/** * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * The Original Code is: some of this file. * * ***** END GPL LICENSE BLOCK ***** * */ #include "BLI_math.h" //******************************* Interpolation *******************************/ void interp_v2_v2v2(float *target, const float *a, const float *b, const float t) { float s = 1.0f-t; target[0]= s*a[0] + t*b[0]; target[1]= s*a[1] + t*b[1]; } /* weight 3 2D vectors, * 'w' must be unit length but is not a vector, just 3 weights */ void interp_v2_v2v2v2(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3]) { p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2]; p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2]; } void interp_v3_v3v3(float target[3], const float a[3], const float b[3], const float t) { float s = 1.0f-t; target[0]= s*a[0] + t*b[0]; target[1]= s*a[1] + t*b[1]; target[2]= s*a[2] + t*b[2]; } void interp_v4_v4v4(float target[4], const float a[4], const float b[4], const float t) { float s = 1.0f-t; target[0]= s*a[0] + t*b[0]; target[1]= s*a[1] + t*b[1]; target[2]= s*a[2] + t*b[2]; target[3]= s*a[3] + t*b[3]; } /* weight 3 vectors, * 'w' must be unit length but is not a vector, just 3 weights */ void interp_v3_v3v3v3(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3]) { p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2]; p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2]; p[2] = v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2]; } /* weight 3 vectors, * 'w' must be unit length but is not a vector, just 4 weights */ void interp_v3_v3v3v3v3(float p[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3], const float w[4]) { p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3]; p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3]; p[2] = v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3]; } void interp_v4_v4v4v4(float p[4], const float v1[4], const float v2[4], const float v3[4], const float w[3]) { p[0] = v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2]; p[1] = v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2]; p[2] = v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2]; p[3] = v1[3]*w[0] + v2[3]*w[1] + v3[3]*w[2]; } void mid_v3_v3v3(float *v, float *v1, float *v2) { v[0]= 0.5f*(v1[0] + v2[0]); v[1]= 0.5f*(v1[1] + v2[1]); v[2]= 0.5f*(v1[2] + v2[2]); } /********************************** Angles ***********************************/ /* Return the angle in radians between vecs 1-2 and 2-3 in radians If v1 is a shoulder, v2 is the elbow and v3 is the hand, this would return the angle at the elbow */ float angle_v3v3v3(float *v1, float *v2, float *v3) { float vec1[3], vec2[3]; sub_v3_v3v3(vec1, v2, v1); sub_v3_v3v3(vec2, v2, v3); normalize_v3(vec1); normalize_v3(vec2); return angle_normalized_v3v3(vec1, vec2); } /* Return the shortest angle in radians between the 2 vectors */ float angle_v3v3(float *v1, float *v2) { float vec1[3], vec2[3]; normalize_v3_v3(vec1, v1); normalize_v3_v3(vec2, v2); return angle_normalized_v3v3(vec1, vec2); } float angle_v2v2v2(float *v1, float *v2, float *v3) { float vec1[2], vec2[2]; vec1[0] = v2[0]-v1[0]; vec1[1] = v2[1]-v1[1]; vec2[0] = v2[0]-v3[0]; vec2[1] = v2[1]-v3[1]; normalize_v2(vec1); normalize_v2(vec2); return angle_normalized_v2v2(vec1, vec2); } /* Return the shortest angle in radians between the 2 vectors */ float angle_v2v2(float *v1, float *v2) { float vec1[2], vec2[2]; vec1[0] = v1[0]; vec1[1] = v1[1]; vec2[0] = v2[0]; vec2[1] = v2[1]; normalize_v2(vec1); normalize_v2(vec2); return angle_normalized_v2v2(vec1, vec2); } float angle_normalized_v3v3(const float