/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2012 by Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Sergey Sharybin * * ***** END GPL LICENSE BLOCK ***** * */ /** \file blender/blenlib/intern/math_interp.c * \ingroup bli */ #include #include "BLI_math.h" #include "BLI_strict_flags.h" /************************************************************************** * INTERPOLATIONS * * Reference and docs: * http://wiki.blender.org/index.php/User:Damiles#Interpolations_Algorithms ***************************************************************************/ /* BICUBIC Interpolation functions * More info: http://wiki.blender.org/index.php/User:Damiles#Bicubic_pixel_interpolation * function assumes out to be zero'ed, only does RGBA */ static float P(float k) { float p1, p2, p3, p4; p1 = max_ff(k + 2.0f, 0.0f); p2 = max_ff(k + 1.0f, 0.0f); p3 = max_ff(k, 0.0f); p4 = max_ff(k - 1.0f, 0.0f); return (float)(1.0f / 6.0f) * (p1 * p1 * p1 - 4.0f * p2 * p2 * p2 + 6.0f * p3 * p3 * p3 - 4.0f * p4 * p4 * p4); } #if 0 /* older, slower function, works the same as above */ static float P(float k) { return (float)(1.0f / 6.0f) * (pow(MAX2(k + 2.0f, 0), 3.0f) - 4.0f * pow(MAX2(k + 1.0f, 0), 3.0f) + 6.0f * pow(MAX2(k, 0), 3.0f) - 4.0f * pow(MAX2(k - 1.0f, 0), 3.0f)); } #endif static void vector_from_float(const float *data, float vector[4], int components) { if (components == 1) { vector[0] = data[0]; } else if (components == 3) { copy_v3_v3(vector, data); } else { copy_v4_v4(vector, data); } } static void vector_from_byte(const unsigned char *data, float vector[4], int components) { if (components == 1) { vector[0] = data[0]; } else if (components == 3) { vector[0] = data[0]; vector[1] = data[1]; vector[2] = data[2]; } else { vector[0] = data[0]; vector[1] = data[1]; vector[2] = data[2]; vector[3] = data[3]; } } /* BICUBIC INTERPOLATION */ BLI_INLINE void bicubic_interpolation(const unsigned char *byte_buffer, const float *float_buffer, unsigned char *byte_output, float *float_output, int width, int height, int components, float u, float v) { int i, j, n, m, x1, y1; float a, b, w, wx, wy[4], out[4]; /* sample area entirely outside image? */ if (ceil(u) < 0 || floor(u) > width - 1 || ceil(v) < 0 || floor(v) > height - 1) { if (float_output) float_output[0] = float_output[1] = float_output[2] = float_output[3] = 0.0f; if (byte_output) byte_output[0] = byte_output[1] = byte_output[2] = byte_output[3] = 0; return; } i = (int)floor(u); j = (int)floor(v); a = u - (float)i; b = v - (float)j; zero_v4(out); /* Optimized and not so easy to read */ /* avoid calling multiple times */ wy[0] = P(b - (-1)); wy[1] = P(b - 0); wy[2] = P(b - 1); wy[3] = P(b - 2); for (n = -1; n <= 2; n++) { x1 = i + n; CLAMP(x1, 0, width - 1); wx = P((float)n - a); for (m = -1; m <= 2; m++) { float data[4]; y1 = j + m; CLAMP(y1, 0, height - 1); /* normally we could do this */ /* w = P(n-a) * P(b-m); */ /* except that would call P() 16 times per pixel therefor pow() 64 times, better precalc these */ w = wx * wy[m + 1]; if (float_output) { const float *float_data = float_buffer + width * y1 * components + components * x1; vector_from_float(float_data, data, components); } else { const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1; vector_from_byte(byte_data, data, components); } if (components == 1) { out[0] += data[0] * w; } else if (components == 3) { out[0] += data[0] * w; out[1] += data[1] * w; out[2] += data[2] * w; } else { out[0] += data[0] * w; out[1] += data[1] * w; out[2] += data[2] * w; out[3] += data[3] * w; } } } /* Done with optimized part */ #if 0 /* older, slower function, works the same as above */ for (n = -1; n <= 2; n++) { for (m = -1; m <= 2; m++) { x1 = i + n; y1 = j + m; if (x1 > 0 && x1 < width && y1 > 0 && y1 < height) { float data[4]; if (float_output) { const float *float_data = float_buffer + width * y1 * components + components * x1; vector_from_float(float_data, data, components); } else { const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1; vector_from_byte(byte_data, data, components); } if (components == 1) { out[0] += data[0] * P(n - a) * P(b - m); } else if (components == 3) { out[0] += data[0] * P(n - a) * P(b - m); out[1] += data[1] * P(n - a) * P(b - m); out[2] += data[2] * P(n - a) * P(b - m); } else { out[0] += data[0] * P(n - a) * P(b - m); out[1] += data[1] * P(n - a) * P(b - m); out[2] += data[2] * P(n - a) * P(b - m); out[3] += data[3] * P(n - a) * P(b - m); } } } } #endif if (float_output) { if (components == 1) { float_output[0] = out[0]; } else if (components == 3) { copy_v3_v3(float_output, out); } else { copy_v4_v4(float_output, out); } } else { if (components == 1) { byte_output[0] = (unsigned char)(out[0] + 0.5f); } else if (components == 3) { byte_output[0] = (unsigned char)(out[0] + 0.5f); byte_output[1] = (unsigned char)(out[1] + 0.5f); byte_output[2] = (unsigned char)(out[2] + 0.5f); } else { byte_output[0] = (unsigned char)(out[0] + 0.5f); byte_output[1] = (unsigned char)(out[1] + 0.5f); byte_output[2] = (unsigned char)(out[2] + 0.5f); byte_output[3] = (unsigned char)(out[3] + 0.5f); } } } void BLI_bicubic_interpolation_fl(const float *buffer, float *output, int width, int height, int components, float u, float v) { bicubic_interpolation(NULL, buffer, NULL, output, width, height, components, u, v); } void BLI_bicubic_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height, int components, float u, float v) { bicubic_interpolation(buffer, NULL, output, NULL, width, height, components, u, v); } /* BILINEAR INTERPOLATION */ BLI_INLINE void bilinear_interpolation(const unsigned char *byte_buffer, const float *float_buffer, unsigned char *byte_output, float *float_output, int width, int height, int components, float u, float v) { float a, b; float a_b, ma_b, a_mb, ma_mb; int y1, y2, x1, x2; /* ImBuf in must have a valid rect or rect_float, assume this is already checked */ x1 = (int)floor(u); x2 = (int)ceil(u); y1 = (int)floor(v); y2 = (int)ceil(v); if (float_output) { const float *row1, *row2, *row3, *row4; float empty[4] = {0.0f, 0.0f, 0.0f, 0.0f}; /* sample area entirely outside image? */ if (x2 < 0 || x1 > width - 1 || y2 < 0 || y1 > height - 1) { float_output[0] = float_output[1] = float_output[2] = float_output[3] = 0.0f; return; } /* sample including outside of edges of image */ if (x1 < 0 || y1 < 0) row1 = empty; else row1 = float_buffer + width * y1 * components + components * x1; if (x1 < 0 || y2 > height - 1) row2 = empty; else row2 = float_buffer + width * y2 * components + components * x1; if (x2 > width - 1 || y1 < 0) row3 = empty; else row3 = float_buffer + width * y1 * components + components * x2; if (x2 > width - 1 || y2 > height - 1) row4 = empty; else row4 = float_buffer + width * y2 * components + components * x2; a = u - floorf(u); b = v - floorf(v); a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b); if (components == 