/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2001-2002 NaN Holding BV. All rights reserved. */ /** \file * \ingroup bli * * \note This isn't fully complete, * possible there are other useful functions to add here. * * \note follow BLI_math naming convention here. * * \note this uses doubles for internal calculations, * even though input/output are floats in some cases. * * This is done because the cases quadrics are useful * often need high precision, see T44780. */ #include "BLI_math.h" #include "BLI_strict_flags.h" #include "BLI_quadric.h" /* own include */ #define QUADRIC_FLT_TOT (sizeof(Quadric) / sizeof(double)) void BLI_quadric_from_plane(Quadric *q, const double v[4]) { q->a2 = v[0] * v[0]; q->b2 = v[1] * v[1]; q->c2 = v[2] * v[2]; q->ab = v[0] * v[1]; q->ac = v[0] * v[2]; q->bc = v[1] * v[2]; q->ad = v[0] * v[3]; q->bd = v[1] * v[3]; q->cd = v[2] * v[3]; q->d2 = v[3] * v[3]; } #if 0 /* UNUSED */ static void quadric_to_tensor_m3(const Quadric *q, double m[3][3]) { m[0][0] = q->a2; m[0][1] = q->ab; m[0][2] = q->ac; m[1][0] = q->ab; m[1][1] = q->b2; m[1][2] = q->bc; m[2][0] = q->ac; m[2][1] = q->bc; m[2][2] = q->c2; } #endif /** * Inline inverse matrix creation. * Equivalent of: * * \code{.c} * quadric_to_tensor_m3(q, m); * invert_m3_db(m, eps); * \endcode */ static bool quadric_to_tensor_m3_inverse(const Quadric *q, double m[3][3], double epsilon) { const double det = (q->a2 * (q->b2 * q->c2 - q->bc * q->bc) - q->ab * (q->ab * q->c2 - q->ac * q->bc) + q->ac * (q->ab * q->bc - q->ac * q->b2)); if (fabs(det) > epsilon) { const double invdet = 1.0 / det; m[0][0] = (q->b2 * q->c2 - q->bc * q->bc) * invdet; m[1][0] = (q->bc * q->ac - q->ab * q->c2) * invdet; m[2][0] = (q->ab * q->bc - q->b2 * q->ac) * invdet; m[0][1] = (q->ac * q->bc - q->ab * q->c2) * invdet; m[1][1] = (q->a2 * q->c2 - q->ac * q->ac) * invdet; m[2][1] = (q->ab * q->ac - q->a2 * q->bc) * invdet; m[0][2] = (q->ab * q->bc - q->ac * q->b2) * invdet; m[1][2] = (q->ac * q->ab - q->a2 * q->bc) * invdet; m[2][2] = (q->a2 * q->b2 - q->ab * q->ab) * invdet; return true; } return false; } void BLI_quadric_to_vector_v3(const Quadric *q, double v[3]) { v[0] = q->ad; v[1] = q->bd; v[2] = q->cd; } void BLI_quadric_clear(Quadric *q) { memset(q, 0, sizeof(*q)); } void BLI_quadric_add_qu_qu(Quadric *a, const Quadric *b) { add_vn_vn_d((double *)a, (double *)b, QUADRIC_FLT_TOT); } void BLI_quadric_add_qu_ququ(Quadric *r, const Quadric *a, const Quadric *b) { add_vn_vnvn_d((double *)r, (const double *)a, (const double *)b, QUADRIC_FLT_TOT); } void BLI_quadric_mul(Quadric *a, const double scalar) { mul_vn_db((double *)a, QUADRIC_FLT_TOT, scalar); } double BLI_quadric_evaluate(const Quadric *q, const double v[3]) { const double v00 = v[0] * v[0], v01 = v[0] * v[1], v02 = v[0] * v[2]; const double v11 = v[1] * v[1], v12 = v[1] * v[2]; const double v22 = v[2] * v[2]; return ((q->a2 * v00) + (q->ab * 2 * v01) + (q->ac * 2 * v02) + (q->ad * 2 * v[0]) + /* a */ (q->b2 * v11) + (q->bc * 2 * v12) + (q->bd * 2 * v[1]) + /* b */ (q->c2 * v22) + (q->cd * 2 * v[2]) + /* c */ (q->d2) /* d */ ); } bool BLI_quadric_optimize(const Quadric *q, double v[3], const double epsilon) { double m[3][3]; if (quadric_to_tensor_m3_inverse(q, m, epsilon)) { BLI_quadric_to_vector_v3(q, v); mul_m3_v3_db(m, v); negate_v3_db(v); return true; } return false; }