v1[3], const float v2[3]) { /* this is the same as acos(dot_v3v3(v1, v2)), but more accurate */ if (dot_v3v3(v1, v2) < 0.0f) { float vec[3]; vec[0]= -v2[0]; vec[1]= -v2[1]; vec[2]= -v2[2]; return (float)M_PI - 2.0f*(float)saasin(len_v3v3(vec, v1)/2.0f); } else return 2.0f*(float)saasin(len_v3v3(v2, v1)/2.0f); } float angle_normalized_v2v2(float *v1, float *v2) { /* this is the same as acos(dot_v3v3(v1, v2)), but more accurate */ if (dot_v2v2(v1, v2) < 0.0f) { float vec[2]; vec[0]= -v2[0]; vec[1]= -v2[1]; return (float)M_PI - 2.0f*saasin(len_v2v2(vec, v1)/2.0f); } else return 2.0f*(float)saasin(len_v2v2(v2, v1)/2.0f); } void angle_tri_v3(float angles[3], const float v1[3], const float v2[3], const float v3[3]) { float ed1[3], ed2[3], ed3[3]; sub_v3_v3v3(ed1, v3, v1); sub_v3_v3v3(ed2, v1, v2); sub_v3_v3v3(ed3, v2, v3); normalize_v3(ed1); normalize_v3(ed2); normalize_v3(ed3); angles[0]= M_PI - angle_normalized_v3v3(ed1, ed2); angles[1]= M_PI - angle_normalized_v3v3(ed2, ed3); // face_angles[2] = M_PI - angle_normalized_v3v3(ed3, ed1); angles[2]= M_PI - (angles[0] + angles[1]); } void angle_quad_v3(float angles[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { float ed1[3], ed2[3], ed3[3], ed4[3]; sub_v3_v3v3(ed1, v4, v1); sub_v3_v3v3(ed2, v1, v2); sub_v3_v3v3(ed3, v2, v3); sub_v3_v3v3(ed4, v3, v4); normalize_v3(ed1); normalize_v3(ed2); normalize_v3(ed3); normalize_v3(ed4); angles[0]= M_PI - angle_normalized_v3v3(ed1, ed2); angles[1]= M_PI - angle_normalized_v3v3(ed2, ed3); angles[2]= M_PI - angle_normalized_v3v3(ed3, ed4); angles[3]= M_PI - angle_normalized_v3v3(ed4, ed1); } /********************************* Geometry **********************************/ /* Project v1 on v2 */ void project_v3_v3v3(float *c, float *v1, float *v2) { float mul; mul = dot_v3v3(v1, v2) / dot_v3v3(v2, v2); c[0] = mul * v2[0]; c[1] = mul * v2[1]; c[2] = mul * v2[2]; } /* Returns a vector bisecting the angle at v2 formed by v1, v2 and v3 */ void bisect_v3_v3v3v3(float *out, float *v1, float *v2, float *v3) { float d_12[3], d_23[3]; sub_v3_v3v3(d_12, v2, v1); sub_v3_v3v3(d_23, v3, v2); normalize_v3(d_12); normalize_v3(d_23); add_v3_v3v3(out, d_12, d_23); normalize_v3(out); } /* Returns a reflection vector from a vector and a normal vector reflect = vec - ((2 * DotVecs(vec, mirror)) * mirror) */ void reflect_v3_v3v3(float *out, float *v1, float *v2) { float vec[3], normal[3]; float reflect[3] = {0.0f, 0.0f, 0.0f}; float dot2; copy_v3_v3(vec, v1); copy_v3_v3(normal, v2); dot2 = 2 * dot_v3v3(vec, normal); reflect[0] = vec[0] - (dot2 * normal[0]); reflect[1] = vec[1] - (dot2 * normal[1]); reflect[2] = vec[2] - (dot2 * normal[2]); copy_v3_v3(out, reflect); } void ortho_basis_v3v3_v3(float *v1, float *v2, float *v) { const float f = (float)sqrt(v[0]*v[0] + v[1]*v[1]); if (f < 1e-35f) { // degenerate case v1[0] = (v[2] < 0.0f) ? -1.0f : 1.0f; v1[1] = v1[2] = v2[0] = v2[2] = 0.0f; v2[1] = 1.0f; } else { const float d= 1.0f/f; v1[0] = v[1]*d; v1[1] = -v[0]*d; v1[2] = 0.0f; v2[0] = -v[2]*v1[1]; v2[1] = v[2]*v1[0]; v2[2] = v[0]*v1[1] - v[1]*v1[0]; } } /*********************************** Other ***********************************/ void print_v2(char *str, float v[2]) { printf("%s: %.3f %.3f\n", str, v[0], v[1]); } void print_v3(char *str, float v[3]) { printf("%s: %.3f %.3f %.3f\n", str, v[0], v[1], v[2]); } void print_v4(char *str, float v[4]) { printf("%s: %.3f %.3f %.3f %.3f\n", str, v[0], v[1], v[2], v[3]); } void minmax_v3_v3v3(float *min, float *max, float *vec) { if(min[0]>vec[0]) min[0]= vec[0]; if(min[1]>vec[1]) min[1]= vec[1]; if(min[2]>vec[2]) min[2]= vec[2]; if(max[0]