/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2001-2002 NaN Holding BV. All rights reserved. */ /** \file * \ingroup bli */ #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_bitmap.h" #include "BLI_math.h" #include "BLI_rand.h" #include "BLI_rand.hh" #include "BLI_threads.h" /* defines BLI_INLINE */ #include "BLI_compiler_compat.h" #include "BLI_strict_flags.h" #include "BLI_sys_types.h" extern "C" uchar BLI_noise_hash_uchar_512[512]; /* noise.c */ #define hash BLI_noise_hash_uchar_512 /** * Random Number Generator. */ struct RNG { blender::RandomNumberGenerator rng; MEM_CXX_CLASS_ALLOC_FUNCS("RNG") }; RNG *BLI_rng_new(uint seed) { RNG *rng = new RNG(); rng->rng.seed(seed); return rng; } RNG *BLI_rng_new_srandom(uint seed) { RNG *rng = new RNG(); rng->rng.seed_random(seed); return rng; } RNG *BLI_rng_copy(RNG *rng) { return new RNG(*rng); } void BLI_rng_free(RNG *rng) { delete rng; } void BLI_rng_seed(RNG *rng, uint seed) { rng->rng.seed(seed); } void BLI_rng_srandom(RNG *rng, uint seed) { rng->rng.seed_random(seed); } void BLI_rng_get_char_n(RNG *rng, char *bytes, size_t bytes_len) { rng->rng.get_bytes(blender::MutableSpan(bytes, int64_t(bytes_len))); } int BLI_rng_get_int(RNG *rng) { return rng->rng.get_int32(); } uint BLI_rng_get_uint(RNG *rng) { return rng->rng.get_uint32(); } double BLI_rng_get_double(RNG *rng) { return rng->rng.get_double(); } float BLI_rng_get_float(RNG *rng) { return rng->rng.get_float(); } void BLI_rng_get_float_unit_v2(RNG *rng, float v[2]) { copy_v2_v2(v, rng->rng.get_unit_float2()); } void BLI_rng_get_float_unit_v3(RNG *rng, float v[3]) { copy_v3_v3(v, rng->rng.get_unit_float3()); } void BLI_rng_get_tri_sample_float_v2( RNG *rng, const float v1[2], const float v2[2], const float v3[2], float r_pt[2]) { copy_v2_v2(r_pt, rng->rng.get_triangle_sample(v1, v2, v3)); } void BLI_rng_get_tri_sample_float_v3( RNG *rng, const float v1[3], const float v2[3], const float v3[3], float r_pt[3]) { copy_v3_v3(r_pt, rng->rng.get_triangle_sample_3d(v1, v2, v3)); } void BLI_rng_shuffle_array(RNG *rng, void *data, uint elem_size_i, uint elem_num) { if (elem_num <= 1) { return; } const uint elem_size = elem_size_i; uint i = elem_num; void *temp = malloc(elem_size); while (i--) { const uint j = BLI_rng_get_uint(rng) % elem_num; if (i != j) { void *iElem = (uchar *)data + i * elem_size_i; void *jElem = (uchar *)data + j * elem_size_i; memcpy(temp, iElem, elem_size); memcpy(iElem, jElem, elem_size); memcpy(jElem, temp, elem_size); } } free(temp); } void BLI_rng_shuffle_bitmap(struct RNG *rng, BLI_bitmap *bitmap, uint bits_num) { if (bits_num <= 1) { return; } uint i = bits_num; while (i--) { const uint j = BLI_rng_get_uint(rng) % bits_num; if (i != j) { const bool i_bit = BLI_BITMAP_TEST(bitmap, i); const bool j_bit = BLI_BITMAP_TEST(bitmap, j); BLI_BITMAP_SET(bitmap, i, j_bit); BLI_BITMAP_SET(bitmap, j, i_bit); } } } void BLI_rng_skip(RNG *rng, int n) { rng->rng.skip(uint(n)); } /***/ void BLI_array_frand(float *ar, int count, uint seed) { RNG rng; BLI_rng_srandom(&rng, seed); for (int i = 0; i < count; i++) { ar[i] = BLI_rng_get_float(&rng); } } float BLI_hash_frand(uint seed) { RNG rng; BLI_rng_srandom(&rng, seed); return BLI_rng_get_float(&rng); } void BLI_array_randomize(void *data, uint elem_size, uint elem_num, uint seed) { RNG rng; BLI_rng_seed(&rng, seed); BLI_rng_shuffle_array(&rng, data, elem_size, elem_num); } void BLI_bitmap_randomize(BLI_bitmap *bitmap, uint bits_num, uint seed) { RNG rng; BLI_rng_seed(&rng, seed); BLI_rng_shuffle_bitmap(&rng, bitmap, bits_num); } /* ********* for threaded random ************** */ static RNG rng_tab[BLENDER_MAX_THREADS]; void BLI_thread_srandom(int thread, uint seed) { if (thread >= BLENDER_MAX_THREADS) { thread = 0; } BLI_rng_seed(&rng_tab[thread], seed + hash[seed & 255]); seed = BLI_rng_get_uint(&rng_tab[thread]); BLI_rng_seed(&rng_tab[thread], seed + hash[seed & 255]); seed = BLI_rng_get_uint(&rng_tab[thread]); BLI_rng_seed(&rng_tab[thread], seed + hash[seed & 255]); } int BLI_thread_rand(int thread) { return BLI_rng_get_int(&rng_tab[thread]); } float BLI_thread_frand(int thread) { return BLI_rng_get_float(&rng_tab[thread]); } struct RNG_THREAD_ARRAY { RNG rng_tab[BLENDER_MAX_THREADS]; }; RNG_THREAD_ARRAY *BLI_rng_threaded_new() { uint i; RNG_THREAD_ARRAY *rngarr = (RNG_THREAD_ARRAY *)MEM_mallocN(sizeof(RNG_THREAD_ARRAY), "random_array"); for (i = 0; i < BLENDER_MAX_THREADS; i++) { BLI_rng_srandom(&rngarr->rng_tab[i], uint(clock())); } return rngarr; } void BLI_rng_threaded_free(struct RNG_THREAD_ARRAY *rngarr) { MEM_freeN(rngarr); } int BLI_rng_thread_rand(RNG_THREAD_ARRAY *rngarr, int thread) { return BLI_rng_get_int(&rngarr->rng_tab[thread]); } /* ********* Low-discrepancy sequences ************** */ /* incremental halton sequence generator, from: * "Instant Radiosity", Keller A. */ BLI_INLINE double halton_ex(double invprimes, double *offset) { double e = fabs((1.0 - *offset) - 1e-10); if (invprimes >= e) { double lasth; double h = invprimes; do { lasth = h; h *= invprimes; } while (h >= e); *offset += ((lasth + h) - 1.0); } else { *offset += invprimes; } return *offset; } void BLI_halton_1d(uint prime, double offset, int n, double *r) { const double invprime = 1.0 / double(prime); *r = 0.0; for (int s = 0; s < n; s++) { *r = halton_ex(invprime, &offset); } } void BLI_halton_2d(const uint prime[2], double offset[2], int n, double *r) { const double invprimes[2] = {1.0 / double(prime[0]), 1.0 / double(prime[1])}; r[0] = r[1] = 0.0; for (int s = 0; s < n; s++) { for (int i = 0; i < 2; i++) { r[i] = halton_ex(invprimes[i], &offset[i]); } } } void BLI_halton_3d(const uint prime[3], double offset[3], int n, double *r) { const double invprimes[3] = { 1.0 / double(prime[0]), 1.0 / double(prime[1]), 1.0 / double(prime[2])}; r[0] = r[1] = r[2] = 0.0; for (int s = 0; s < n; s++) { for (int i = 0; i < 3; i++) { r[i] = halton_ex(invprimes[i], &offset[i]); } } } void BLI_halton_2d_sequence(const uint prime[2], double offset[2], int n, double *r) { const double invprimes[2] = {1.0 / double(prime[0]), 1.0 / double(prime[1])}; for (int s = 0; s < n; s++) { for (int i = 0; i < 2; i++) { r[s * 2 + i] = halton_ex(invprimes[i], &offset[i]); } } } /* From "Sampling with Hammersley and Halton Points" TT Wong * Appendix: Source Code 1 */ BLI_INLINE double radical_inverse(uint n) { double u = 0; /* This reverse the bit-wise representation * around the decimal point. */ for (double p = 0.5; n; p *= 0.5, n >>= 1) { if (n & 1) { u += p; } } return u; } void BLI_hammersley_1d(uint n, double *r) { *r = radical_inverse(n); } void BLI_hammersley_2d_sequence(uint n, double *r) { for (uint s = 0; s < n; s++) { r[s * 2 + 0] = double(s + 0.5) / double(n); r[s * 2 + 1] = radical_inverse(s); } } namespace blender { void RandomNumberGenerator::seed_random(uint32_t seed) { this->seed(seed + hash[seed & 255]); seed = this->get_uint32(); this->seed(seed + hash[seed & 255]); seed = this->get_uint32(); this->seed(seed + hash[seed & 255]); } int RandomNumberGenerator::round_probabilistic(float x) { /* Support for negative values can be added when necessary. */ BLI_assert(x >= 0.0f); const float round_up_probability = fractf(x); const bool round_up = round_up_probability > this->get_float(); return int(x) + int(round_up); } float2 RandomNumberGenerator::get_unit_float2() { float a = float(M_PI * 2.0) * this->get_float(); return {cosf(a), sinf(a)}; } float3 RandomNumberGenerator::get_unit_float3() { float z = (2.0f * this->get_float()) - 1.0f; float r = 1.0f - z * z; if (r > 0.0f) { float a = float(M_PI * 2.0) * this->get_float(); r = sqrtf(r); float x = r * cosf(a); float y = r * sinf(a); return {x, y, z}; } return {0.0f, 0.0f, 1.0f}; } float2 RandomNumberGenerator::get_triangle_sample(float2 v1, float2 v2, float2 v3) { float u = this->get_float(); float v = this->get_float(); if (u + v > 1.0f) { u = 1.0f - u; v = 1.0f - v; } float2 side_u = v2 - v1; float2 side_v = v3 - v1; float2 sample = v1; sample += side_u * u; sample += side_v * v; return sample; } float3 RandomNumberGenerator::get_triangle_sample_3d(float3 v1, float3 v2, float3 v3) { float u = this->get_float(); float v = this->get_float(); if (u + v > 1.0f) { u = 1.0f - u; v = 1.0f - v; } float3 side_u = v2 - v1; float3 side_v = v3 - v1; float3 sample = v1; sample += side_u * u; sample += side_v * v; return sample; } void RandomNumberGenerator::get_bytes(MutableSpan r_bytes) { constexpr int64_t mask_bytes = 2; constexpr int64_t rand_stride = int64_t(sizeof(x_)) - mask_bytes; int64_t last_len = 0; int64_t trim_len = r_bytes.size(); if (trim_len > rand_stride) { last_len = trim_len % rand_stride; trim_len = trim_len - last_len; } else { trim_len = 0; last_len = r_bytes.size(); } const char *data_src = (const char *)&x_; int64_t i = 0; while (i != trim_len) { BLI_assert(i < trim_len); #ifdef __BIG_ENDIAN__ for (int64_t j = (rand_stride + mask_bytes) - 1; j != mask_bytes - 1; j--) #else for (int64_t j = 0; j != rand_stride; j++) #endif { r_bytes[i++] = data_src[j]; } this->step(); } if (last_len) { for (int64_t j = 0; j != last_len; j++) { r_bytes[i++] = data_src[j]; } } } } // namespace blender