1) { float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; } else if (components == 3) { float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1]; float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2]; } else { float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0]; float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1]; float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2]; float_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3]; } } else { const unsigned char *row1, *row2, *row3, *row4; unsigned char empty[4] = {0, 0, 0, 0}; /* sample area entirely outside image? */ if (x2 < 0 || x1 > width - 1 || y2 < 0 || y1 > height - 1) { byte_output[0] = byte_output[1] = byte_output[2] = byte_output[3] = 0; return; } /* sample including outside of edges of image */ if (x1 < 0 || y1 < 0) row1 = empty; else row1 = byte_buffer + width * y1 * components + components * x1; if (x1 < 0 || y2 > height - 1) row2 = empty; else row2 = byte_buffer + width * y2 * components + components * x1; if (x2 > width - 1 || y1 < 0) row3 = empty; else row3 = byte_buffer + width * y1 * components + components * x2; if (x2 > width - 1 || y2 > height - 1) row4 = empty; else row4 = byte_buffer + width * y2 * components + components * x2; a = u - floorf(u); b = v - floorf(v); a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b); if (components == 1) { byte_output[0] = (unsigned char)(ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f); } else if (components == 3) { byte_output[0] = (unsigned char)(ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f); byte_output[1] = (unsigned char)(ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1] + 0.5f); byte_output[2] = (unsigned char)(ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2] + 0.5f); } else { byte_output[0] = (unsigned char)(ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f); byte_output[1] = (unsigned char)(ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1] + 0.5f); byte_output[2] = (unsigned char)(ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2] + 0.5f); byte_output[3] = (unsigned char)(ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3] + 0.5f); } } } void BLI_bilinear_interpolation_fl(const float *buffer, float *output, int width, int height, int components, float u, float v) { bilinear_interpolation(NULL, buffer, NULL, output, width, height, components, u, v); } void BLI_bilinear_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height, int components, float u, float v) { bilinear_interpolation(buffer, NULL, output, NULL, width, height, components, u, v); } /************************************************************************** * Filtering method based on * "Creating raster omnimax images from multiple perspective views using the elliptical weighted average filter" * by Ned Greene and Paul S. Heckbert (1986) ***************************************************************************/ /* table of (exp(ar) - exp(a)) / (1 - exp(a)) for r in range [0, 1] and a = -2 * used instead of actual gaussian, otherwise at high texture magnifications circular artifacts are visible */ #define EWA_MAXIDX 255 const float EWA_WTS[EWA_MAXIDX + 1] = { 1.f, 0.990965f, 0.982f, 0.973105f, 0.96428f, 0.955524f, 0.946836f, 0.938216f, 0.929664f, 0.921178f, 0.912759f, 0.904405f, 0.896117f, 0.887893f, 0.879734f, 0.871638f, 0.863605f, 0.855636f, 0.847728f, 0.839883f, 0.832098f, 0.824375f, 0.816712f, 0.809108f, 0.801564f, 0.794079f, 