_v3v3(c, ab); div = dot_v3v3(ab, ab); /* important not to use an epsilon here, see: T45919 */ /* test zero length line */ if (UNLIKELY(div == 0.0f)) { return 0; } /* test if the two lines are coplanar */ if (UNLIKELY(fabsf(d) <= epsilon)) { cross_v3_v3v3(cb, c, b); mul_v3_fl(a, dot_v3v3(cb, ab) / div); add_v3_v3v3(r_i1, v1, a); copy_v3_v3(r_i2, r_i1); return 1; /* one intersection only */ } /* if not */ float n[3], t[3]; float v3t[3], v4t[3]; sub_v3_v3v3(t, v1, v3); /* offset between both plane where the lines lies */ cross_v3_v3v3(n, a, b); project_v3_v3v3(t, t, n); /* for the first line, offset the second line until it is coplanar */ add_v3_v3v3(v3t, v3, t); add_v3_v3v3(v4t, v4, t); sub_v3_v3v3(c, v3t, v1); sub_v3_v3v3(a, v2, v1); sub_v3_v3v3(b, v4t, v3t); cross_v3_v3v3(ab, a, b); cross_v3_v3v3(cb, c, b); mul_v3_fl(a, dot_v3v3(cb, ab) / dot_v3v3(ab, ab)); add_v3_v3v3(r_i1, v1, a); /* for the second line, just subtract the offset from the first intersection point */ sub_v3_v3v3(r_i2, r_i1, t); return 2; /* two nearest points */ } int isect_line_line_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3], float r_i1[3], float r_i2[3]) { const float epsilon = 0.000001f; return isect_line_line_epsilon_v3(v1, v2, v3, v4, r_i1, r_i2, epsilon); } bool isect_line_line_strict_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3], float vi[3], float *r_lambda) { const float epsilon = 0.000001f; float a[3], b[3], c[3], ab[3], cb[3], ca[3]; float d, div; sub_v3_v3v3(c, v3, v1); sub_v3_v3v3(a, v2, v1); sub_v3_v3v3(b, v4, v3); cross_v3_v3v3(ab, a, b); d = dot_v3v3(c, ab); div = dot_v3v3(ab, ab); /* important not to use an epsilon here, see: T45919 */ /* test zero length line */ if (UNLIKELY(div == 0.0f)) { return false; } /* test if the two lines are coplanar */ if (UNLIKELY(fabsf(d) < epsilon)) { return false; } float f1, f2; cross_v3_v3v3(cb, c, b); cross_v3_v3v3(ca, c, a); f1 = dot_v3v3(cb, ab) / div; f2 = dot_v3v3(ca, ab) / div; if (f1 >= 0 && f1 <= 1 && f2 >= 0 && f2 <= 1) { mul_v3_fl(a, f1); add_v3_v3v3(vi, v1, a); if (r_lambda) { *r_lambda = f1; } return true; /* intersection found */ } return false; } bool isect_ray_ray_epsilon_v3(const float ray_origin_a[3], const float ray_direction_a[3], const float ray_origin_b[3], const float ray_direction_b[3], const float epsilon, float *r_lambda_a, float *r_lambda_b) { BLI_assert(r_lambda_a || r_lambda_b); float n[3]; cross_v3_v3v3(n, ray_direction_b, ray_direction_a); const float nlen = len_squared_v3(n); /* `nlen` is the square of the area formed by the two vectors. */ if (UNLIKELY(nlen < epsilon)) { /* The lines are parallel. */ return false; } float t[3], c[3], cray[3]; sub_v3_v3v3(t, ray_origin_b, ray_origin_a); sub_v3_v3v3(c, n, t); if (r_lambda_a != NULL) { cross_v3_v3v3(cray, c, ray_direction_b); *r_lambda_a = dot_v3v3(cray, n) / nlen; } if (r_lambda_b != NULL) { cross_v3_v3v3(cray, c, ray_direction_a); *r_lambda_b = dot_v3v3(cray, n) / nlen; } return true; } bool isect_ray_ray_v3(const float ray_origin_a[3], const float ray_direction_a[3], const float ray_origin_b[3], const float ray_direction_b[3], float *r_lambda_a, float *r_lambda_b) { return isect_ray_ray_epsilon_v3(ray_origin_a, ray_direction_a, ray_origin_b, ray_direction_b, FLT_MIN, r_lambda_a, r_lambda_b); } bool isect_aabb_aabb_v3(const float min1[3], const float max1[3], const float min2[3], const float max2[3]) { return (min1[0] < max2[0] && min1[1] < max2[1] && min1[2] < max2[2] && min2[0] < max1[0] && min2[1] < max1[1] && min2[2] < max1[2]); } void isect_ray_aabb_v3_precalc(struct IsectRayAABB_Precalc *data, const float ray_origin[3], const float ray_direction[3]) { copy_v3_v3(data->ray_origin, ray_origin); data->ray_inv_dir[0] = 1.0f / ray_direction[0]; data->ray_inv_dir[1] = 1.0f / ray_direction[1]; data->ray_inv_dir[2] = 1.0f / ray_direction[2]; data->sign[0] = data->ray_inv_dir[0] < 0.0f; data->sign[1] = data->ray_inv_dir[1] < 0.0f; data->sign[2] = data->ray_inv_dir[2] < 0.0f; } bool isect_ray_aabb_v3(const struct IsectRayAABB_Precalc *data, const float bb_min[3], const float bb_max[3], float *tmin_out) { /* Adapted from http://www.gamedev.net/community/forums/topic.asp?topic_id=459973 */ float bbox[2][3]; copy_v3_v3(bbox[0], bb_min); copy_v3_v3(bbox[1], bb_max); float tmin = (bbox[data->sign[0]][0] - data->ray_origin[0]) * data->ray_inv_dir[0]; float tmax = (bbox[1 - data->sign[0]][0] - data->ray_origin[0]) * data->ray_inv_dir[0]; const float tymin = (bbox[data->sign[1]][1] - data->ray_origin[1]) * data->ray_inv_dir[1]; const float tymax = (bbox[1 - data->sign[1]][1] - data->ray_origin[1]) * data->ray_inv_dir[1]; if ((tmin > tymax) || (tymin > tmax)) { return false; } if (tymin > tmin) { tmin = tymin; } if (tymax < tmax) { tmax = tymax; } const float tzmin = (bbox[data->sign[2]][2] - data->ray_origin[2]) * data->ray_inv_dir[2]; const float tzmax = (bbox[1 - data->sign[2]][2] - data->ray_origin[2]) * data->ray_inv_dir[2]; if ((tmin > tzmax) || (tzmin > tmax)) { return false; } if (tzmin > tmin) { tmin = tzmin; } /* NOTE(jwilkins): tmax does not need to be updated since we don't use it * keeping this here for future reference. */ // if (tzmax < tmax) tmax = tzmax; if (tmin_out) { (*tmin_out) = tmin; } return true; } bool isect_ray_aabb_v3_simple(const float orig[3], const float dir[3], const float bb_min[3], const float bb_max[3], float *tmin, float *tmax) { double t[6]; float hit_dist[2]; const double invdirx = (dir[0] > 1e-35f || dir[0] < -1e-35f) ? 1.0 / (double)dir[0] : DBL_MAX; const double invdiry = (dir[1] > 1e-35f || dir[1] < -1e-35f) ? 1.0 / (double)dir[1] : DBL_MAX; const double invdirz = (dir[2] > 1e-35f || dir[2] < -1e-35f) ? 1.0 / (double)dir[2] : DBL_MAX; t[0] = (double)(bb_min[0] - orig[0]) * invdirx; t[1] = (double)(bb_max[0] - orig[0]) * invdirx; t[2] = (double)(bb_min[1] - orig[1]) * invdiry; t[3] = (double)(bb_max[1] - orig[1]) * invdiry; t[4] = (double)(bb_min[2] - orig[2]) * invdirz; t[5] = (double)(bb_max[2] - orig[2]) * invdirz; hit_dist[0] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5])); hit_dist[1] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5])); if ((hit_dist[1] < 0.0f) || (hit_dist[0] > hit_dist[1])) { return false; } if (tmin) { *tmin = hit_dist[0]; } if (tmax) { *tmax = hit_dist[1]; } return true; } float closest_to_ray_v3(float r_close[3], const float p[3], const float ray_orig[3], const float ray_dir[3]) { float h[3], lambda; if (UNLIKELY(is_zero_v3(ray_dir))) { lambda = 0.0f; copy_v3_v3(r_close, ray_orig); return lambda; } sub_v3_v3v3(h, p, ray_orig); lambda = dot_v3v3(ray_dir, h) / dot_v3v3(ray_dir, ray_dir); madd_v3_v3v3fl(r_close, ray_orig, ray_dir, lambda); return lambda; } float closest_to_line_v3(float r_close[3], const float p[3], const float l1[3], const float l2[3]) { float u[3]; sub_v3_v3v3(u, l2, l1); return closest_to_ray_v3(r_close, p, l1, u); } float closest_to_line_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2]) { float h[2], u[2], lambda, denom; sub_v2_v2v2(u, l2, l1); sub_v2_v2v2(h, p, l1); denom = dot_v2v2(u, u); if (denom == 0.0f) { r_close[0] = l1[0]; r_close[1] = l1[1]; return 0.0f; } lambda = dot_v2v2(u, h) / denom; r_close[0] = l1[0] + u[0] * lambda; r_close[1] = l1[1] + u[1] * lambda; return lambda; } double closest_to_line_v2_db(double r_close[2], const double p[2], const double l1[2], const double l2[2]) { double h[2], u[2], lambda, denom; sub_v2_v2v2_db(u, l2, l1); sub_v2_v2v2_db(h, p, l1); denom = dot_v2v2_db(u, u); if (denom == 0.0) { r_close[0] = l1[0]; r_close[1] = l1[1]; return 0.0; } lambda = dot_v2v2_db(u, h) / denom; r_close[0] = l1[0] + u[0] * lambda; r_close[1] = l1[1] + u[1] * lambda; return lambda; } float ray_point_factor_v3_ex(const float p[3], const float ray_origin[3], const float ray_direction[3], const float epsilon, const float fallback) { float p_relative[3]; sub_v3_v3v3(p_relative, p, ray_origin); const float dot = len_squared_v3(ray_direction); return (dot > epsilon) ? (dot_v3v3(ray_direction, p_relative) / dot) : fallback; } float ray_point_factor_v3(const float p[3], const float ray_origin[3], const float ray_direction[3]) { return ray_point_factor_v3_ex(p, ray_origin, ray_direction, 0.0f, 0.0f); } float line_point_factor_v3_ex(const float p[3], const float l1[3], const float l2[3], const float epsilon, const float fallback) { float h[3], u[3]; float dot; sub_v3_v3v3(u, l2, l1); sub_v3_v3v3(h, p, l1); /* better check for zero */ dot = len_squared_v3(u); return (dot > epsilon) ? (dot_v3v3(u, h) / dot) : fallback; } float line_point_factor_v3(const float p[3], const float l1[3], const float l2[3]) { return line_point_factor_v3_ex(p, l1, l2, 0.0f, 0.0f); } float line_point_factor_v2_ex(const float p[2], const float l1[2], const float l2[2], const float epsilon, const float