/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** * */ /** \file blender/blenlib/intern/rct.c * \ingroup bli * * A minimalist lib for functions doing stuff with rectangle structs. */ #include #include #include #include #include #include "BLI_rect.h" #include "BLI_utildefines.h" #include "DNA_vec_types.h" /* avoid including BLI_math */ static void unit_m4(float m[4][4]); /** * Determine if a rect is empty. An empty * rect is one with a zero (or negative) * width or height. * * \return True if \a rect is empty. */ bool BLI_rcti_is_empty(const rcti *rect) { return ((rect->xmax <= rect->xmin) || (rect->ymax <= rect->ymin)); } bool BLI_rctf_is_empty(const rctf *rect) { return ((rect->xmax <= rect->xmin) || (rect->ymax <= rect->ymin)); } bool BLI_rcti_isect_x(const rcti *rect, const int x) { if (x < rect->xmin) return false; if (x > rect->xmax) return false; return true; } bool BLI_rcti_isect_y(const rcti *rect, const int y) { if (y < rect->ymin) return false; if (y > rect->ymax) return false; return true; } bool BLI_rcti_isect_pt(const rcti *rect, const int x, const int y) { if (x < rect->xmin) return false; if (x > rect->xmax) return false; if (y < rect->ymin) return false; if (y > rect->ymax) return false; return true; } bool BLI_rcti_isect_pt_v(const rcti *rect, const int xy[2]) { if (xy[0] < rect->xmin) return false; if (xy[0] > rect->xmax) return false; if (xy[1] < rect->ymin) return false; if (xy[1] > rect->ymax) return false; return true; } bool BLI_rctf_isect_x(const rctf *rect, const float x) { if (x < rect->xmin) return false; if (x > rect->xmax) return false; return true; } bool BLI_rctf_isect_y(const rctf *rect, const float y) { if (y < rect->ymin) return false; if (y > rect->ymax) return false; return true; } bool BLI_rctf_isect_pt(const rctf *rect, const float x, const float y) { if (x < rect->xmin) return false; if (x > rect->xmax) return false; if (y < rect->ymin) return false; if (y > rect->ymax) return false; return true; } bool BLI_rctf_isect_pt_v(const rctf *rect, const float xy[2]) { if (xy[0] < rect->xmin) return false; if (xy[0] > rect->xmax) return false; if (xy[1] < rect->ymin) return false; if (xy[1] > rect->ymax) return false; return true; } /** * \returns shortest distance from \a rect to x/y (0 if inside) */ int BLI_rcti_length_x(const rcti *rect, const int x) { if (x < rect->xmin) return rect->xmin - x; if (x > rect->xmax) return x - rect->xmax; return 0; } int BLI_rcti_length_y(const rcti *rect, const int y) { if (y < rect->ymin) return rect->ymin - y; if (y > rect->ymax) return y - rect->ymax; return 0; } float BLI_rctf_length_x(const rctf *rect, const float x) { if (x < rect->xmin) return rect->xmin - x; if (x > rect->xmax) return x - rect->xmax; return 0.0f; } float BLI_rctf_length_y(const rctf *rect, const float y) { if (y < rect->ymin) return rect->ymin - y; if (y > rect->ymax) return y - rect->ymax; return 0.0f; } /** * is \a rct_b inside \a rct_a */ bool BLI_rctf_inside_rctf(const rctf *rct_a, const rctf *rct_b) { return ((rct_a->xmin <= rct_b->xmin) && (rct_a->xmax >= rct_b->xmax) && (rct_a->ymin <= rct_b->ymin) && (rct_a->ymax >= rct_b->ymax)); } bool BLI_rcti_inside_rcti(const rcti *rct_a, const rcti *rct_b) { return ((rct_a->xmin <= rct_b->xmin) && (rct_a->xmax >= rct_b->xmax) && (rct_a->ymin <= rct_b->ymin) && (rct_a->ymax >= rct_b->ymax)); } /* based closely on 'isect_seg_seg_v2_int', but in modified so corner cases are treated as intersections */ static int isect_segments_i(const int v1[2], const int v2[2], const int v3[2], const int v4[2]) { const double div = (double)((v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0])); if (div == 0.0) { return 1; /* co-linear */ } else { const double lambda = (double)((v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div; const double mu = (double)((v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div; return (lambda >= 0.0 && lambda <= 1.0 && mu >= 0.0 && mu <= 1.0); } } static int isect_segments_fl(const float v1[2], const float v2[2], const float v3[2], const float v4[2]) { const double div = (double)((v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0])); if (div == 0.0) { return 1; /* co-linear */ } else { const double lambda = (double)((v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div; const double mu = (double)((v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div; return (lambda >= 0.0 && lambda <= 1.0 && mu >= 0.0 && mu <= 1.0); } } bool BLI_rcti_isect_segment(const rcti *rect, const int s1[2], const int s2[2]) { /* first do outside-bounds check for both points of the segment */ if (s1[0] < rect->xmin && s2[0] < rect->xmin) return false; if (s1[0] > rect->xmax && s2[0] > rect->xmax) return false; if (s1[1] < rect->ymin && s2[1] < rect->ymin) return false; if (s1[1] > rect->ymax && s2[1] > rect->ymax) return false; /* if either points intersect then we definetly intersect */ if (BLI_rcti_isect_pt_v(rect, s1) || BLI_rcti_isect_pt_v(rect, s2)) { return true; } else { /* both points are outside but may insersect the rect */ int tvec1[2]; int tvec2[2]; /* diagonal: [/] */ tvec1[0] = rect->xmin; tvec1[1] = rect->ymin; tvec2[0] = rect->xmin; tvec2[1] = rect->ymax; if (isect_segments_i(s1, s2, tvec1, tvec2)) { return true; } /* diagonal: [\] */ tvec1[0] = rect->xmin; tvec1[1] = rect->ymax; tvec2[0] = rect->xmax; tvec2[1] = rect->ymin; if (isect_segments_i(s1, s2, tvec1, tvec2)) { return true; } /* no intersection */ return false; } } bool BLI_rctf_isect_segment(const rctf *rect, const float s1[2], const float s2[2]) { /* first do outside-bounds check for both points of the segment */ if (s1[0] < rect->xmin && s2[0] < rect->xmin) return false; if (s1[0] > rect->xmax && s2[0] > rect->xmax) return false; if (s1[1] < rect->ymin && s2[1] < rect->ymin) return false; if (s1[1] > rect->ymax && s2[1] > rect->ymax) return false; /* if either points intersect then we definetly intersect */ if (BLI_rctf_isect_pt_v(rect, s1) || BLI_rctf_isect_pt_v(rect, s2)) { return true; } else { /* both points are outside but may insersect the rect */ float tvec1[2]; float tvec2[2]; /* diagonal: [/] */ tvec1[0] = rect->xmin; tvec1[1] = rect->ymin; tvec2[0] = rect->xmin; tvec2[1] = rect->ymax; if (isect_segments_fl(s1, s2, tvec1, tvec2)) { return true; } /* diagonal: [\] */ tvec1[0] = rect->xmin; tvec1[1] = rect->ymax; tvec2[0] = rect->xmax; tvec2[1] = rect->ymin; if (isect_segments_fl(s1, s2, tvec1, tvec2)) { return true; } /* no intersection */ return false; } } bool BLI_rcti_isect_circle(const rcti *rect, const float xy[2], const float radius) { float dx, dy; if (xy[0] >= rect->xmin && xy[0] <= rect->xmax) dx = 0; else dx = (xy[0] < rect->xmin) ? (rect->xmin - xy[0]) : (xy[0] - rect->xmax); if (xy[1] >= rect->ymin && xy[1] <= rect->ymax) dy = 0; else dy = (xy[1] < rect->ymin) ? (rect->ymin - xy[1]) : (xy[1] - rect->ymax); return dx * dx + dy * dy <= radius * radius; } bool BLI_rctf_isect_circle(const rctf *rect, const float xy[2], const float radius) { float dx, dy; if (xy[0] >= rect->xmin && xy[0] <= rect->xmax) dx = 0; else dx = (xy[0] < rect->xmin) ? (rect->xmin - xy[0]) : (xy[0] - rect->xmax); if (xy[1] >= rect->ymin && xy[1] <= rect->ymax) dy = 0; else dy = (xy[1] < rect->ymin) ? (rect->ymin - xy[1]) : (xy[1] - rect->ymax); return dx * dx + dy * dy <= radius * radius; } void BLI_rctf_union(rctf *rct1, const rctf *rct2) { if (rct1->xmin > rct2->xmin) rct1->xmin = rct2->xmin; if (rct1->xmax < rct2->xmax) rct1->xmax = rct2->xmax; if (rct1->ymin > rct2->ymin) rct1->ymin = rct2->ymin; if (rct1->ymax < rct2->ymax) rct1->ymax = rct2->ymax; } void BLI_rcti_union(rcti *rct1, const rcti *rct2) { if (rct1->xmin > rct2->xmin) rct1->xmin = rct2->xmin; if (rct1->xmax < rct2->xmax) rct1->xmax = rct2->xmax; if (rct1->ymin > rct2->ymin) rct1->ymin = rct2->ymin; if (rct1->ymax < rct2->ymax) rct1->ymax = rct2->ymax; } void BLI_rctf_init(rctf *rect, float xmin, float xmax, float ymin, float ymax) { if (xmin <= xmax) { rect->xmin = xmin; rect->xmax = xmax; } else { rect->xmax = xmin; rect->xmin = xmax; } if (ymin <= ymax) { rect->ymin = ymin; rect->ymax = ymax; } else { rect->ymax = ymin; rect->ymin = ymax; } } void BLI_rcti_init(rcti *rect, int xmin, int xmax, int ymin, int ymax) { if (xmin <= xmax) { rect->xmin = xmin; rect->xmax = xmax; } else { rect->xmax = xmin; rect->xmin = xmax; } if (ymin <= ymax) { rect->ymin = ymin; rect->ymax = ymax; } else { rect->ymax = ymin; rect->ymin = ymax; } } void BLI_rctf_init_pt_radius(rctf *rect, const float xy[2], float size) { rect->xmin = xy[0] - size; rect->xmax = xy[0] + size; rect->ymin = xy[1] - size; rect->ymax = xy[1] + size; } void BLI_rcti_init_pt_radius(rcti *rect, const int xy[2], int size) { rect->xmin = xy[0] - size; rect->xmax = xy[0] + size; rect->ymin = xy[1] - size; rect->ymax = xy[1] + size; } void BLI_rcti_init_minmax(rcti *rect) { rect->xmin = rect->ymin = INT_MAX; rect->xmax = rect->ymax = INT_MIN; } void BLI_rctf_init_minmax(rctf *rect) { rect->xmin = rect->ymin = FLT_MAX; rect->xmax = rect->ymax = -FLT_MAX; } void BLI_rcti_do_minmax_v(rcti *rect, const int xy[2]) { if (xy[0] < rect->xmin) rect->xmin = xy[0]; if (xy[0] > rect->xmax) rect->xmax = xy[0]; if (xy[1] < rect->ymin) rect->ymin = xy[1]; if (xy[1] > rect->ymax) rect->ymax = xy[1]; } void BLI_rctf_do_minmax_v(rctf *rect, const float xy[2]) { if (xy[0] < rect->xmin) rect->xmin = xy[0]; if (xy[0] > rect->xmax) rect->xmax = xy[0]; if (xy[1] < rect->ymin) rect->ymin = xy[1]; if (xy[1] > rect->ymax) rect->ymax = xy[1]; } /* given 2 rectangles - transform a point from one to another */ void BLI_rctf_transform_pt_v(const rctf *dst, const rctf *src, float xy_dst[2], const float xy_src[2]) { xy_dst[0] = ((xy_src[0] - src->xmin) / (src->xmax - src->xmin)); xy_dst[0] = dst->xmin + ((dst->xmax - dst->xmin) * xy_dst[0]); xy_dst[1] = ((xy_src[1] - src->ymin) / (src->ymax - src->ymin)); xy_dst[1] = dst->ymin + ((dst->ymax - dst->ymin) * xy_dst[1]); } /** * Calculate a 4x4 matrix representing the transformation between two rectangles. * * \note Multiplying a vector by this matrix does *not* give the same value as #BLI_rctf_transform_pt_v. */ void BLI_rctf_transform_calc_m4_pivot_min_ex( const rctf *dst, const rctf *src, float matrix[4][4], uint x, uint y) { BLI_assert(x < 3 && y < 3); unit_m4(matrix); matrix[x][x] = BLI_rctf_size_x(src) / BLI_rctf_size_x(dst); matrix[y][y] = BLI_rctf_size_y(src) / BLI_rctf_size_y(dst); matrix[3][x] = (src->xmin - dst->xmin) * matrix[x][x]; matrix[3][y] = (src->ymin - dst->ymin) * matrix[y][y]; } void BLI_rctf_transform_calc_m4_pivot_min( const rctf *dst, const rctf *src, float matrix[4][4]) { BLI_rctf_transform_calc_m4_pivot_min_ex(dst, src, matrix, 0, 1); } void BLI_rcti_translate(rcti *rect, int x, int y) { rect->xmin += x; rect->ymin += y; rect->xmax += x; rect->ymax += y; } void BLI_rctf_translate(rctf *rect, float x, float y) { rect->xmin += x; rect->ymin += y; rect->xmax += x; rect->ymax += y; } void BLI_rcti_recenter(rcti *rect, int x, int y) { const int dx = x - BLI_rcti_cent_x(rect); const int dy = y - BLI_rcti_cent_y(rect); BLI_rcti_translate(rect, dx, dy); } void BLI_rctf_recenter(rctf *rect, float x, float y) { const float dx = x - BLI_rctf_cent_x(rect); const float dy = y - BLI_rctf_cent_y(rect); BLI_rctf_translate(rect, dx, dy); } /* change width & height around the central location */ void BLI_rcti_resize(rcti *rect, int x, int y) { rect->xmin = BLI_rcti_cent_x(rect) - (x / 2); rect->ymin = BLI_rcti_cent_y(rect) - (y / 2); rect->xmax = rect->xmin + x; rect->ymax = rect->ymin + y; } void BLI_rctf_resize(rctf *rect, float x, float y) { rect->xmin = BLI_rctf_cent_x(rect) - (x * 0.5f); rect->ymin = BLI_rctf_cent_y(rect) - (y * 0.5f); rect->xmax = rect->xmin + x; rect->ymax = rect->ymin + y; } void BLI_rcti_scale(rcti *rect, const float scale) { const int cent_x = BLI_rcti_cent_x(rect); const int cent_y = BLI_rcti_cent_y(rect); const int size_x_half = BLI_rcti_size_x(rect) * (scale * 0.5f); const int size_y_half = BLI_rcti_size_y(rect) * (scale * 0.5f); rect->xmin = cent_x - size_x_half; rect->ymin = cent_y - size_y_half; rect->xmax = cent_x + size_x_half; rect->ymax = cent_y + size_y_half; } void BLI_rctf_scale(rctf *rect, const float scale) { const float cent_x = BLI_rctf_cent_x(rect); const float cent_y = BLI_rctf_cent_y(rect); const float size_x_half = BLI_rctf_size_x(rect) * (scale * 0.5f); const float size_y_half = BLI_rctf_size_y(rect) * (scale * 0.5f); rect->xmin = cent_x - size_x_half; rect->ymin = cent_y - size_y_half; rect->xmax = cent_x + size_x_half; rect->ymax = cent_y + size_y_half; } void BLI_rctf_interp(rctf *rect, const rctf *rect_a, const rctf *rect_b, const float fac) { const float ifac = 1.0f - fac; rect->xmin = (rect_a->xmin * ifac) + (rect_b->xmin * fac); rect->xmax = (rect_a->xmax * ifac) + (rect_b->xmax * fac); rect->ymin = (rect_a->ymin * ifac) + (rect_b->ymin * fac); rect->ymax = (rect_a->ymax * ifac) + (rect_b->ymax * fac); } /* BLI_rcti_interp() not needed yet */ bool BLI_rctf_clamp_pt_v(const rctf *rect, float xy[2]) { bool changed = false; if (xy[0] < rect->xmin) { xy[0] = rect->xmin; changed = true; } if (xy[0] > rect->xmax) { xy[0] = rect->xmax; changed = true; } if (xy[1] < rect->ymin) { xy[1] = rect->ymin; changed = true; } if (xy[1] > rect->ymax) { xy[1] = rect->ymax; changed = true; } return changed; } bool BLI_rcti_clamp_pt_v(const rcti *rect, int xy[2]) { bool changed = false; if (xy[0] < rect->xmin) { xy[0] = rect->xmin; changed = true; } if (xy[0] > rect->xmax) { xy[0] = rect->xmax; changed = true; } if (xy[1] < rect->ymin) { xy[1] = rect->ymin; changed = true; } if (xy[1] > rect->ymax) { xy[1] = rect->ymax; changed = true; } return changed; } /** * Clamp \a rect within \a rect_bounds, setting \a r_xy to the offset. * * \return true if a change is made. */ bool BLI_rctf_clamp(rctf *rect, const rctf *rect_bounds, float r_xy[2]) { bool changed = false; r_xy[0] = 0.0f; r_xy[1] = 0.0f; if (rect->xmin < rect_bounds->xmin) { float ofs = rect_bounds->xmin - rect->xmin; rect->xmin += ofs; rect->xmax += ofs; r_xy[0] += ofs; changed = true; } if (rect->xmax > rect_bounds->xmax) { float ofs = rect_bounds->xmax - rect->xmax; rect->xmin += ofs; rect->xmax += ofs; r_xy[0] += ofs; changed = true; } if (rect->ymin < rect_bounds->ymin) { float ofs = rect_bounds->ymin - rect->ymin; rect->ymin += ofs; rect->ymax += ofs; r_xy[1] += ofs; changed = true; } if (rect->ymax > rect_bounds->ymax) { float ofs = rect_bounds->ymax - rect->ymax; rect->ymin += ofs; rect->ymax += ofs; r_xy[1] += ofs; changed = true; } return changed; } bool BLI_rcti_clamp(rcti *rect, const rcti *rect_bounds, int r_xy[2]) { bool changed = false; r_xy[0] = 0; r_xy[1] = 0; if (rect->xmin < rect_bounds->xmin) { int ofs = rect_bounds->xmin - rect->xmin; rect->xmin += ofs; rect->xmax += ofs; r_xy[0] += ofs; changed = true; } if (rect->xmax > rect_bounds->xmax) { int ofs = rect_bounds->xmax - rect->xmax; rect->xmin += ofs; rect->xmax += ofs; r_xy[0] += ofs; changed = true; } if (rect->ymin < rect_bounds->ymin) { int ofs = rect_bounds->ymin - rect->ymin; rect->ymin += ofs; rect->ymax += ofs; r_xy[1] += ofs; changed = true; } if (rect->ymax > rect_bounds->ymax) { int ofs = rect_bounds->ymax - rect->ymax; rect->ymin += ofs; rect->ymax += ofs; r_xy[1] += ofs; changed = true; } return changed; } bool BLI_rctf_compare(const rctf *rect_a, const rctf *rect_b, const float limit) { if (fabsf(rect_a->xmin - rect_b->xmin) < limit) if (fabsf(rect_a->xmax - rect_b->xmax) < limit) if (fabsf(rect_a->ymin - rect_b->ymin) < limit) if (fabsf(rect_a->ymax - rect_b->ymax) < limit) return true; return false; } bool BLI_rcti_compare(const rcti *rect_a, const rcti *rect_b) { if (rect_a->xmin == rect_b->xmin) if (rect_a->xmax == rect_b->xmax) if (rect_a->ymin == rect_b->ymin) if (rect_a->ymax == rect_b->ymax) return true; return false; } bool BLI_rctf_isect(const rctf *src1, const rctf *src2, rctf *dest) { float xmin, xmax; float ymin, ymax; xmin = (src1->xmin) > (src2->xmin) ? (src1->xmin) : (src2->xmin); xmax = (src1->xmax) < (src2->xmax) ? (src1->xmax) : (src2->xmax); ymin = (src1->ymin) > (src2->ymin) ? (src1->ymin) : (src2->ymin); ymax = (src1->ymax) < (src2->ymax) ? (src1->ymax) : (src2->ymax); if (xmax >= xmin && ymax >= ymin) { if (dest) { dest->xmin = xmin; dest->xmax = xmax; dest->ymin = ymin; dest->ymax = ymax; } return true; } else { if (dest) { dest->xmin = 0; dest->xmax = 0; dest->ymin = 0; dest->ymax = 0; } return false; } } bool