0.786653f, 0.779284f, 0.771974f, 0.76472f, 0.757523f, 0.750382f, 0.743297f, 0.736267f, 0.729292f, 0.722372f, 0.715505f, 0.708693f, 0.701933f, 0.695227f, 0.688572f, 0.68197f, 0.67542f, 0.66892f, 0.662471f, 0.656073f, 0.649725f, 0.643426f, 0.637176f, 0.630976f, 0.624824f, 0.618719f, 0.612663f, 0.606654f, 0.600691f, 0.594776f, 0.588906f, 0.583083f, 0.577305f, 0.571572f, 0.565883f, 0.56024f, 0.55464f, 0.549084f, 0.543572f, 0.538102f, 0.532676f, 0.527291f, 0.521949f, 0.516649f, 0.511389f, 0.506171f, 0.500994f, 0.495857f, 0.490761f, 0.485704f, 0.480687f, 0.475709f, 0.470769f, 0.465869f, 0.461006f, 0.456182f, 0.451395f, 0.446646f, 0.441934f, 0.437258f, 0.432619f, 0.428017f, 0.42345f, 0.418919f, 0.414424f, 0.409963f, 0.405538f, 0.401147f, 0.39679f, 0.392467f, 0.388178f, 0.383923f, 0.379701f, 0.375511f, 0.371355f, 0.367231f, 0.363139f, 0.359079f, 0.355051f, 0.351055f, 0.347089f, 0.343155f, 0.339251f, 0.335378f, 0.331535f, 0.327722f, 0.323939f, 0.320186f, 0.316461f, 0.312766f, 0.3091f, 0.305462f, 0.301853f, 0.298272f, 0.294719f, 0.291194f, 0.287696f, 0.284226f, 0.280782f, 0.277366f, 0.273976f, 0.270613f, 0.267276f, 0.263965f, 0.26068f, 0.257421f, 0.254187f, 0.250979f, 0.247795f, 0.244636f, 0.241502f, 0.238393f, 0.235308f, 0.232246f, 0.229209f, 0.226196f, 0.223206f, 0.220239f, 0.217296f, 0.214375f, 0.211478f, 0.208603f, 0.20575f, 0.20292f, 0.200112f, 0.197326f, 0.194562f, 0.191819f, 0.189097f, 0.186397f, 0.183718f, 0.18106f, 0.178423f, 0.175806f, 0.17321f, 0.170634f, 0.168078f, 0.165542f, 0.163026f, 0.16053f, 0.158053f, 0.155595f, 0.153157f, 0.150738f, 0.148337f, 0.145955f, 0.143592f, 0.141248f, 0.138921f, 0.136613f, 0.134323f, 0.132051f, 0.129797f, 0.12756f, 0.125341f, 0.123139f, 0.120954f, 0.118786f, 0.116635f, 0.114501f, 0.112384f, 0.110283f, 0.108199f, 0.106131f, 0.104079f, 0.102043f, 0.100023f, 0.0980186f, 0.09603f, 0.094057f, 0.0920994f, 0.0901571f, 0.08823f, 0.0863179f, 0.0844208f, 0.0825384f, 0.0806708f, 0.0788178f, 0.0769792f, 0.0751551f, 0.0733451f, 0.0715493f, 0.0697676f, 0.0679997f, 0.0662457f, 0.0645054f, 0.0627786f, 0.0610654f, 0.0593655f, 0.0576789f, 0.0560055f, 0.0543452f, 0.0526979f, 0.0510634f, 0.0494416f, 0.0478326f, 0.0462361f, 0.0446521f, 0.0430805f, 0.0415211f, 0.039974f, 0.0384389f, 0.0369158f, 0.0354046f, 0.0339052f, 0.0324175f, 0.0309415f, 0.029477f, 0.0280239f, 0.0265822f, 0.0251517f, 0.0237324f, 0.0223242f, 0.020927f, 0.0195408f, 0.0181653f, 0.0168006f, 0.0154466f, 0.0141031f, 0.0127701f, 0.0114476f, 0.0101354f, 0.00883339f, 0.00754159f, 0.00625989f, 0.00498819f, 0.00372644f, 0.00247454f, 0.00123242f, 0.f }; static void radangle2imp(float a2, float b2, float th, float *A, float *B, float *C, float *F) { float ct2 = cosf(th); const float st2 = 1.0f - ct2 * ct2; /* <- sin(th)^2 */ ct2 *= ct2; *A = a2 * st2 + b2 * ct2; *B = (b2 - a2) * sinf(2.0f * th); *C = a2 * ct2 + b2 * st2; *F = a2 * b2; } /* all tests here are done to make sure possible overflows are hopefully minimized */ void BLI_ewa_imp2radangle(float A, float B, float C, float F, float *a, float *b, float *th, float *ecc) { if (F <= 1e-5f) { /* use arbitrary major radius, zero minor, infinite eccentricity */ *a = sqrtf(A > C ? A : C); *b = 0.0f; *ecc = 1e10f; *th = 0.5f * (atan2f(B, A - C) + (float)M_PI); } else { const float AmC = A - C, ApC = A + C, F2 = F * 2.0f; const float r = sqrtf(AmC * AmC + B * B); float d = ApC - r; *a = (d <= 0.0f) ? sqrtf(A > C ? A : C) : sqrtf(F2 / d); d = ApC + r; if (d <= 0.0f) { *b = 0.0f; *ecc = 1e10f; } else { *b = sqrtf(F2 / d); *ecc = *a / *b; } /* incr theta by 0.5*pi (angle of major axis) */ *th = 0.5f * (atan2f(B, AmC) + (float)M_PI); } } void BLI_ewa_filter(const int width, const int height, const bool intpol, const bool use_alpha, const float uv[2], const float du[2], const float dv[2], ewa_filter_read_pixel_cb read_pixel_cb, void *userdata, float result[4]) { /* scaling dxt/dyt by full resolution can cause overflow because of huge A/B/C and esp. F values, * scaling by aspect ratio alone does the opposite, so try something in between instead... */ const float ff2 = (float)width, ff = sqrtf(ff2), q = (float)height / ff; const float Ux = du[0] * ff, Vx = dv[0] * q, Uy = du[1] * ff, Vy = dv[1] * q; float A = Vx * Vx + Vy * Vy; float B = -2.0f * (Ux * Vx + Uy * Vy); float C = Ux * Ux + Uy * Uy; float F = A * C - B * B * 0.25f; float a, b, th, ecc, a2, b2, ue, ve, U0, V0, DDQ, U, ac1, ac2, BU, d; int u, v, u1, u2, v1, v2; /* The so-called 'high' quality ewa method simply adds a constant of 1 to both A & C, * so the ellipse always covers at least some texels. But since the filter is now always larger, * it also means that everywhere else it's also more blurry then ideally should be the case. * So instead here the ellipse radii are modified instead whenever either is too low. * Use a different radius based on interpolation switch, just enough to anti-alias when interpolation is off, * and slightly larger to make result a bit smoother than bilinear interpolation when interpolation is on * (minimum values: const float rmin = intpol ? 1.f : 0.5f;) */ const float rmin = (intpol ? 1.5625f : 0.765625f) / ff2; BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc); if ((b2 = b * b) < rmin) { if ((a2 = a * a) < rmin) { B = 0.0f; A = C = rmin; F = A * C; } else { b2 = rmin; radangle2imp(a2, b2, th, &A, &B, &C, &F); } } ue = ff * sqrtf(C); ve = ff * sqrtf(A); d = (float)(EWA_MAXIDX + 1) / (F * ff2); A *= d; B *= d; C *= d; U0 = uv[0] * (float)width; V0 = uv[1] * (float)height; u1 = (int)(floorf(U0 - ue)); u2 = (int)(ceilf(U0 + ue)); v1 = (int)(floorf(V0 - ve)); v2 = (int)(ceilf(V0 + ve)); /* sane clamping to avoid unnecessarily huge loops */ /* note: if eccentricity gets clamped (see above), * the ue/ve limits can also be lowered accordingly */ if (U0 - (float)u1 > EWA_MAXIDX) u1 = (int)U0 - EWA_MAXIDX; if ((float)u2 - U0 > EWA_MAXIDX) u2 = (int)U0 + EWA_MAXIDX; if (V0 - (float)v1 > EWA_MAXIDX) v1 = (int)V0 - EWA_MAXIDX; if ((float)v2 - V0 > EWA_MAXIDX) v2 = (int)V0 + EWA_MAXIDX; /* Early output check for cases the whole region is outside of the buffer. */ if ((u2 < 0 || u1 >= width) || (v2 < 0 || v1 >= height)) { zero_v4(result); return; } U0 -= 0.5f; V0 -= 0.5f; DDQ = 2.0f * A; U = (float)u1 - U0; ac1 = A * (2.0f * U + 1.0f); ac2 = A * U * U; BU = B * U; d = 0.0f; zero_v4(result); for (v = v1; v <= v2; ++v) { const float V = (float)v - V0; float DQ = ac1 + B * V; float Q = (C * V + BU) * V + ac2; for (u = u1; u <= u2; ++u) { if (Q < (float)(EWA_MAXIDX + 1)) { float tc[4]; const float wt = EWA_WTS[(Q < 0.0f) ? 0 : (unsigned int)Q]; read_pixel_cb(userdata, u, v, tc); madd_v3_v3fl(result, tc, wt); result[3] += use_alpha ? tc[3] * wt : 0.0f; d += wt; } Q += DQ; DQ += DDQ; } } /* d should hopefully never be zero anymore */ d = 1.0f / d; mul_v3_fl(result, d); /* clipping can be ignored if alpha used, texr->ta already includes filtered edge */ result[3] = use_alpha ? result[3] * d : 1.0f; }