fallback) { float h[2], u[2]; float dot; sub_v2_v2v2(u, l2, l1); sub_v2_v2v2(h, p, l1); /* better check for zero */ dot = len_squared_v2(u); return (dot > epsilon) ? (dot_v2v2(u, h) / dot) : fallback; } float line_point_factor_v2(const float p[2], const float l1[2], const float l2[2]) { return line_point_factor_v2_ex(p, l1, l2, 0.0f, 0.0f); } float line_plane_factor_v3(const float plane_co[3], const float plane_no[3], const float l1[3], const float l2[3]) { float u[3], h[3]; float dot; sub_v3_v3v3(u, l2, l1); sub_v3_v3v3(h, l1, plane_co); dot = dot_v3v3(plane_no, u); return (dot != 0.0f) ? -dot_v3v3(plane_no, h) / dot : 0.0f; } void limit_dist_v3(float v1[3], float v2[3], const float dist) { const float dist_old = len_v3v3(v1, v2); if (dist_old > dist) { float v1_old[3]; float v2_old[3]; float fac = (dist / dist_old) * 0.5f; copy_v3_v3(v1_old, v1); copy_v3_v3(v2_old, v2); interp_v3_v3v3(v1, v1_old, v2_old, 0.5f - fac); interp_v3_v3v3(v2, v1_old, v2_old, 0.5f + fac); } } int isect_point_tri_v2_int( const int x1, const int y1, const int x2, const int y2, const int a, const int b) { float v1[2], v2[2], v3[2], p[2]; v1[0] = (float)x1; v1[1] = (float)y1; v2[0] = (float)x1; v2[1] = (float)y2; v3[0] = (float)x2; v3[1] = (float)y1; p[0] = (float)a; p[1] = (float)b; return isect_point_tri_v2(p, v1, v2, v3); } static bool point_in_slice(const float p[3], const float v1[3], const float l1[3], const float l2[3]) { /* * what is a slice ? * some maths: * a line including (l1, l2) and a point not on the line * define a subset of R3 delimited by planes parallel to the line and orthogonal * to the (point --> line) distance vector, one plane on the line one on the point, * the room inside usually is rather small compared to R3 though still infinite * useful for restricting (speeding up) searches * e.g. all points of triangular prism are within the intersection of 3 'slices' * another trivial case : cube * but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too */ float h, rp[3], cp[3], q[3]; closest_to_line_v3(cp, v1, l1, l2); sub_v3_v3v3(q, cp, v1); sub_v3_v3v3(rp, p, v1); h = dot_v3v3(q, rp) / dot_v3v3(q, q); /* NOTE: when 'h' is nan/-nan, this check returns false * without explicit check - covering the degenerate case */ return (h >= 0.0f && h <= 1.0f); } /* Adult sister defining the slice planes by the origin and the normal. * NOTE: |normal| may not be 1 but defining the thickness of the slice. */ static bool point_in_slice_as(const float p[3], const float origin[3], const float normal[3]) { float h, rp[3]; sub_v3_v3v3(rp, p, origin); h = dot_v3v3(normal, rp) / dot_v3v3(normal, normal); if (h < 0.0f || h > 1.0f) { return false; } return true; } bool point_in_slice_seg(float p[3], float l1[3], float l2[3]) { float normal[3]; sub_v3_v3v3(normal, l2, l1); return point_in_slice_as(p, l1, normal); } bool isect_point_tri_prism_v3(const float p[3], const float v1[3], const float v2[3], const float v3[3]) { if (!point_in_slice(p, v1, v2, v3)) { return false; } if (!point_in_slice(p, v2, v3, v1)) { return false; } if (!point_in_slice(p, v3, v1, v2)) { return false; } return true; } bool isect_point_tri_v3( const float p[3], const float v1[3], const float v2[3], const float v3[3], float r_isect_co[3]) { if (isect_point_tri_prism_v3(p, v1, v2, v3)) { float plane[4]; float no[3]; /* Could use normal_tri_v3, but doesn't have to be unit-length */ cross_tri_v3(no, v1, v2, v3); BLI_assert(len_squared_v3(no) != 0.0f); plane_from_point_normal_v3(plane, v1, no); closest_to_plane_v3(r_isect_co, plane, p); return true; } return false; } bool clip_segment_v3_plane( const float p1[3], const float p2[3], const float plane[4], float r_p1[3], float r_p2[3]) { float dp[3], div; sub_v3_v3v3(dp, p2, p1); div = dot_v3v3(dp, plane); if (div == 0.0f) { /* parallel */ return true; } float t = -plane_point_side_v3(plane, p1); if (div > 0.0f) { /* behind plane, completely clipped */ if (t >= div) { return false; } if (t > 0.0f) { const float p1_copy[3] = {UNPACK3(p1)}; copy_v3_v3(r_p2, p2); madd_v3_v3v3fl(r_p1, p1_copy, dp, t / div); return true; } } else { /* behind plane, completely clipped */ if (t >= 0.0f) { return false; } if (t > div) { const float p1_copy[3] = {UNPACK3(p1)}; copy_v3_v3(r_p1, p1); madd_v3_v3v3fl(r_p2, p1_copy, dp, t / div); return true; } } /* In case input/output values match (above also). */ const float p1_copy[3] = {UNPACK3(p1)}; copy_v3_v3(r_p2, p2); copy_v3_v3(r_p1, p1_copy); return true; } bool clip_segment_v3_plane_n(const float p1[3], const float p2[3], const float plane_array[][4], const int plane_num, float r_p1[3], float r_p2[3]) { /* intersect from both directions */ float p1_fac = 0.0f, p2_fac = 1.0f; float dp[3]; sub_v3_v3v3(dp, p2, p1); for (int i = 0; i < plane_num; i++) { const float *plane = plane_array[i]; const float div = dot_v3v3(dp, plane); if (div != 0.0f) { float t = -plane_point_side_v3(plane, p1); if (div > 0.0f) { /* clip p1 lower bounds */ if (t >= div) { return false; } if (t > 0.0f) { t /= div; if (t > p1_fac) { p1_fac = t; if (p1_fac > p2_fac) { return false; } } } } else if (div < 0.0f) { /* clip p2 upper bounds */ if (t >= 0.0f) { return false; } if (t > div) { t /= div; if (t < p2_fac) { p2_fac = t; if (p1_fac > p2_fac) { return false; } } } } } } /* In case input/output values match. */ const float p1_copy[3] = {UNPACK3(p1)}; madd_v3_v3v3fl(r_p1, p1_copy, dp, p1_fac); madd_v3_v3v3fl(r_p2, p1_copy, dp, p2_fac); return true; } /****************************** Axis Utils ********************************/ void axis_dominant_v3_to_m3(float r_mat[3][3], const float normal[3]) { BLI_ASSERT_UNIT_V3(normal); copy_v3_v3(r_mat[2], normal); ortho_basis_v3v3_v3(r_mat[0], r_mat[1], r_mat[2]); BLI_ASSERT_UNIT_V3(r_mat[0]); BLI_ASSERT_UNIT_V3(r_mat[1]); transpose_m3(r_mat); BLI_assert(!is_negative_m3(r_mat)); BLI_assert((fabsf(dot_m3_v3_row_z(r_mat, normal) - 1.0f) < BLI_ASSERT_UNIT_EPSILON) || is_zero_v3(normal)); } void axis_dominant_v3_to_m3_negate(float r_mat[3][3], const float normal[3]) { BLI_ASSERT_UNIT_V3(normal); negate_v3_v3(r_mat[2], normal); ortho_basis_v3v3_v3(r_mat[0], r_mat[1], r_mat[2]); BLI_ASSERT_UNIT_V3(r_mat[0]); BLI_ASSERT_UNIT_V3(r_mat[1]); transpose_m3(r_mat); BLI_assert(!is_negative_m3(r_mat)); BLI_assert((dot_m3_v3_row_z(r_mat, normal) < BLI_ASSERT_UNIT_EPSILON) || is_zero_v3(normal)); } /****************************** Interpolation ********************************/ static float tri_signed_area( const float v1[3], const float v2[3], const float v3[3], const int i, const int j) { return 0.5f * ((v1[i] - v2[i]) * (v2[j] - v3[j]) + (v1[j] - v2[j]) * (v3[i] - v2[i])); } /** * \return false when degenerate. */ static bool barycentric_weights(const float v1[3], const float v2[3], const float v3[3], const float co[3], const float n[3], float w[3]) { float wtot; int i, j; axis_dominant_v3(&i, &j, n); w[0] = tri_signed_area(v2, v3, co, i, j); w[1] = tri_signed_area(v3, v1, co, i, j); w[2] = tri_signed_area(v1, v2, co, i, j); wtot = w[0] + w[1] + w[2]; #ifdef DEBUG /* Avoid floating point exception when debugging. */ if (wtot != 0.0f) #endif { mul_v3_fl(w, 1.0f / wtot); if (is_finite_v3(w)) { return true; } } /* Zero area triangle. */ copy_v3_fl(w, 1.0f / 3.0f); return false; } void interp_weights_tri_v3( float w[3], const float v1[3], const float v2[3], const float v3[3], const float co[3]) { float n[3]; normal_tri_v3(n, v1, v2, v3); barycentric_weights(v1, v2, v3, co, n, w); } void interp_weights_quad_v3(float w[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3], const float co[3]) { float w2[3]; zero_v4(w); /* first check for exact match */ if (equals_v3v3(co, v1)) { w[0] = 1.0f; } else if (equals_v3v3(co, v2)) { w[1] = 1.0f; } else if (equals_v3v3(co, v3)) { w[2] = 1.0f; } else if (equals_v3v3(co, v4)) { w[3] = 1.0f; } else { /* otherwise compute barycentric interpolation weights */ float n1[3], n2[3], n[3]; bool ok; sub_v3_v3v3(n1, v1, v3); sub_v3_v3v3(n2, v2, v4); cross_v3_v3v3(n, n1, n2); ok = barycentric_weights(v1, v2, v4, co, n, w); SWAP(float, w[2], w[3]); if (!ok || (w[0] < 0.0f)) { /* if w[1] is negative, co is on the other side of the v1-v3 edge, * so we interpolate using the other triangle */ ok = barycentric_weights(v2, v3, v4, co, n, w2); if (ok) { w[0] = 0.0f; w[1] = w2[0]; w[2] = w2[1]; w[3] = w2[2]; } } } } int barycentric_inside_triangle_v2(const float w[3]) { if (IN_RANGE(w[0], 0.0f, 1.0f) && IN_RANGE(w[1], 0.0f, 1.0f) && IN_RANGE(w[2], 0.0f, 1.0f)) { return 1; } if (IN_RANGE_INCL(w[0], 0.0f, 1.0f) && IN_RANGE_INCL(w[1], 0.0f, 1.0f) && IN_RANGE_INCL(w[2], 0.0f, 1.0f)) { return 2; } return 0; } bool barycentric_coords_v2( const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]) { const float x = co[0], y = co[1]; const float x1 = v1[0], y1 = v1[1]; const