BLI_rcti_isect(const rcti *src1, const rcti *src2, rcti *dest) { int xmin, xmax; int ymin, ymax; xmin = (src1->xmin) > (src2->xmin) ? (src1->xmin) : (src2->xmin); xmax = (src1->xmax) < (src2->xmax) ? (src1->xmax) : (src2->xmax); ymin = (src1->ymin) > (src2->ymin) ? (src1->ymin) : (src2->ymin); ymax = (src1->ymax) < (src2->ymax) ? (src1->ymax) : (src2->ymax); if (xmax >= xmin && ymax >= ymin) { if (dest) { dest->xmin = xmin; dest->xmax = xmax; dest->ymin = ymin; dest->ymax = ymax; } return true; } else { if (dest) { dest->xmin = 0; dest->xmax = 0; dest->ymin = 0; dest->ymax = 0; } return false; } } void BLI_rcti_rctf_copy(rcti *dst, const rctf *src) { dst->xmin = floorf(src->xmin + 0.5f); dst->xmax = dst->xmin + floorf(BLI_rctf_size_x(src) + 0.5f); dst->ymin = floorf(src->ymin + 0.5f); dst->ymax = dst->ymin + floorf(BLI_rctf_size_y(src) + 0.5f); } void BLI_rcti_rctf_copy_floor(rcti *dst, const rctf *src) { dst->xmin = floorf(src->xmin); dst->xmax = floorf(src->xmax); dst->ymin = floorf(src->ymin); dst->ymax = floorf(src->ymax); } void BLI_rcti_rctf_copy_round(rcti *dst, const rctf *src) { dst->xmin = floorf(src->xmin + 0.5f); dst->xmax = floorf(src->xmax + 0.5f); dst->ymin = floorf(src->ymin + 0.5f); dst->ymax = floorf(src->ymax + 0.5f); } void BLI_rctf_rcti_copy(rctf *dst, const rcti *src) { dst->xmin = src->xmin; dst->xmax = src->xmax; dst->ymin = src->ymin; dst->ymax = src->ymax; } void print_rctf(const char *str, const rctf *rect) { printf("%s: xmin %.8f, xmax %.8f, ymin %.8f, ymax %.8f (%.12fx%.12f)\n", str, rect->xmin, rect->xmax, rect->ymin, rect->ymax, BLI_rctf_size_x(rect), BLI_rctf_size_y(rect)); } void print_rcti(const char *str, const rcti *rect) { printf("%s: xmin %d, xmax %d, ymin %d, ymax %d (%dx%d)\n", str, rect->xmin, rect->xmax, rect->ymin, rect->ymax, BLI_rcti_size_x(rect), BLI_rcti_size_y(rect)); } /* -------------------------------------------------------------------- */ /* Comprehensive math (float only) */ /** \name Rect math functions * \{ */ #define ROTATE_SINCOS(r_vec, mat2, vec) { \ (r_vec)[0] = (mat2)[1] * (vec)[0] + (+(mat2)[0]) * (vec)[1]; \ (r_vec)[1] = (mat2)[0] * (vec)[0] + (-(mat2)[1]) * (vec)[1]; \ } ((void)0) /** * Expand the rectangle to fit a rotated \a src. */ void BLI_rctf_rotate_expand(rctf *dst, const rctf *src, const float angle) { const float mat2[2] = {sinf(angle), cosf(angle)}; const float cent[2] = {BLI_rctf_cent_x(src), BLI_rctf_cent_y(src)}; float corner[2], corner_rot[2], corder_max[2]; /* x is same for both corners */ corner[0] = src->xmax - cent[0]; corner[1] = src->ymax - cent[1]; ROTATE_SINCOS(corner_rot, mat2, corner); corder_max[0] = fabsf(corner_rot[0]); corder_max[1] = fabsf(corner_rot[1]); corner[1] *= -1; ROTATE_SINCOS(corner_rot, mat2, corner); corder_max[0] = MAX2(corder_max[0], fabsf(corner_rot[0])); corder_max[1] = MAX2(corder_max[1], fabsf(corner_rot[1])); dst->xmin = cent[0] - corder_max[0]; dst->xmax = cent[0] + corder_max[0]; dst->ymin = cent[1] - corder_max[1]; dst->ymax = cent[1] + corder_max[1]; } #undef ROTATE_SINCOS /** \} */ static void unit_m4(float m[4][4]) { m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; m[0][1] = m[0][2] = m[0][3] = 0.0f; m[1][0] = m[1][2] = m[1][3] = 0.0f; m[2][0] = m[2][1] = m[2][3] = 0.0f; m[3][0] = m[3][1] = m[3][2] = 0.0f; }