/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2015 by Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * ***** END GPL LICENSE BLOCK ***** * */ /** \file blender/blenlib/intern/math_statistics.c * \ingroup bli */ #include "MEM_guardedalloc.h" #include "BLI_math.h" #include "BLI_task.h" #include "BLI_utildefines.h" #include "BLI_strict_flags.h" /********************************** Covariance Matrices *********************************/ typedef struct CovarianceData { const float *cos_vn; const float *center; float *r_covmat; float covfac; int n; int nbr_cos_vn; } CovarianceData; static void covariance_m_vn_ex_task_cb( void *__restrict userdata, const int a, const ParallelRangeTLS *__restrict UNUSED(tls)) { CovarianceData *data = userdata; const float *cos_vn = data->cos_vn; const float *center = data->center; float *r_covmat = data->r_covmat; const int n = data->n; const int nbr_cos_vn = data->nbr_cos_vn; int k; /* Covariance matrices are always symetrical, so we can compute only one half of it, * and mirror it to the other half (at the end of the func). * * This allows using a flat loop of n*n with same results as imbricated one over half the matrix: * * for (i = 0; i < n; i++) { * for (j = i; j < n; j++) { * ... * } * } */ const int i = a / n; const int j = a % n; if (j < i) return; if (center) { for (k = 0; k < nbr_cos_vn; k++) { r_covmat[a] += (cos_vn[k * n + i] - center[i]) * (cos_vn[k * n + j] - center[j]); } } else { for (k = 0; k < nbr_cos_vn; k++) { r_covmat[a] += cos_vn[k * n + i] * cos_vn[k * n + j]; } } r_covmat[a] *= data->covfac; if (j != i) { /* Mirror result to other half... */ r_covmat[j * n + i] = r_covmat[a]; } } /** * \brief Compute the covariance matrix of given set of nD coordinates. * * \param n the dimension of the vectors (and hence, of the covariance matrix to compute). * \param cos_vn the nD points to compute covariance from. * \param nbr_cos_vn the number of nD coordinates in cos_vn. * \param center the center (or mean point) of cos_vn. If NULL, it is assumed cos_vn is already centered. * \param use_sample_correction whether to apply sample correction * (i.e. get 'sample varince' instead of 'population variance'). * \return r_covmat the computed covariance matrix. */ void BLI_covariance_m_vn_ex( const int n, const float *cos_vn, const int nbr_cos_vn, const float *center, const bool use_sample_correction, float *r_covmat) { /* Note about that division: see https://en.wikipedia.org/wiki/Bessel%27s_correction. * In a nutshell, it must be 1 / (n - 1) for 'sample data', and 1 / n for 'population data'... */ const float covfac = 1.0f / (float)(use_sample_correction ? nbr_cos_vn - 1 : nbr_cos_vn); memset(r_covmat, 0, sizeof(*r_covmat) * (size_t)(n * n)); CovarianceData data = { .cos_vn = cos_vn, .center = center, .r_covmat = r_covmat, .covfac = covfac, .n = n, .nbr_cos_vn = nbr_cos_vn, }; ParallelRangeSettings settings; BLI_parallel_range_settings_defaults(&settings); settings.use_threading = ((nbr_cos_vn * n * n) >= 10000); BLI_task_parallel_range( 0, n * n, &data, covariance_m_vn_ex_task_cb, &settings); } /** * \brief Compute the covariance matrix of given set of 3D coordinates. * * \param cos_v3 the 3D points to compute covariance from. * \param nbr_cos_v3 the number of 3D coordinates in cos_v3. * \return r_covmat the computed covariance matrix. * \return r_center the computed center (mean) of 3D points (may be NULL). */ void BLI_covariance_m3_v3n( const float (*cos_v3)[3], const int nbr_cos_v3, const bool use_sample_correction, float r_covmat[3][3], float r_center[3]) { float center[3]; const float mean_fac = 1.0f / (float)nbr_cos_v3; int i; zero_v3(center); for (i = 0; i < nbr_cos_v3; i++) { /* Applying mean_fac here rather than once at the end reduce compute errors... */ madd_v3_v3fl(center, cos_v3[i], mean_fac); } if (r_center) { copy_v3_v3(r_center, center); } BLI_covariance_m_vn_ex(3, (const float *)cos_v3, nbr_cos_v3, center, use_sample_correction, (float *)r_covmat); }