float x2 = v2[0], y2 = v2[1]; const float x3 = v3[0], y3 = v3[1]; const float det = (y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3); #ifdef DEBUG /* Avoid floating point exception when debugging. */ if (det != 0.0f) #endif { w[0] = ((y2 - y3) * (x - x3) + (x3 - x2) * (y - y3)) / det; w[1] = ((y3 - y1) * (x - x3) + (x1 - x3) * (y - y3)) / det; w[2] = 1.0f - w[0] - w[1]; if (is_finite_v3(w)) { return true; } } return false; } void barycentric_weights_v2( const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]) { float wtot; w[0] = cross_tri_v2(v2, v3, co); w[1] = cross_tri_v2(v3, v1, co); w[2] = cross_tri_v2(v1, v2, co); wtot = w[0] + w[1] + w[2]; #ifdef DEBUG /* Avoid floating point exception when debugging. */ if (wtot != 0.0f) #endif { mul_v3_fl(w, 1.0f / wtot); if (is_finite_v3(w)) { return; } } /* Dummy values for zero area face. */ copy_v3_fl(w, 1.0f / 3.0f); } void barycentric_weights_v2_clamped( const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]) { float wtot; w[0] = max_ff(cross_tri_v2(v2, v3, co), 0.0f); w[1] = max_ff(cross_tri_v2(v3, v1, co), 0.0f); w[2] = max_ff(cross_tri_v2(v1, v2, co), 0.0f); wtot = w[0] + w[1] + w[2]; #ifdef DEBUG /* Avoid floating point exception when debugging. */ if (wtot != 0.0f) #endif { mul_v3_fl(w, 1.0f / wtot); if (is_finite_v3(w)) { return; } } /* Dummy values for zero area face. */ copy_v3_fl(w, 1.0f / 3.0f); } void barycentric_weights_v2_persp( const float v1[4], const float v2[4], const float v3[4], const float co[2], float w[3]) { float wtot; w[0] = cross_tri_v2(v2, v3, co) / v1[3]; w[1] = cross_tri_v2(v3, v1, co) / v2[3]; w[2] = cross_tri_v2(v1, v2, co) / v3[3]; wtot = w[0] + w[1] + w[2]; #ifdef DEBUG /* Avoid floating point exception when debugging. */ if (wtot != 0.0f) #endif { mul_v3_fl(w, 1.0f / wtot); if (is_finite_v3(w)) { return; } } /* Dummy values for zero area face. */ copy_v3_fl(w, 1.0f / 3.0f); } void barycentric_weights_v2_quad(const float v1[2], const float v2[2], const float v3[2], const float v4[2], const float co[2], float w[4]) { /* NOTE(campbell): fabsf() here is not needed for convex quads * (and not used in #interp_weights_poly_v2). * But in the case of concave/bow-tie quads for the mask rasterizer it * gives unreliable results without adding `absf()`. If this becomes an issue for more general * usage we could have this optional or use a different function. */ #define MEAN_VALUE_HALF_TAN_V2(_area, i1, i2) \ ((_area = cross_v2v2(dirs[i1], dirs[i2])) != 0.0f ? \ fabsf(((lens[i1] * lens[i2]) - dot_v2v2(dirs[i1], dirs[i2])) / _area) : \ 0.0f) const float dirs[4][2] = { {v1[0] - co[0], v1[1] - co[1]}, {v2[0] - co[0], v2[1] - co[1]}, {v3[0] - co[0], v3[1] - co[1]}, {v4[0] - co[0], v4[1] - co[1]}, }; const float lens[4] = { len_v2(dirs[0]), len_v2(dirs[1]), len_v2(dirs[2]), len_v2(dirs[3]), }; /* avoid divide by zero */ if (UNLIKELY(lens[0] < FLT_EPSILON)) { w[0] = 1.0f; w[1] = w[2] = w[3] = 0.0f; } else if (UNLIKELY(lens[1] < FLT_EPSILON)) { w[1] = 1.0f; w[0] = w[2] = w[3] = 0.0f; } else if (UNLIKELY(lens[2] < FLT_EPSILON)) { w[2] = 1.0f; w[0] = w[1] = w[3] = 0.0f; } else if (UNLIKELY(lens[3] < FLT_EPSILON)) { w[3] = 1.0f; w[0] = w[1] = w[2] = 0.0f; } else { float wtot, area; /* variable 'area' is just for storage, * the order its initialized doesn't matter */ #ifdef __clang__ # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wunsequenced" #endif /* inline mean_value_half_tan four times here */ const float t[4] = { MEAN_VALUE_HALF_TAN_V2(area, 0, 1), MEAN_VALUE_HALF_TAN_V2(area, 1, 2), MEAN_VALUE_HALF_TAN_V2(area, 2, 3), MEAN_VALUE_HALF_TAN_V2(area, 3, 0), }; #ifdef __clang__ # pragma clang diagnostic pop #endif #undef MEAN_VALUE_HALF_TAN_V2 w[0] = (t[3] + t[0]) / lens[0]; w[1] = (t[0] + t[1]) / lens[1]; w[2] = (t[1] + t[2]) / lens[2]; w[3] = (t[2] + t[3]) / lens[3]; wtot = w[0] + w[1] + w[2] + w[3]; #ifdef DEBUG /* Avoid floating point exception when debugging. */ if (wtot != 0.0f) #endif { mul_v4_fl(w, 1.0f / wtot); if (is_finite_v4(w)) { return; } } /* Dummy values for zero area face. */ copy_v4_fl(w, 1.0f / 4.0f); } } void transform_point_by_tri_v3(float pt_tar[3], float const pt_src[3], const float tri_tar_p1[3], const float tri_tar_p2[3], const float tri_tar_p3[3], const float tri_src_p1[3], const float tri_src_p2[3], const float tri_src_p3[3]) { /* this works by moving the source triangle so its normal is pointing on the Z * axis where its barycentric weights can be calculated in 2D and its Z offset can * be re-applied. The weights are applied directly to the targets 3D points and the * z-depth is used to scale the targets normal as an offset. * This saves transforming the target into its Z-Up orientation and back * (which could also work) */ float no_tar[3], no_src[3]; float mat_src[3][3]; float pt_src_xy[3]; float tri_xy_src[3][3]; float w_src[3]; float area_tar, area_src; float z_ofs_src; normal_tri_v3(no_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3); normal_tri_v3(no_src, tri_src_p1, tri_src_p2, tri_src_p3); axis_dominant_v3_to_m3(mat_src, no_src); /* make the source tri xy space */ mul_v3_m3v3(pt_src_xy, mat_src, pt_src); mul_v3_m3v3(tri_xy_src[0], mat_src, tri_src_p1); mul_v3_m3v3(tri_xy_src[1], mat_src, tri_src_p2); mul_v3_m3v3(tri_xy_src[2], mat_src, tri_src_p3); barycentric_weights_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2], pt_src_xy, w_src); interp_v3_v3v3v3(pt_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3, w_src); area_tar = sqrtf(area_tri_v3(tri_tar_p1, tri_tar_p2, tri_tar_p3)); area_src = sqrtf(area_tri_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2])); z_ofs_src = pt_src_xy[2] - tri_xy_src[0][2]; madd_v3_v3v3fl(pt_tar, pt_tar, no_tar, (z_ofs_src / area_src) * area_tar); } void transform_point_by_seg_v3(float p_dst[3], const float p_src[3], const float l_dst_p1[3], const float l_dst_p2[3], const float l_src_p1[3], const float l_src_p2[3]) { float t = line_point_factor_v3(p_src, l_src_p1, l_src_p2); interp_v3_v3v3(p_dst, l_dst_p1, l_dst_p2, t); } int interp_sparse_array(float *array, const int list_size, const float skipval) { int found_invalid = 0; int found_valid = 0; int i; for (i = 0; i < list_size; i++) { if (array[i] == skipval) { found_invalid = 1; } else { found_valid = 1; } } if (found_valid == 0) { return -1; } if (found_invalid == 0) { return 0; } /* found invalid depths, interpolate */ float valid_last = skipval; int valid_ofs = 0; float *array_up = MEM_callocN(sizeof(float) * (size_t)list_size, "interp_sparse_array up"); float *array_down = MEM_callocN(sizeof(float) * (size_t)list_size, "interp_sparse_array up"); int *ofs_tot_up = MEM_callocN(sizeof(int) * (size_t)list_size, "interp_sparse_array tup"); int *ofs_tot_down = MEM_callocN(sizeof(int) * (size_t)list_size, "interp_sparse_array tdown"); for (i = 0; i < list_size; i++) { if (array[i] == skipval) { array_up[i] = valid_last; ofs_tot_up[i] = ++valid_ofs; } else { valid_last = array[i]; valid_ofs = 0; } } valid_last = skipval; valid_ofs = 0; for (i = list_size - 1; i >= 0; i--) { if (array[i] == skipval) { array_down[i] = valid_last; ofs_tot_down[i] = ++valid_ofs; } else { valid_last = array[i]; valid_ofs = 0; } } /* now blend */ for (i = 0; i < list_size; i++) { if (array[i] == skipval) { if (array_up[i] != skipval && array_down[i] != skipval) { array[i] = ((array_up[i] * (float)ofs_tot_down[i]) + (array_down[i] * (float)ofs_tot_up[i])) / (float)(ofs_tot_down[i] + ofs_tot_up[i]); } else if (array_up[i] != skipval) { array[i] = array_up[i]; } else if (array_down[i] != skipval) { array[i] = array_down[i]; } } } MEM_freeN(array_up); MEM_freeN(array_down); MEM_freeN(ofs_tot_up); MEM_freeN(ofs_tot_down); return 1; } /* -------------------------------------------------------------------- */ /** \name interp_weights_poly_v2, v3 * \{ */ #define IS_POINT_IX (1 << 0) #define IS_SEGMENT_IX (1 << 1) #define DIR_V3_SET(d_len, va, vb) \ { \ sub_v3_v3v3((d_len)->dir, va, vb); \ (d_len)->len = len_v3((d_len)->dir); \ } \ (void)0 #define DIR_V2_SET(d_len, va, vb) \ { \ sub_v2db_v2fl_v2fl((d_len)->dir, va, vb); \ (d_len)->len = len_v2_db((d_len)->dir); \ } \ (void)0 struct Float3_Len { float dir[3], len; }; struct Double2_Len { double dir[2], len; }; /* Mean value weights - smooth interpolation weights for polygons with * more than 3 vertices */ static float mean_value_half_tan_v3(const struct Float3_Len *d_curr, const struct Float3_Len *d_next) { float cross[3]; cross_v3_v3v3(cross, d_curr->dir, d_next->dir); const float area = len_v3(cross); /* Compare against zero since 'FLT_EPSILON' can be too large, see: T73348. */ if (LIKELY(area != 0.0f)) { const float dot = dot_v3v3(d_curr->dir, d_next->dir); const float len = d_curr->len * d_next->len; const float result = (len - dot) / area; if (isfinite(result)) { return