/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2012 by Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Sergey Sharybin * * ***** END GPL LICENSE BLOCK ***** * */ #include #include "BLI_math.h" /************************************************************************** * INTERPOLATIONS * * Reference and docs: * http://wiki.blender.org/index.php/User:Damiles#Interpolations_Algorithms ***************************************************************************/ /* BICUBIC Interpolation functions * More info: http://wiki.blender.org/index.php/User:Damiles#Bicubic_pixel_interpolation * function assumes out to be zero'ed, only does RGBA */ static float P(float k) { float p1, p2, p3, p4; p1 = MAX2(k + 2.0f, 0); p2 = MAX2(k + 1.0f, 0); p3 = MAX2(k, 0); p4 = MAX2(k - 1.0f, 0); return (float)(1.0f / 6.0f) * (p1 * p1 * p1 - 4.0f * p2 * p2 * p2 + 6.0f * p3 * p3 * p3 - 4.0f * p4 * p4 * p4); } #if 0 /* older, slower function, works the same as above */ static float P(float k) { return (float)(1.0f / 6.0f) * (pow(MAX2(k + 2.0f, 0), 3.0f) - 4.0f * pow(MAX2(k + 1.0f, 0), 3.0f) + 6.0f * pow(MAX2(k, 0), 3.0f) - 4.0f * pow(MAX2(k - 1.0f, 0), 3.0f)); } #endif static void vector_from_float(const float *data, float vector[4], int components) { if (components == 1) { vector[0] = data[0]; } else if (components == 3) { copy_v3_v3(vector, data); } else { copy_v4_v4(vector, data); } } static void vector_from_byte(const unsigned char *data, float vector[4], int components) { if (components == 1) { vector[0] = data[0]; } else if (components == 3) { vector[0] = data[0]; vector[1] = data[1]; vector[2] = data[2]; } else { vector[0] = data[0]; vector[1] = data[1]; vector[2] = data[2]; vector[3] = data[3]; } } /* BICUBIC INTERPOLATION */ BLI_INLINE void bicubic_interpolation(const unsigned char *byte_buffer, const float *float_buffer, unsigned char *byte_output, float *float_output, int width, int height, int components, float u, float v) { int i, j, n, m, x1, y1; float a, b, w, wx, wy[4], out[4]; /* sample area entirely outside image? */ if (ceil(u) < 0 || floor(u) > width - 1 || ceil(v) < 0 || floor(v) > height - 1) { return; } i = (int)floor(u); j = (int)floor(v); a = u - i; b = v - j; zero_v4(out); /* Optimized and not so easy to read */ /* avoid calling multiple times */ wy[0] = P(b - (-1)); wy[1] = P(b - 0); wy[2] = P(b - 1); wy[3] = P(b - 2); for (n = -1; n <= 2; n++) { x1 = i + n; CLAMP(x1, 0, width - 1); wx = P(n - a); for (m = -1; m <= 2; m++) { float data[4]; y1 = j + m; CLAMP(y1, 0, height - 1); /* normally we could do this */ /* w = P(n-a) * P(b-m); */ /* except that would call P() 16 times per pixel therefor pow() 64 times, better precalc these */ w = wx * wy[m + 1]; if (float_output) { const float *float_data = float_buffer + width * y1 * components + components * x1; vector_from_float(float_data, data, components); } else { const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1; vector_from_byte(byte_data, data, components); } if (components == 1) { out[0] += data[0] * w; } else if (components == 3) { out[0] += data[0] * w; out[1] += data[1] * w; out[2] += data[2] * w; } else { out[0] += data[0] * w; out[1] += data[1] * w; out[2] += data[2] * w; out[3] += data[3] * w; } } } /* Done with optimized part */ #if 0 /* older, slower function, works the same as above */ for (n = -1; n <= 2; n++) { for (m = -1; m <= 2; m++) { x1 = i + n; y1 = j + m; if (x1 > 0 && x1 < width && y1 > 0 && y1 < height) { float data[4]; if (float_output) { const float *float_data = float_buffer + width * y1 * components + components * x1; vector_from_float(float_data, data, components); } else { const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1; vector_from_byte(byte_data, data, components); } if (components == 1) { out[0] += data[0] * P(n - a) * P(b - m); } else if (components == 3) { out[0] += data[0] * P(n - a) * P(b - m); out[1] += data[1] * P(n - a) * P(b - m); out[2] += data[2] * P(n - a) * P(b - m); } else { out[0] += data[0] * P(n - a) * P(b - m); out[1] += data[1] * P(n - a) * P(b - m); out[2] += data[2] * P(n - a) * P(b - m); out[3] += data[3] * P(n - a) * P(b - m); } } } } #endif if (float_output) { if (components == 1) { float_output[0] = out[0]; } else if (components == 3) { copy_v3_v3(float_output, out); } else { copy_v4_v4(float_output, out); } } else { if (components == 1) { byte_output[0] = out[0]; } else if (components == 3) { byte_output[0] = out[0]; byte_output[1] = out[1]; byte_output[2] = out[2]; } else { byte_output[0] = out[0]; byte_output[1] = out[1]; byte_output[2] = out[2]; byte_output[3] = out[3]; } } } void BLI_bicubic_interpolation_fl(const float *buffer, float *output, int width, int height, int components, float u, float v) { bicubic_interpolation(NULL, buffer, NULL, output, width, height, components, u, v); } void BLI_bicubic_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height, int components, float u, float v) { bicubic_interpolation(buffer, NULL, output, NULL, width, height, components, u, v); } /* BILINEAR INTERPOLATION */ BLI_INLINE void bilinear_interpolation(const unsigned char *byte_buffer, const float *float_buffer, unsigned char *byte_output, float *float_output, int width, int height, int components, float u, float v) { float a, b; float a_b, ma_b, a_mb, ma_mb; int y1, y2, x1, x2; /* ImBuf in must have a valid rect or rect_float, assume this is already checked */ x1 = (int)floor(u); x2 = (int)ceil(u); y1 = (int)floor(v); y2 = (int)ceil(v); /* sample area entirely outside image? */ if (x2 < 0 || x1 > width - 1 || y2 < 0 || y1 > height - 1) { return; } if (float_output) { const float *row1, *row2, *row3, *row4; float empty[4] = {0.0f, 0.0f, 0.0f, 0.0f}; /* sample including outside of edges of image */ if (x1 < 0 || y1 < 0) row1 = empty; else row1 = float_buffer + width * y1 * components + components * x1; if (x1 < 0 || y2 > height - 1) row2 = empty; else row2 = float_buffer + width * y2 * components + components * x1; if (x2 > width - 1 || y1 < 0) row3 = empty; else row3 = float_buffer + width * y1 * components + components * x2; if (x2 > width - 1 || y2 > height - 1) row4 = empty; else row4 = float_buffer + width * y2 * components + components * x2; a = u - floorf(u); b = v - floorf(v); a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b); if (components == 1) { float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; } else if (components == 3) { float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1]; float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2]; } else { float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1]; float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2]; float_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3]; } } else { const unsigned char *row1, *row2, *row3, *row4; unsigned char empty[4] = {0, 0, 0, 0}; /* sample including outside of edges of image */ if (x1 < 0 || y1 < 0) row1 = empty; else row1 = byte_buffer + width * y1 * components + components * x1; if (x1 < 0 || y2 > height - 1) row2 = empty; else row2 = byte_buffer + width * y2 * components + components * x1; if (x2 > width - 1 || y1 < 0) row3 = empty; else row3 = byte_buffer + width * y1 * components + components * x2; if (x2 > width - 1 || y2 > height - 1) row4 = empty; else row4 = byte_buffer + width * y2 * components + components * x2; a = u - floorf(u); b = v - floorf(v); a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b); if (components == 1) { byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; } else if (components == 3) { byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1]; byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2]; } else { byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1]; byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2]; byte_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3]; } } } void BLI_bilinear_interpolation_fl(const float *buffer, float *output, int width, int height, int components, float u, float v) { bilinear_interpolation(NULL, buffer, NULL, output, width, height, components, u, v); } void BLI_bilinear_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height, int components, float u, float v) { bilinear_interpolation(buffer, NULL, output, NULL, width, height, components, u, v); }