/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2015 Blender Foundation. All rights reserved. */ /** \file * \ingroup bli */ #include "MEM_guardedalloc.h" #include "BLI_math.h" #include "BLI_task.h" #include "BLI_utildefines.h" #include "BLI_strict_flags.h" /********************************** Covariance Matrices *********************************/ typedef struct CovarianceData { const float *cos_vn; const float *center; float *r_covmat; float covfac; int n; int cos_vn_num; } CovarianceData; static void covariance_m_vn_ex_task_cb(void *__restrict userdata, const int a, const TaskParallelTLS *__restrict UNUSED(tls)) { CovarianceData *data = userdata; const float *cos_vn = data->cos_vn; const float *center = data->center; float *r_covmat = data->r_covmat; const int n = data->n; const int cos_vn_num = data->cos_vn_num; int k; /* Covariance matrices are always symmetrical, so we can compute only one half of it, * and mirror it to the other half (at the end of the func). * * This allows using a flat loop of n*n with same results as imbricated one over half the matrix: * * for (i = 0; i < n; i++) { * for (j = i; j < n; j++) { * ... * } * } */ const int i = a / n; const int j = a % n; if (j < i) { return; } if (center) { for (k = 0; k < cos_vn_num; k++) { r_covmat[a] += (cos_vn[k * n + i] - center[i]) * (cos_vn[k * n + j] - center[j]); } } else { for (k = 0; k < cos_vn_num; k++) { r_covmat[a] += cos_vn[k * n + i] * cos_vn[k * n + j]; } } r_covmat[a] *= data->covfac; if (j != i) { /* Mirror result to other half... */ r_covmat[j * n + i] = r_covmat[a]; } } void BLI_covariance_m_vn_ex(const int n, const float *cos_vn, const int cos_vn_num, const float *center, const bool use_sample_correction, float *r_covmat) { /* Note about that division: see https://en.wikipedia.org/wiki/Bessel%27s_correction. * In a nutshell, it must be 1 / (n - 1) for 'sample data', and 1 / n for 'population data'... */ const float covfac = 1.0f / (float)(use_sample_correction ? cos_vn_num - 1 : cos_vn_num); memset(r_covmat, 0, sizeof(*r_covmat) * (size_t)(n * n)); CovarianceData data = { .cos_vn = cos_vn, .center = center, .r_covmat = r_covmat, .covfac = covfac, .n = n, .cos_vn_num = cos_vn_num, }; TaskParallelSettings settings; BLI_parallel_range_settings_defaults(&settings); settings.use_threading = ((cos_vn_num * n * n) >= 10000); BLI_task_parallel_range(0, n * n, &data, covariance_m_vn_ex_task_cb, &settings); } void BLI_covariance_m3_v3n(const float (*cos_v3)[3], const int cos_v3_num, const bool use_sample_correction, float r_covmat[3][3], float r_center[3]) { float center[3]; const float mean_fac = 1.0f / (float)cos_v3_num; int i; zero_v3(center); for (i = 0; i < cos_v3_num; i++) { /* Applying mean_fac here rather than once at the end reduce compute errors... */ madd_v3_v3fl(center, cos_v3[i], mean_fac); } if (r_center) { copy_v3_v3(r_center, center); } BLI_covariance_m_vn_ex( 3, (const float *)cos_v3, cos_v3_num, center, use_sample_correction, (float *)r_covmat); }