result; } } return 0.0f; } /** * Mean value weights - same as #mean_value_half_tan_v3 but for 2D vectors. * * \note When interpolating a 2D polygon, a point can be considered "outside" * the polygon's bounds. Thus, when the point is very distant and the vectors * have relatively close values, the precision problems are evident since they * do not indicate a point "inside" the polygon. * To resolve this, doubles are used. */ static double mean_value_half_tan_v2_db(const struct Double2_Len *d_curr, const struct Double2_Len *d_next) { /* Different from the 3d version but still correct. */ const double area = cross_v2v2_db(d_curr->dir, d_next->dir); /* Compare against zero since 'FLT_EPSILON' can be too large, see: T73348. */ if (LIKELY(area != 0.0)) { const double dot = dot_v2v2_db(d_curr->dir, d_next->dir); const double len = d_curr->len * d_next->len; const double result = (len - dot) / area; if (isfinite(result)) { return result; } } return 0.0; } void interp_weights_poly_v3(float *w, float v[][3], const int n, const float co[3]) { /* Before starting to calculate the weight, we need to figure out the floating point precision we * can expect from the supplied data. */ float max_value = 0; for (int i = 0; i < n; i++) { max_value = max_ff(max_value, fabsf(v[i][0] - co[0])); max_value = max_ff(max_value, fabsf(v[i][1] - co[1])); max_value = max_ff(max_value, fabsf(v[i][2] - co[2])); } /* These to values we derived by empirically testing different values that works for the test * files in D7772. */ const float eps = 16.0f * FLT_EPSILON * max_value; const float eps_sq = eps * eps; const float *v_curr, *v_next; float ht_prev, ht; /* half tangents */ float totweight = 0.0f; int i_curr, i_next; char ix_flag = 0; struct Float3_Len d_curr, d_next; /* loop over 'i_next' */ i_curr = n - 1; i_next = 0; v_curr = v[i_curr]; v_next = v[i_next]; DIR_V3_SET(&d_curr, v_curr - 3 /* v[n - 2] */, co); DIR_V3_SET(&d_next, v_curr /* v[n - 1] */, co); ht_prev = mean_value_half_tan_v3(&d_curr, &d_next); while (i_next < n) { /* Mark Mayer et al algorithm that is used here does not operate well if vertex is close * to borders of face. * In that case, do simple linear interpolation between the two edge vertices */ /* 'd_next.len' is in fact 'd_curr.len', just avoid copy to begin with */ if (UNLIKELY(d_next.len < eps)) { ix_flag = IS_POINT_IX; break; } if (UNLIKELY(dist_squared_to_line_segment_v3(co, v_curr, v_next) < eps_sq)) { ix_flag = IS_SEGMENT_IX; break; } d_curr = d_next; DIR_V3_SET(&d_next, v_next, co); ht = mean_value_half_tan_v3(&d_curr, &d_next); w[i_curr] = (ht_prev + ht) / d_curr.len; totweight += w[i_curr]; /* step */ i_curr = i_next++; v_curr = v_next; v_next = v[i_next]; ht_prev = ht; } if (ix_flag) { memset(w, 0, sizeof(*w) * (size_t)n); if (ix_flag & IS_POINT_IX) { w[i_curr] = 1.0f; } else { float fac = line_point_factor_v3(co, v_curr, v_next); CLAMP(fac, 0.0f, 1.0f); w[i_curr] = 1.0f - fac; w[i_next] = fac; } } else { if (totweight != 0.0f) { for (i_curr = 0; i_curr < n; i_curr++) { w[i_curr] /= totweight; } } } } void interp_weights_poly_v2(float *w, float v[][2], const int n, const float co[2]) { /* Before starting to calculate the weight, we need to figure out the floating point precision we * can expect from the supplied data. */ float max_value = 0; for (int i = 0; i < n; i++) { max_value = max_ff(max_value, fabsf(v[i][0] - co[0])); max_value = max_ff(max_value, fabsf(v[i][1] - co[1])); } /* These to values we derived by empirically testing different values that works for the test * files in D7772. */ const float eps = 16.0f * FLT_EPSILON * max_value; const float eps_sq = eps * eps; const float *v_curr, *v_next; double ht_prev, ht; /* half tangents */ float totweight = 0.0f; int i_curr, i_next; char ix_flag = 0; struct Double2_Len d_curr, d_next; /* loop over 'i_next' */ i_curr = n - 1; i_next = 0; v_curr = v[i_curr]; v_next = v[i_next]; DIR_V2_SET(&d_curr, v_curr - 2 /* v[n - 2] */, co); DIR_V2_SET(&d_next, v_curr /* v[n - 1] */, co); ht_prev = mean_value_half_tan_v2_db(&d_curr, &d_next); while (i_next < n) { /* Mark Mayer et al algorithm that is used here does not operate well if vertex is close * to borders of face. In that case, * do simple linear interpolation between the two edge vertices */ /* 'd_next.len' is in fact 'd_curr.len', just avoid copy to begin with */ if (UNLIKELY(d_next.len < eps)) { ix_flag = IS_POINT_IX; break; } if (UNLIKELY(dist_squared_to_line_segment_v2(co, v_curr, v_next) < eps_sq)) { ix_flag = IS_SEGMENT_IX; break; } d_curr = d_next; DIR_V2_SET(&d_next, v_next, co); ht = mean_value_half_tan_v2_db(&d_curr, &d_next); w[i_curr] = (d_curr.len == 0.0) ? 0.0f : (float)((ht_prev + ht) / d_curr.len); totweight += w[i_curr]; /* step */ i_curr = i_next++; v_curr = v_next; v_next = v[i_next]; ht_prev = ht; } if (ix_flag) { memset(w, 0, sizeof(*w) * (size_t)n); if (ix_flag & IS_POINT_IX) { w[i_curr] = 1.0f; } else { float fac = line_point_factor_v2(co, v_curr, v_next); CLAMP(fac, 0.0f, 1.0f); w[i_curr] = 1.0f - fac; w[i_next] = fac; } } else { if (totweight != 0.0f) { for (i_curr = 0; i_curr < n; i_curr++) { w[i_curr] /= totweight; } } } } #undef IS_POINT_IX #undef IS_SEGMENT_IX #undef DIR_V3_SET #undef DIR_V2_SET /** \} */ void interp_cubic_v3(float x[3], float v[3], const float x1[3], const float v1[3], const float x2[3], const float v2[3], const float t) { float a[3], b[3]; const float t2 = t * t; const float t3 = t2 * t; /* cubic interpolation */ a[0] = v1[0] + v2[0] + 2 * (x1[0] - x2[0]); a[1] = v1[1] + v2[1] + 2 * (x1[1] - x2[1]); a[2] = v1[2] + v2[2] + 2 * (x1[2] - x2[2]); b[0] = -2 * v1[0] - v2[0] - 3 * (x1[0] - x2[0]); b[1] = -2 * v1[1] - v2[1] - 3 * (x1[1] - x2[1]); b[2] = -2 * v1[2] - v2[2] - 3 * (x1[2] - x2[2]); x[0] = a[0] * t3 + b[0] * t2 + v1[0] * t + x1[0]; x[1] = a[1] * t3 + b[1] * t2 + v1[1] * t + x1[1]; x[2] = a[2] * t3 + b[2] * t2 + v1[2] * t + x1[2]; v[0] = 3 * a[0] * t2 + 2 * b[0] * t + v1[0]; v[1] = 3 * a[1] * t2 + 2 * b[1] * t + v1[1]; v[2] = 3 * a[2] * t2 + 2 * b[2] * t + v1[2]; } /* unfortunately internal calculations have to be done at double precision * to achieve correct/stable results. */ #define IS_ZERO(x) ((x > (-DBL_EPSILON) && x < DBL_EPSILON) ? 1 : 0) void resolve_tri_uv_v2( float r_uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2]) { /* find UV such that * t = u * t0 + v * t1 + (1 - u - v) * t2 * u * (t0 - t2) + v * (t1 - t2) = t - t2 */ const double a = st0[0] - st2[0], b = st1[0] - st2[0]; const double c = st0[1] - st2[1], d = st1[1] - st2[1]; const double det = a * d - c * b; /* det should never be zero since the determinant is the signed ST area of the triangle. */ if (IS_ZERO(det) == 0) { const double x[2] = {st[0] - st2[0], st[1] - st2[1]}; r_uv[0] = (float)((d * x[0] - b * x[1]) / det); r_uv[1] = (float)(((-c) * x[0] + a * x[1]) / det); } else { zero_v2(r_uv); } } void resolve_tri_uv_v3( float r_uv[2], const float st[3], const float st0[3], const float st1[3], const float st2[3]) { float v0[3], v1[3], v2[3]; double d00, d01, d11, d20, d21, det; sub_v3_v3v3(v0, st1, st0); sub_v3_v3v3(v1, st2, st0); sub_v3_v3v3(v2, st, st0); d00 = dot_v3v3(v0, v0); d01 = dot_v3v3(v0, v1); d11 = dot_v3v3(v1, v1); d20 = dot_v3v3(v2, v0); d21 = dot_v3v3(v2, v1); det = d00 * d11 - d01 * d01; /* det should never be zero since the determinant is the signed ST area of the triangle. */ if (IS_ZERO(det) == 0) { float w; w = (float)((d00 * d21 - d01 * d20) / det); r_uv[1] = (float)((d11 * d20 - d01 * d21) / det); r_uv[0] = 1.0f - r_uv[1] - w; } else { zero_v2(r_uv); } } void resolve_quad_uv_v2(float r_uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2], const float st3[2]) { resolve_quad_uv_v2_deriv(r_uv, NULL, st, st0, st1, st2, st3); } void resolve_quad_uv_v2_deriv(float r_uv[2], float r_deriv[2][2], const float st[2], const float st0[2], const float st1[2], const float st2[2], const float st3[2]) { const double signed_area = (st0[0] * st1[1] - st0[1] * st1[0]) + (st1[0] * st2[1] - st1[1] * st2[0]) + (st2[0] * st3[1] - st2[1] * st3[0]) + (st3[0] * st0[1] - st3[1] * st0[0]); /* X is 2D cross product (determinant) * A = (p0 - p) X (p0 - p3) */ const double a = (st0[0] - st[0]) * (st0[1] - st3[1]) - (st0[1] - st[1]) * (st0[0] - st3[0]); /* B = ( (p0 - p) X (p1 - p2) + (p1 - p) X (p0 - p3) ) / 2 */ const double b = 0.5 * (double)(((st0[0] - st[0]) * (st1[1] - st2[1]) - (st0[1] - st[1]) * (st1[0] - st2[0])) + ((st1[0] - st[0]) * (st0[1] - st3[1]) - (st1[1] - st[1]) * (st0[0] - st3[0]))); /* C = (p1-p) X (p1-p2) */ const double fC = (st1[0] - st[0]) * (st1[1] - st2[1]) - (st1[1] - st[1]) * (st1[0] - st2[0]); double denom = a - 2 * b + fC; /* clear outputs */ zero_v2(r_uv); if (IS_ZERO(denom) != 0) { const double fDen = a - fC; if (IS_ZERO(fDen) == 0) { r_uv[0] = (float)(a / fDen); } } else { const double desc_sq = b * b - a * fC; const double desc = sqrt(desc_sq < 0.0 ? 0.0 : desc_sq); const double s = signed_area > 0 ? (-1.0) : 1.0; r_uv[0] = (float)(((a - b) + s * desc) / denom); } /* find UV such that * fST = (1-u)(1-v) * ST0 + u * (1-v) * ST1 + u * v * ST2 + (1-u) * v * ST3 */ { const double denom_s = (1 - r_uv[0]) * (st0[0] - st3[0]) + r_uv[0] * (st1[0] - st2[0]); const double denom_t = (1 - r_uv[0]) * (st0[1] - st3[1]) + r_uv[0] * (st1[1] - st2[1]); int i = 0; denom = denom_s; if (fabs(denom_s) < fabs(denom_t)) { i = 1; denom = denom_t; } if (IS_ZERO(denom) == 0) { r_uv[1] = (float)((double)((1.0f - r_uv[0]) * (st0[i] - st[i]) + r_uv[0] * (st1[i] - st[i])) / denom); } } if (r_deriv) { float tmp1[2], tmp2[2], s[2], t[2]; /* clear outputs */ zero_v2(r_deriv[0]); zero_v2(r_deriv[1]); sub_v2_v2v2(tmp1, st1, st0); sub_v2_v2v2(tmp2, st2, st3); interp_v2_v2v2(s, tmp1, tmp2, r_uv[1]); sub_v2_v2v2(tmp1, st3, st0); sub_v2_v2v2(tmp2, st2, st1); interp_v2_v2v2(t, tmp1, tmp2, r_uv[0]); denom = t[0] * s[1] - t[1] * s[0]; if (!IS_ZERO(denom)) { double inv_denom = 1.0 / denom; r_deriv[0][0] = (float)((double)-t[1] * inv_denom); r_deriv[0][1] = (float)((double)t[0] * inv_denom); r_deriv[1][0] = (float)((double)s[1] * inv_denom); r_deriv[1][1] = (float)((double)-s[0] * inv_denom); } } } float resolve_quad_u_v2(const float st[2], const float st0[2], const float st1[2], const float st2[2], const float st3[2]) { const double signed_area = (st0[0] * st1[1] - st0[1] * st1[0]) + (st1[0] * st2[1] - st1[1] * st2[0]) + (st2[0] * st3[1] - st2[1] * st3[0]) + (st3[0] * st0[1] - st3[1] * st0[0]); /* X is 2D cross product (determinant) * A = (p0 - p) X (p0 - p3) */ const double a = (st0[0] - st[0]) * (st0[1] - st3[1]) - (st0[1] - st[1]) * (st0[0] - st3[0]); /* B = ( (p0 - p) X (p1 - p2) + (p1 - p) X (p0 - p3) ) / 2 */ const double b = 0.5 * (double)(((st0[0] - st[0]) * (st1[1] - st2[1]) - (st0[1] - st[1]) * (st1[0] - st2[0])) + ((st1[0] - st[0]) * (st0[1] - st3[1]) - (st1[1] - st[1]) * (st0[0] - st3[0]))); /* C = (p1-p) X (p1-p2) */ const double fC = (st1[0] - st[0]) * (st1[1] - st2[1]) - (st1[1] - st[1]) * (st1[0] - st2[0]); double denom = a - 2 * b + fC; if (IS_ZERO(denom) != 0) { const double fDen = a - fC; if (IS_ZERO(fDen) == 0) { return (float)(a / fDen); } return 0.0f; } const double desc_sq = b * b - a * fC; const double desc = sqrt(desc_sq < 0.0 ? 0.0 : desc_sq); const double s = signed_area > 0 ? (-1.0) : 1.0; return (float)(((a - b) + s * desc) / denom); } #undef IS_ZERO void interp_bilinear_quad_v3(float data[4][3], float u, float v, float res[3]) { float vec[3]; copy_v3_v3(res, data[0]); mul_v3_fl(res, (1 - u) * (1 - v)); copy_v3_v3(vec, data[1]); mul_v3_fl(vec, u * (1 - v)); add_v3_v3(res, vec); copy_v3_v3(vec, data[2]); mul_v3_fl(vec, u * v); add_v3_v3(res, vec); copy_v3_v3(vec, data[3]); mul_v3_fl(vec, (1 - u) * v); add_v3_v3(res, vec); } void interp_barycentric_tri_v3(float data[3][3], float u, float v, float res[3]) { float vec[3]; copy_v3_v3(res, data[0]); mul_v3_fl(res, u); copy_v3_v3(vec, data[1]); mul_v3_fl(vec, v); add_v3_v3(res, vec); copy_v3_v3(vec, data[2]); mul_v3_fl(vec, 1.0f - u - v); add_v3_v3(res, vec); } /***************************** View & Projection *****************************/ void orthographic_m4(float matrix[4][4], const float left, const float right, const float bottom, const float top, const float nearClip, const float farClip) { float Xdelta, Ydelta, Zdelta; Xdelta = right - left; Ydelta = top - bottom; Zdelta = farClip - nearClip; if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) { return; } unit_m4(matrix); matrix[0][0] = 2.0f / Xdelta; matrix[3][0] = -(right + left) / Xdelta; matrix[1][1] = 2.0f / Ydelta; matrix[3][1] = -(top + bottom) / Ydelta; matrix[2][2] = -2.0f / Zdelta; /* NOTE: negate Z. */ matrix[3][2] = -(farClip + nearClip) / Zdelta; } void perspective_m4(float mat[4][4], const float left, const float right, const float bottom, const float top, const float nearClip, const float farClip) { const float Xdelta = right - left; const float Ydelta = top - bottom; const float Zdelta = farClip - nearClip; if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) { return; } mat[0][0] = nearClip * 2.0f / Xdelta; mat[1][1] = nearClip * 2.0f / Ydelta; mat[2][0] = (right + left) / Xdelta; /* NOTE: negate Z. */ mat[2][1] = (top + bottom) / Ydelta; mat[2][2] = -(farClip + nearClip) / Zdelta; mat[2][3] = -1.0f; mat[3][2] = (-2.0f * nearClip * farClip) / Zdelta; mat[0][1] = mat[0][2] = mat[0][3] = mat[1][0] = mat[1][2] = mat[1][3] = mat[3][0] = mat[3][1] = mat[3][3] = 0.0f; } void perspective_m4_fov(float mat[4][4], const float angle_left, const float angle_right, const float angle_up, const float angle_down, const float nearClip, const float farClip) { const float tan_angle_left = tanf(angle_left); const float tan_angle_right = tanf(angle_right); const float tan_angle_bottom = tanf(angle_up); const float tan_angle_top = tanf(angle_down); perspective_m4( mat, tan_angle_left, tan_angle_right, tan_angle_top, tan_angle_bottom, nearClip, farClip); mat[0][0] /= nearClip; mat[1][1] /= nearClip; } void window_translate_m4(float winmat[4][4], float perspmat[4][4], const float x, const float y) { if (winmat[2][3] == -1.0f) { /* in the case of a win-matrix, this means perspective always */ float v1[3]; float v2[3]; float len1, len2; v1[0] = perspmat[0][0]; v1[1] = perspmat[1][0]; v1[2] = perspmat[2][0]; v2[0] = perspmat[0][1]; v2[1] = perspmat[1][1]; v2[2] = perspmat[2][1]; len1 = (1.0f / len_v3(v1)); len2 = (1.0f / len_v3(v2)); winmat[2][0] -= len1 * winmat[0][0] * x; winmat[2][1] -= len2 * winmat[1][1] * y; } else { winmat[3][0] += x; winmat[3][1] += y; } } void planes_from_projmat(const float mat[4][4], float left[4], float right[4], float bottom[4], float top[4], float near[4], float far[4]) { /* References: * * https://fgiesen.wordpress.com/2012/08/31/frustum-planes-from-the-projection-matrix/ * http://www8.cs.umu.se/kurser/5DV051/HT12/lab/plane_extraction.pdf */ int i; if (left) { for (i = 4; i--;) { left[i] = mat[i][3] + mat[i][0]; } } if (right) { for (i = 4; i--;) { right[i] = mat[i][3] - mat[i][0]; } } if (bottom) { for (i = 4; i--;) { bottom[i] = mat[i][3] + mat[i][1]; } } if (top) { for (i = 4; i--;) { top[i] = mat[i][3] - mat[i][1]; } } if (near) { for (i = 4; i--;) { near[i] = mat[i][3] + mat[i][2]; } } if (far) { for (i = 4; i--;) { far[i] = mat[i][3] - mat[i][2]; } } } void projmat_dimensions(const float winmat[4][4], float *r_left, float *r_right, float *r_bottom, float *r_top, float *r_near, float *r_far) { const bool is_persp = winmat[3][3] == 0.0f; if (is_persp) { const float near = winmat[3][2] / (winmat[2][2] - 1.0f); *r_left = near * ((winmat[2][0] - 1.0f) / winmat[0][0]); *r_right = near * ((winmat[2][0] + 1.0f) / winmat[0][0]); *r_bottom = near * ((winmat[2][1] - 1.0f) / winmat[1][1]); *r_top = near * ((winmat[2][1] + 1.0f) / winmat[1][1]); *r_near = near; *r_far = winmat[3][2] / (winmat[2][2] + 1.0f); } else { *r_left = (-winmat[3][0] - 1.0f) / winmat[0][0]; *r_right = (-winmat[3][0] + 1.0f) / winmat[0][0]; *r_bottom = (-winmat[3][1] - 1.0f) / winmat[1][1]; *r_top = (-winmat[3][1] + 1.0f) / winmat[1][1]; *r_near = (winmat[3][2] + 1.0f) / winmat[2][2]; *r_far = (winmat[3][2] - 1.0f) / winmat[2][2]; } } void projmat_dimensions_db(const float winmat_fl[4][4], double *r_left, double *r_right, double *r_bottom, double *r_top, double *r_near, double *r_far) { double winmat[4][4]; copy_m4d_m4(winmat, winmat_fl); const bool is_persp = winmat[3][3] == 0.0f; if (is_persp) { const double near = winmat[3][2] / (winmat[2][2] - 1.0); *r_left = near * ((winmat[2][0] - 1.0) / winmat[0][0]); *r_right = near * ((winmat[2][0] + 1.0) / winmat[0][0]); *r_bottom = near * ((winmat[2][1] - 1.0) / winmat[1][1]); *r_top = near * ((winmat[2][1] + 1.0) / winmat[1][1]); *r_near = near; *r_far = winmat[3][2] / (winmat[2][2] + 1.0); } else { *r_left = (-winmat[3][0] - 1.0) / winmat[0][0]; *r_right = (-winmat[3][0] + 1.0) / winmat[0][0]; *r_bottom = (-winmat[3][1] - 1.0) / winmat[1][1]; *r_top = (-winmat[3][1] + 1.0) / winmat[1][1]; *r_near = (winmat[3][2] + 1.0) / winmat[2][2]; *r_far = (winmat[3][2] - 1.0) / winmat[2][2]; } } void projmat_from_subregion(const float projmat[4][4], const int win_size[2], const int x_min, const int x_max, const int y_min, const int y_max, float r_projmat[4][4]) { float rect_width = (float)(x_max - x_min); float rect_height = (float)(y_max - y_min); float x_sca = (float)win_size[0] / rect_width; float y_sca = (float)win_size[1] / rect_height; float x_fac = (float)((x_min + x_max) - win_size[0]) / rect_width; float y_fac = (float)((y_min + y_max) - win_size[1]) / rect_height; copy_m4_m4(r_projmat, projmat); r_projmat[0][0] *= x_sca; r_projmat[1][1] *= y_sca; if (projmat[3][3] == 0.0f) { r_projmat[2][0] = r_projmat[2][0] * x_sca + x_fac; r_projmat[2][1] = r_projmat[2][1] * y_sca + y_fac; } else { r_projmat[3][0] = r_projmat[3][0] * x_sca - x_fac; r_projmat[3][1] = r_projmat[3][1] * y_sca - y_fac; } } static void i_multmatrix(const float icand[4][4], float mat[4][4]) { int row, col; float temp[4][4]; for (row = 0; row < 4; row++) { for (col = 0; col < 4; col++) { temp[row][col] = (icand[row][0] * mat[0][col] + icand[row][1] * mat[1][col] + icand[row][2] * mat[2][col] + icand[row][3] * mat[3][col]); } } copy_m4_m4(mat, temp); } void polarview_m4(float mat[4][4], float dist, float azimuth, float incidence, float twist) { unit_m4(mat); translate_m4(mat, 0.0, 0.0, -dist); rotate_m4(mat, 'Z', -twist); rotate_m4(mat, 'X', -incidence); rotate_m4(mat, 'Z', -azimuth); } void lookat_m4( float mat[4][4], float vx, float vy, float vz, float px, float py, float pz, float twist) { float sine, cosine, hyp, hyp1, dx, dy, dz; float mat1[4][4]; unit_m4(mat1); axis_angle_to_mat4_single(mat, 'Z', -twist); dx = px - vx; dy = py - vy; dz = pz - vz; hyp = dx * dx + dz * dz; /* hyp squared */ hyp1 = sqrtf(dy * dy + hyp); hyp = sqrtf(hyp); /* the real hyp */ if (hyp1 != 0.0f) { /* rotate X */ sine = -dy / hyp1; cosine = hyp / hyp1; } else { sine = 0.0f; cosine = 1.0f; } mat1[1][1] = cosine; mat1[1][2] = sine; mat1[2][1] = -sine; mat1[2][2] = cosine; i_multmatrix(mat1, mat); mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */ mat1[1][2] = mat1[2][1] = 0.0f; /* those modified by the last */ /* paragraph */ if (hyp != 0.0f) { /* rotate Y */ sine = dx / hyp; cosine = -dz / hyp; } else { sine = 0.0f; cosine = 1.0f; } mat1[0][0] = cosine; mat1[0][2] = -sine; mat1[2][0] = sine; mat1[2][2] = cosine; i_multmatrix(mat1, mat); translate_m4(mat, -vx, -vy, -vz); /* translate viewpoint to origin */ } int box_clip_bounds_m4(float boundbox[2][3], const float bounds[4], float winmat[4][4]) { float mat[4][4], vec[4]; int a, fl, flag = -1; copy_m4_m4(mat, winmat); for (a = 0; a < 8; a++) { vec[0] = (a & 1) ? boundbox[0][0] : boundbox[1][0]; vec[1] = (a & 2) ? boundbox[0][1] : boundbox[1][1]; vec[2] = (a & 4) ? boundbox[0][2] : boundbox[1][2]; vec[3] = 1.0; mul_m4_v4(mat, vec); fl = 0; if (bounds) { if (vec[0] > bounds[1] * vec[3]) { fl |= 1; } if (vec[0] < bounds[0] * vec[3]) { fl |= 2; } if (vec[1] > bounds[3] * vec[3]) { fl |= 4; } if (vec[1] < bounds[2] * vec[3]) { fl |= 8; } } else { if (vec[0] < -vec[3]) { fl |= 1; } if (vec[0] > vec[3]) { fl |= 2; } if (vec[1] < -vec[3]) { fl |= 4; } if (vec[1] > vec[3]) { fl |= 8; } } if (vec[2] < -vec[3]) { fl |= 16; } if (vec[2] > vec[3]) { fl |= 32; } flag &= fl; if (flag == 0) { return 0; } } return flag; } void box_minmax_bounds_m4(float min[3], float max[3], float boundbox[2][3], float mat[4][4]) { float mn[3], mx[3], vec[3]; int a; copy_v3_v3(mn, min); copy_v3_v3(mx, max); for (a = 0; a < 8; a++) { vec[0] = (a & 1) ? boundbox[0][0] : boundbox[1][0]; vec[1] = (a & 2) ? boundbox[0][1] : boundbox[1][1]; vec[2] = (a & 4) ? boundbox[0][2] : boundbox[1][2]; mul_m4_v3(mat, vec); minmax_v3v3_v3(mn, mx, vec); } copy_v3_v3(min, mn); copy_v3_v3(max, mx); } /********************************** Mapping **********************************/ void map_to_tube(float *r_u, float *r_v, const float x, const float y, const float z) { float len; *r_v = (z + 1.0f) / 2.0f; len = sqrtf(x * x + y * y); if (len > 0.0f) { *r_u = (1.0f - (atan2f(x / len, y / len) / (float)M_PI)) / 2.0f; } else { *r_v = *r_u = 0.0f; /* to avoid un-initialized variables */ } } void map_to_sphere(float *r_u, float *r_v, const float x, const float y, const float z) { float len; len = sqrtf(x * x + y * y + z * z); if (len > 0.0f) { if (UNLIKELY(x == 0.0f && y == 0.0f)) { *r_u = 0.0f; /* Otherwise domain error. */ } else { *r_u = (1.0f - atan2f(x, y) / (float)M_PI) / 2.0f; } *r_v = 1.0f - saacos(z / len) / (float)M_PI; } else { *r_v = *r_u = 0.0f; /* to avoid un-initialized variables */ } } void map_to_plane_v2_v3v3(float r_co[2], const float co[3], const float no[3]) { const float target[3] = {0.0f, 0.0f, 1.0f}; float axis[3]; cross_v3_v3v3(axis, no, target); normalize_v3(axis); map_to_plane_axis_angle_v2_v3v3fl(r_co, co, axis, angle_normalized_v3v3(no, target)); } void map_to_plane_axis_angle_v2_v3v3fl(float r_co[2], const float co[3], const float axis[3], const float angle) { float tmp[3]; rotate_normalized_v3_v3v3fl(tmp, co, axis, angle); copy_v2_v2(r_co, tmp); } /********************************* Normals **********************************/ void accumulate_vertex_normals_tri_v3(float n1[3], float n2[3], float n3[3], const float f_no[3], const float co1[3], const float co2[3], const float co3[3]) { float vdiffs[3][3]; const int nverts = 3; /* compute normalized edge vectors */ sub_v3_v3v3(vdiffs[0], co2, co1); sub_v3_v3v3(vdiffs[1], co3, co2); sub_v3_v3v3(vdiffs[2], co1, co3); normalize_v3(vdiffs[0]); normalize_v3(vdiffs[1]); normalize_v3(vdiffs[2]); /* accumulate angle weighted face normal */ { float *vn[] = {n1, n2, n3}; const float *prev_edge = vdiffs[nverts - 1]; int i; for (i = 0; i < nverts; i++) { const float *cur_edge = vdiffs[i]; const float fac = saacos(-dot_v3v3(cur_edge, prev_edge)); /* accumulate */ madd_v3_v3fl(vn[i], f_no, fac); prev_edge = cur_edge; } } } void accumulate_vertex_normals_v3(float n1[3], float n2[3], float n3[3], float n4[3], const float f_no[3], const float co1[3], const float co2[3], const float co3[3], const float co4[3]) { float vdiffs[4][3]; const int nverts = (n4 != NULL && co4 != NULL) ? 4 : 3; /* compute normalized edge vectors */ sub_v3_v3v3(vdiffs[0], co2, co1); sub_v3_v3v3(vdiffs[1], co3, co2); if (nverts == 3) { sub_v3_v3v3(vdiffs[2], co1, co3); } else { sub_v3_v3v3(vdiffs[2], co4, co3); sub_v3_v3v3(vdiffs[3], co1, co4); normalize_v3(vdiffs[3]); } normalize_v3(vdiffs[0]); normalize_v3(vdiffs[1]); normalize_v3(vdiffs[2]); /* accumulate angle weighted face normal */ { float *vn[] = {n1, n2, n3, n4}; const float *prev_edge = vdiffs[nverts - 1]; int i; for (i = 0; i < nverts; i++) { const float *cur_edge = vdiffs[i]; const float fac = saacos(-dot_v3v3(cur_edge, prev_edge)); /* accumulate */ madd_v3_v3fl(vn[i], f_no, fac); prev_edge = cur_edge; } } } void accumulate_vertex_normals_poly_v3(float **vertnos, const float polyno[3], const float **vertcos, float vdiffs[][3], const int nverts) { int i; /* calculate normalized edge directions for each edge in the poly */ for (i = 0; i < nverts; i++) { sub_v3_v3v3(vdiffs[i], vertcos[(i + 1) % nverts], vertcos[i]); normalize_v3(vdiffs[i]); } /* accumulate angle weighted face normal */ { const float *prev_edge = vdiffs[nverts - 1]; for (i = 0; i < nverts; i++) { const float *cur_edge = vdiffs[i]; /* calculate angle between the two poly edges incident on * this vertex */ const float fac = saacos(-dot_v3v3(cur_edge, prev_edge)); /* accumulate */ madd_v3_v3fl(vertnos[i], polyno, fac); prev_edge = cur_edge; } } } /********************************* Tangents **********************************/ void tangent_from_uv_v3(const float uv1[2], const float uv2[2], const float uv3[2], const float co1[3], const float co2[3], const float co3[3], const float n[3], float r_tang[3]) { const float s1 = uv2[0] - uv1[0]; const float s2 = uv3[0] - uv1[0]; const float t1 = uv2[1] - uv1[1]; const float t2 = uv3[1] - uv1[1]; float det = (s1 * t2 - s2 * t1); /* otherwise 'r_tang' becomes nan */ if (det != 0.0f) { float tangv[3], ct[3], e1[3], e2[3]; det = 1.0f / det; /* normals in render are inversed... */ sub_v3_v3v3(e1, co1, co2); sub_v3_v3v3(e2, co1, co3); r_tang[0] = (t2 * e1[0] - t1 * e2[0]) * det; r_tang[1] = (t2 * e1[1] - t1 * e2[1]) * det; r_tang[2] = (t2 * e1[2] - t1 * e2[2]) * det; tangv[0] = (s1 * e2[0] - s2 * e1[0]) * det; tangv[1] = (s1 * e2[1] - s2 * e1[1]) * det; tangv[2] = (s1 * e2[2] - s2 * e1[2]) * det; cross_v3_v3v3(ct, r_tang, tangv); /* check flip */ if (dot_v3v3(ct, n) < 0.0f) { negate_v3(r_tang); } } else { zero_v3(r_tang); } } /****************************** Vector Clouds ********************************/ /* vector clouds */ void vcloud_estimate_transform_v3(const int list_size, const float (*pos)[3], const float *weight, const float (*rpos)[3], const float *rweight, float lloc[3], float rloc[3], float lrot[3][3], float lscale[3][3]) { float accu_com[3] = {0.0f, 0.0f, 0.0f}, accu_rcom[3] = {0.0f, 0.0f, 0.0f}; float accu_weight = 0.0f, accu_rweight = 0.0f; const float eps = 1e-6f; int a; /* first set up a nice default response */ if (lloc) { zero_v3(lloc); } if (rloc) { zero_v3(rloc); } if (lrot) { unit_m3(lrot); } if (lscale) { unit_m3(lscale); } /* do com for both clouds */ if (pos && rpos && (list_size > 0)) { /* paranoia check */ /* do com for both clouds */ for (a = 0; a < list_size; a++) { if (weight) { float v[3]; copy_v3_v3(v, pos[a]); mul_v3_fl(v, weight[a]); add_v3_v3(accu_com, v); accu_weight += weight[a]; } else { add_v3_v3(accu_com, pos[a]); } if (rweight) { float v[3]; copy_v3_v3(v, rpos[a]); mul_v3_fl(v, rweight[a]); add_v3_v3(accu_rcom, v); accu_rweight += rweight[a]; } else { add_v3_v3(accu_rcom, rpos[a]); } } if (!weight || !rweight) { accu_weight = accu_rweight = (float)list_size; } mul_v3_fl(accu_com, 1.0f / accu_weight); mul_v3_fl(accu_rcom, 1.0f / accu_rweight); if (lloc) { copy_v3_v3(lloc, accu_com); } if (rloc) { copy_v3_v3(rloc, accu_rcom); } if (lrot || lscale) { /* caller does not want rot nor scale, strange but legal */ /* so now do some reverse engineering and see if we can * split rotation from scale -> Polar-decompose. */ /* build 'projection' matrix */ float m[3][3], mr[3][3], q[3][3], qi[3][3]; float va[3], vb[3], stunt[3]; float odet, ndet; int i = 0, imax = 15; zero_m3(m); zero_m3(mr); /* build 'projection' matrix */ for (a = 0; a < list_size; a++) { sub_v3_v3v3(va, rpos[a], accu_rcom); /* mul_v3_fl(va, bp->mass); mass needs re-normalization here ?? */ sub_v3_v3v3(vb, pos[a], accu_com); /* mul_v3_fl(va, rp->mass); */ m[0][0] += va[0] * vb[0]; m[0][1] += va[0] * vb[1]; m[0][2] += va[0] * vb[2]; m[1][0] += va[1] * vb[0]; m[1][1] += va[1] * vb[1]; m[1][2] += va[1] * vb[2]; m[2][0] += va[2] * vb[0]; m[2][1] += va[2] * vb[1]; m[2][2] += va[2] * vb[2]; /* building the reference matrix on the fly * needed to scale properly later */ mr[0][0] += va[0] * va[0]; mr[0][1] += va[0] * va[1]; mr[0][2] += va[0] * va[2]; mr[1][0] += va[1] * va[0]; mr[1][1] += va[1] * va[1]; mr[1][2] += va[1] * va[2]; mr[2][0] += va[2] * va[0]; mr[2][1] += va[2] * va[1]; mr[2][2] += va[2] * va[2]; } copy_m3_m3(q, m); stunt[0] = q[0][0]; stunt[1] = q[1][1]; stunt[2] = q[2][2]; /* Re-normalizing for numeric stability. */ mul_m3_fl(q, 1.0f / len_v3(stunt)); /* This is pretty much Polar-decompose 'inline' the algorithm based on Higham's thesis * without the far case ... but seems to work here pretty neat. */ odet = 0.0f; ndet = determinant_m3_array(q); while ((odet - ndet) * (odet - ndet) > eps && i < imax) { invert_m3_m3(qi, q); transpose_m3(qi); add_m3_m3m3(q, q, qi); mul_m3_fl(q, 0.5f); odet = ndet; ndet = determinant_m3_array(q); i++; } if (i) { float scale[3][3]; float irot[3][3]; if (lrot) { copy_m3_m3(lrot, q); } invert_m3_m3(irot, q); invert_m3_m3(qi, mr); mul_m3_m3m3(q, m, qi); mul_m3_m3m3(scale, irot, q); if (lscale) { copy_m3_m3(lscale, scale); } } } } } /******************************* Form Factor *********************************/ static void vec_add_dir(float r[3], const float v1[3], const float v2[3], const float fac) { r[0] = v1[0] + fac * (v2[0] - v1[0]); r[1] = v1[1] + fac * (v2[1] - v1[1]); r[2] = v1[2] + fac * (v2[2] - v1[2]); } bool form_factor_visible_quad(const float p[3], const float n[3], const float v0[3], const float v1[3], const float v2[3], float q0[3], float q1[3], float q2[3], float q3[3]) { static const float epsilon = 1e-6f; float sd[3]; const float c = dot_v3v3(n, p); /* signed distances from the vertices to the plane. */ sd[0] = dot_v3v3(n, v0) - c; sd[1] = dot_v3v3(n, v1) - c; sd[2] = dot_v3v3(n, v2) - c; if (fabsf(sd[0]) < epsilon) { sd[0] = 0.0f; } if (fabsf(sd[1]) < epsilon) { sd[1] = 0.0f; } if (fabsf(sd[2]) < epsilon) { sd[2] = 0.0f; } if (sd[0] > 0.0f) { if (sd[1] > 0.0f) { if (sd[2] > 0.0f) { /* +++ */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } else if (sd[2] < 0.0f) { /* ++- */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2]))); vec_add_dir(q3, v0, v2, (sd[0] / (sd[0] - sd[2]))); } else { /* ++0 */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } } else if (sd[1] < 0.0f) { if (sd[2] > 0.0f) { /* +-+ */ copy_v3_v3(q0, v0); vec_add_dir(q1, v0, v1, (sd[0] / (sd[0] - sd[1]))); vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2]))); copy_v3_v3(q3, v2); } else if (sd[2] < 0.0f) { /* +-- */ copy_v3_v3(q0, v0); vec_add_dir(q1, v0, v1, (sd[0] / (sd[0] - sd[1]))); vec_add_dir(q2, v0, v2, (sd[0] / (sd[0] - sd[2]))); copy_v3_v3(q3, q2); } else { /* +-0 */ copy_v3_v3(q0, v0); vec_add_dir(q1, v0, v1, (sd[0] / (sd[0] - sd[1]))); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } } else { if (sd[2] > 0.0f) { /* +0+ */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } else if (sd[2] < 0.0f) { /* +0- */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); vec_add_dir(q2, v0, v2, (sd[0] / (sd[0] - sd[2]))); copy_v3_v3(q3, q2); } else { /* +00 */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } } } else if (sd[0] < 0.0f) { if (sd[1] > 0.0f) { if (sd[2] > 0.0f) { /* -++ */ vec_add_dir(q0, v0, v1, (sd[0] / (sd[0] - sd[1]))); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); vec_add_dir(q3, v0, v2, (sd[0] / (sd[0] - sd[2]))); } else if (sd[2] < 0.0f) { /* -+- */ vec_add_dir(q0, v0, v1, (sd[0] / (sd[0] - sd[1]))); copy_v3_v3(q1, v1); vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2]))); copy_v3_v3(q3, q2); } else { /* -+0 */ vec_add_dir(q0, v0, v1, (sd[0] / (sd[0] - sd[1]))); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } } else if (sd[1] < 0.0f) { if (sd[2] > 0.0f) { /* --+ */ vec_add_dir(q0, v0, v2, (sd[0] / (sd[0] - sd[2]))); vec_add_dir(q1, v1, v2, (sd[1] / (sd[1] - sd[2]))); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } else if (sd[2] < 0.0f) { /* --- */ return false; } else { /* --0 */ return false; } } else { if (sd[2] > 0.0f) { /* -0+ */ vec_add_dir(q0, v0, v2, (sd[0] / (sd[0] - sd[2]))); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } else if (sd[2] < 0.0f) { /* -0- */ return false; } else { /* -00 */ return false; } } } else { if (sd[1] > 0.0f) { if (sd[2] > 0.0f) { /* 0++ */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } else if (sd[2] < 0.0f) { /* 0+- */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2]))); copy_v3_v3(q3, q2); } else { /* 0+0 */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } } else if (sd[1] < 0.0f) { if (sd[2] > 0.0f) { /* 0-+ */ copy_v3_v3(q0, v0); vec_add_dir(q1, v1, v2, (sd[1] / (sd[1] - sd[2]))); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } else if (sd[2] < 0.0f) { /* 0-- */ return false; } else { /* 0-0 */ return false; } } else { if (sd[2] > 0.0f) { /* 00+ */ copy_v3_v3(q0, v0); copy_v3_v3(q1, v1); copy_v3_v3(q2, v2); copy_v3_v3(q3, q2); } else if (sd[2] < 0.0f) { /* 00- */ return false; } else { /* 000 */ return false; } } } return true; } /* `AltiVec` optimization, this works, but is unused. */ #if 0 # include typedef union { vFloat v; float f[4]; } vFloatResult; static vFloat vec_splat_float(float val) { return (vFloat){val, val, val, val}; } static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3) { vFloat vcos, rlen, vrx, vry, vrz, vsrx, vsry, vsrz, gx, gy, gz, vangle; vUInt8 rotate = (vUInt8){4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3}; vFloatResult vresult; float result; /* compute r* */ vrx = (vFloat){q0[0], q1[0], q2[0], q3[0]} - vec_splat_float(p[0]); vry = (vFloat){q0[1], q1[1], q2[1], q3[1]} - vec_splat_float(p[1]); vrz = (vFloat){q0[2], q1[2], q2[2], q3[2]} - vec_splat_float(p[2]); /* normalize r* */ rlen = vec_rsqrte(vrx * vrx + vry * vry + vrz * vrz + vec_splat_float(1e-16f)); vrx = vrx * rlen; vry = vry * rlen; vrz = vrz * rlen; /* rotate r* for cross and dot */ vsrx = vec_perm(vrx, vrx, rotate); vsry = vec_perm(vry, vry, rotate); vsrz = vec_perm(vrz, vrz, rotate); /* cross product */ gx = vsry * vrz - vsrz * vry; gy = vsrz * vrx - vsrx * vrz; gz = vsrx * vry - vsry * vrx; /* normalize */ rlen = vec_rsqrte(gx * gx + gy * gy + gz * gz + vec_splat_float(1e-16f)); gx = gx * rlen; gy = gy * rlen; gz = gz * rlen; /* angle */ vcos = vrx * vsrx + vry * vsry + vrz * vsrz; vcos = vec_max(vec_min(vcos, vec_splat_float(1.0f)), vec_splat_float(-1.0f)); vangle = vacosf(vcos); /* dot */ vresult.v = (vec_splat_float(n[0]) * gx + vec_splat_float(n[1]) * gy + vec_splat_float(n[2]) * gz) * vangle; result = (vresult.f[0] + vresult.f[1] + vresult.f[2] + vresult.f[3]) * (0.5f / (float)M_PI); result = MAX2(result, 0.0f); return result; } #endif /* SSE optimization, acos code doesn't work */ #if 0 # include "BLI_simd.h" static __m128 sse_approx_acos(__m128 x) { /* needs a better approximation than Taylor expansion of acos, since that * gives big errors for near 1.0 values, sqrt(2 * x) * acos(1 - x) should work * better, see http://www.tom.womack.net/projects/sse-fast-arctrig.html */ return _mm_set_ps1(1.0f); } static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3) { float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3]; float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result; float fresult[4] __attribute__((aligned(16))); __m128 qx, qy, qz, rx, ry, rz, rlen, srx, sry, srz, gx, gy, gz, glen, rcos, angle, aresult; /* compute r */ qx = _mm_set_ps(q3[0], q2[0], q1[0], q0[0]); qy = _mm_set_ps(q3[1], q2[1], q1[1], q0[1]); qz = _mm_set_ps(q3[2], q2[2], q1[2], q0[2]); rx = qx - _mm_set_ps1(p[0]); ry = qy - _mm_set_ps1(p[1]); rz = qz - _mm_set_ps1(p[2]); /* normalize r */ rlen = _mm_rsqrt_ps(rx * rx + ry * ry + rz * rz + _mm_set_ps1(1e-16f)); rx = rx * rlen; ry = ry * rlen; rz = rz * rlen; /* cross product */ srx = _mm_shuffle_ps(rx, rx, _MM_SHUFFLE(0, 3, 2, 1)); sry = _mm_shuffle_ps(ry, ry, _MM_SHUFFLE(0, 3, 2, 1)); srz = _mm_shuffle_ps(rz, rz, _MM_SHUFFLE(0, 3, 2, 1)); gx = sry * rz - srz * ry; gy = srz * rx - srx * rz; gz = srx * ry - sry * rx; /* normalize g */ glen = _mm_rsqrt_ps(gx * gx + gy * gy + gz * gz + _mm_set_ps1(1e-16f)); gx = gx * glen; gy = gy * glen; gz = gz * glen; /* compute angle */ rcos = rx * srx + ry * sry + rz * srz; rcos = _mm_max_ps(_mm_min_ps(rcos, _mm_set_ps1(1.0f)), _mm_set_ps1(-1.0f)); angle = sse_approx_cos(rcos); aresult = (_mm_set_ps1(n[0]) * gx + _mm_set_ps1(n[1]) * gy + _mm_set_ps1(n[2]) * gz) * angle; /* sum together */ result = (fresult[0] + fresult[1] + fresult[2] + fresult[3]) * (0.5f / (float)M_PI); result = MAX2(result, 0.0f); return result; } #endif static void ff_normalize(float n[3]) { float d; d = dot_v3v3(n, n); if (d > 1.0e-35f) { d = 1.0f / sqrtf(d); n[0] *= d; n[1] *= d; n[2] *= d; } } float form_factor_quad(const float p[3], const float n[3], const float q0[3], const float q1[3], const float q2[3], const float q3[3]) { float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3]; float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result; sub_v3_v3v3(r0, q0, p); sub_v3_v3v3(r1, q1, p); sub_v3_v3v3(r2, q2, p); sub_v3_v3v3(r3, q3, p); ff_normalize(r0); ff_normalize(r1); ff_normalize(r2); ff_normalize(r3); cross_v3_v3v3(g0, r1, r0); ff_normalize(g0); cross_v3_v3v3(g1, r2, r1); ff_normalize(g1); cross_v3_v3v3(g2, r3, r2); ff_normalize(g2); cross_v3_v3v3(g3, r0, r3); ff_normalize(g3); a1 = saacosf(dot_v3v3(r0, r1)); a2 = saacosf(dot_v3v3(r1, r2)); a3 = saacosf(dot_v3v3(r2, r3)); a4 = saacosf(dot_v3v3(r3, r0)); dot1 = dot_v3v3(n, g0); dot2 = dot_v3v3(n, g1); dot3 = dot_v3v3(n, g2); dot4 = dot_v3v3(n, g3); result = (a1 * dot1 + a2 * dot2 + a3 * dot3 + a4 * dot4) * 0.5f / (float)M_PI; result = MAX2(result, 0.0f); return result; } float form_factor_hemi_poly( float p[3], float n[3], float v1[3], float v2[3], float v3[3], float v4[3]) { /* computes how much hemisphere defined by point and normal is * covered by a quad or triangle, cosine weighted */ float q0[3], q1[3], q2[3], q3[3], contrib = 0.0f; if (form_factor_visible_quad(p, n, v1, v2, v3, q0, q1, q2, q3)) { contrib += form_factor_quad(p, n, q0, q1, q2, q3); } if (v4 && form_factor_visible_quad(p, n, v1, v3, v4, q0, q1, q2, q3)) { contrib += form_factor_quad(p, n, q0, q1, q2, q3); } return contrib; } bool is_edge_convex_v3(const float v1[3], const float v2[3], const float f1_no[3], const float f2_no[3]) { if (!equals_v3v3(f1_no, f2_no)) { float cross[3]; float l_dir[3]; cross_v3_v3v3(cross, f1_no, f2_no); /* we assume contiguous normals, otherwise the result isn't meaningful */ sub_v3_v3v3(l_dir, v2, v1); return (dot_v3v3(l_dir, cross) > 0.0f); } return false; } bool is_quad_convex_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { /** * Method projects points onto a plane and checks its convex using following method: * * - Create a plane from the cross-product of both diagonal vectors. * - Project all points onto the plane. * - Subtract for direction vectors. * - Return true if all corners cross-products point the direction of the plane. */ /* non-unit length normal, used as a projection plane */ float plane[3]; { float v13[3], v24[3]; sub_v3_v3v3(v13, v1, v3); sub_v3_v3v3(v24, v2, v4); cross_v3_v3v3(plane, v13, v24); if (len_squared_v3(plane) < FLT_EPSILON) { return false; } } const float *quad_coords[4] = {v1, v2, v3, v4}; float quad_proj[4][3]; for (int i = 0; i < 4; i++) { project_plane_v3_v3v3(quad_proj[i], quad_coords[i], plane); } float quad_dirs[4][3]; for (int i = 0, j = 3; i < 4; j = i++) { sub_v3_v3v3(quad_dirs[i], quad_proj[i], quad_proj[j]); } float test_dir[3]; #define CROSS_SIGN(dir_a, dir_b) \ ((void)cross_v3_v3v3(test_dir, dir_a, dir_b), (dot_v3v3(plane, test_dir) > 0.0f)) return (CROSS_SIGN(quad_dirs[0], quad_dirs[1]) && CROSS_SIGN(quad_dirs[1], quad_dirs[2]) && CROSS_SIGN(quad_dirs[2], quad_dirs[3]) && CROSS_SIGN(quad_dirs[3], quad_dirs[0])); #undef CROSS_SIGN } bool is_quad_convex_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2]) { /* Line-tests, the 2 diagonals have to intersect to be convex. */ return (isect_seg_seg_v2(v1, v3, v2, v4) > 0); } bool is_poly_convex_v2(const float verts[][2], unsigned int nr) { unsigned int sign_flag = 0; unsigned int a; const float *co_curr, *co_prev; float dir_curr[2], dir_prev[2]; co_prev = verts[nr - 1]; co_curr = verts[0]; sub_v2_v2v2(dir_prev, verts[nr - 2], co_prev); for (a = 0; a < nr; a++) { float cross; sub_v2_v2v2(dir_curr, co_prev, co_curr); cross = cross_v2v2(dir_prev, dir_curr); if (cross < 0.0f) { sign_flag |= 1; } else if (cross > 0.0f) { sign_flag |= 2; } if (sign_flag == (1 | 2)) { return false; } copy_v2_v2(dir_prev, dir_curr); co_prev = co_curr; co_curr += 2; } return true; } int is_quad_flip_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { float d_12[3], d_23[3], d_34[3], d_41[3]; float cross_a[3], cross_b[3]; int ret = 0; sub_v3_v3v3(d_12, v1, v2); sub_v3_v3v3(d_23, v2, v3); sub_v3_v3v3(d_34, v3, v4); sub_v3_v3v3(d_41, v4, v1); cross_v3_v3v3(cross_a, d_12, d_23); cross_v3_v3v3(cross_b, d_34, d_41); ret |= ((dot_v3v3(cross_a, cross_b) < 0.0f) << 0); cross_v3_v3v3(cross_a, d_23, d_34); cross_v3_v3v3(cross_b, d_41, d_12); ret |= ((dot_v3v3(cross_a, cross_b) < 0.0f) << 1); return ret; } bool is_quad_flip_v3_first_third_fast(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { float d_12[3], d_13[3], d_14[3]; float cross_a[3], cross_b[3]; sub_v3_v3v3(d_12, v2, v1); sub_v3_v3v3(d_13, v3, v1); sub_v3_v3v3(d_14, v4, v1); cross_v3_v3v3(cross_a, d_12, d_13); cross_v3_v3v3(cross_b, d_14, d_13); return dot_v3v3(cross_a, cross_b) > 0.0f; } bool is_quad_flip_v3_first_third_fast_with_normal(const float v1[3], const float v2[3], const float v3[3], const float v4[3], const float normal[3]) { float dir_v3v1[3], tangent[3]; sub_v3_v3v3(dir_v3v1, v3, v1); cross_v3_v3v3(tangent, dir_v3v1, normal); const float dot = dot_v3v3(v1, tangent); return (dot_v3v3(v4, tangent) >= dot) || (dot_v3v3(v2, tangent) <= dot); } float cubic_tangent_factor_circle_v3(const float tan_l[3], const float tan_r[3]) { BLI_ASSERT_UNIT_V3(tan_l); BLI_ASSERT_UNIT_V3(tan_r); /* -7f causes instability/glitches with Bendy Bones + Custom Refs. */ const float eps = 1e-5f; const float tan_dot = dot_v3v3(tan_l, tan_r); if (tan_dot > 1.0f - eps) { /* no angle difference (use fallback, length won't make any difference) */ return (1.0f / 3.0f) * 0.75f; } if (tan_dot < -1.0f + eps) { /* Parallel tangents (half-circle). */ return (1.0f / 2.0f); } /* non-aligned tangents, calculate handle length */ const float angle = acosf(tan_dot) / 2.0f; /* could also use 'angle_sin = len_vnvn(tan_l, tan_r, dims) / 2.0' */ const float angle_sin = sinf(angle); const float angle_cos = cosf(angle); return ((1.0f - angle_cos) / (angle_sin * 2.0f)) / angle_sin; } float geodesic_distance_propagate_across_triangle( const float v0[3], const float v1[3], const float v2[3], const float dist1, const float dist2) { /* Vectors along triangle edges. */ float v10[3], v12[3]; sub_v3_v3v3(v10, v0, v1); sub_v3_v3v3(v12, v2, v1); if (dist1 != 0.0f && dist2 != 0.0f) { /* Local coordinate system in the triangle plane. */ float u[3], v[3], n[3]; const float d12 = normalize_v3_v3(u, v12); if (d12 * d12 > 0.0f) { cross_v3_v3v3(n, v12, v10); normalize_v3(n); cross_v3_v3v3(v, n, u); /* v0 in local coordinates */ const float v0_[2] = {dot_v3v3(v10, u), fabsf(dot_v3v3(v10, v))}; /* Compute virtual source point in local coordinates, that we estimate the geodesic * distance is being computed from. See figure 9 in the paper for the derivation. */ const float a = 0.5f * (1.0f + (dist1 * dist1 - dist2 * dist2) / (d12 * d12)); const float hh = dist1 * dist1 - a * a * d12 * d12; if (hh > 0.0f) { const float h = sqrtf(hh); const float S_[2] = {a * d12, -h}; /* Only valid if the line between the source point and v0 crosses * the edge between v1 and v2. */ const float x_intercept = S_[0] + h * (v0_[0] - S_[0]) / (v0_[1] + h); if (x_intercept >= 0.0f && x_intercept <= d12) { return len_v2v2(S_, v0_); } } } } /* Fall back to Dijsktra approximation in trivial case, or if no valid source * point found that connects to v0 across the triangle. */ return min_ff(dist1 + len_v3(v10), dist2 + len_v3v3(v0, v2)); }