/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** * (uit traces) maart 95 */ /** \file blender/blenlib/intern/scanfill.c * \ingroup bli */ #include #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_memarena.h" #include "BLI_utildefines.h" #include "BLI_scanfill.h" /* own include */ #include "BLI_strict_flags.h" /* local types */ typedef struct PolyFill { unsigned int edges, verts; float min_xy[2], max_xy[2]; unsigned short nr; bool f; } PolyFill; typedef struct ScanFillVertLink { ScanFillVert *vert; ScanFillEdge *edge_first, *edge_last; } ScanFillVertLink; /* local funcs */ #define SF_EPSILON 0.00003f #define SF_EPSILON_SQ (SF_EPSILON * SF_EPSILON) /* ScanFillVert.status */ #define SF_VERT_NEW 0 /* all new verts have this flag set */ #define SF_VERT_AVAILABLE 1 /* available - in an edge */ #define SF_VERT_ZERO_LEN 2 /* ScanFillEdge.status */ /* Optionally set ScanFillEdge f to this to mark original boundary edges. * Only needed if there are internal diagonal edges passed to BLI_scanfill_calc. */ #define SF_EDGE_NEW 0 /* all new edges have this flag set */ // #define SF_EDGE_BOUNDARY 1 /* UNUSED */ #define SF_EDGE_INTERNAL 2 /* edge is created while scan-filling */ /* PolyFill.status */ #define SF_POLY_NEW 0 /* all polys initialized to this */ #define SF_POLY_VALID 1 /* has at least 3 verts */ /* **** FUNCTIONS FOR QSORT *************************** */ static int vergscdata(const void *a1, const void *a2) { const ScanFillVertLink *x1 = a1, *x2 = a2; if (x1->vert->xy[1] < x2->vert->xy[1]) return 1; else if (x1->vert->xy[1] > x2->vert->xy[1]) return -1; else if (x1->vert->xy[0] > x2->vert->xy[0]) return 1; else if (x1->vert->xy[0] < x2->vert->xy[0]) return -1; return 0; } static int vergpoly(const void *a1, const void *a2) { const PolyFill *x1 = a1, *x2 = a2; if (x1->min_xy[0] > x2->min_xy[0]) return 1; else if (x1->min_xy[0] < x2->min_xy[0]) return -1; else if (x1->min_xy[1] > x2->min_xy[1]) return 1; else if (x1->min_xy[1] < x2->min_xy[1]) return -1; return 0; } /* **** FILL ROUTINES *************************** */ ScanFillVert *BLI_scanfill_vert_add(ScanFillContext *sf_ctx, const float vec[3]) { ScanFillVert *sf_v; sf_v = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillVert)); BLI_addtail(&sf_ctx->fillvertbase, sf_v); sf_v->tmp.p = NULL; copy_v3_v3(sf_v->co, vec); /* just zero out the rest */ zero_v2(sf_v->xy); sf_v->keyindex = 0; sf_v->poly_nr = sf_ctx->poly_nr; sf_v->edge_tot = 0; sf_v->f = SF_VERT_NEW; sf_v->user_flag = 0; return sf_v; } ScanFillEdge *BLI_scanfill_edge_add(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2) { ScanFillEdge *sf_ed; sf_ed = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillEdge)); BLI_addtail(&sf_ctx->filledgebase, sf_ed); sf_ed->v1 = v1; sf_ed->v2 = v2; /* just zero out the rest */ sf_ed->poly_nr = sf_ctx->poly_nr; sf_ed->f = SF_EDGE_NEW; sf_ed->user_flag = 0; sf_ed->tmp.c = 0; return sf_ed; } static void addfillface(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2, ScanFillVert *v3) { /* does not make edges */ ScanFillFace *sf_tri; sf_tri = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillFace)); BLI_addtail(&sf_ctx->fillfacebase, sf_tri); sf_tri->v1 = v1; sf_tri->v2 = v2; sf_tri->v3 = v3; } static bool boundisect(PolyFill *pf2, PolyFill *pf1) { /* has pf2 been touched (intersected) by pf1 ? with bounding box */ /* test first if polys exist */ if (pf1->edges == 0 || pf2->edges == 0) return 0; if (pf2->max_xy[0] < pf1->min_xy[0]) return 0; if (pf2->max_xy[1] < pf1->min_xy[1]) return 0; if (pf2->min_xy[0] > pf1->max_xy[0]) return 0; if (pf2->min_xy[1] > pf1->max_xy[1]) return 0; /* join */ if (pf2->max_xy[0] < pf1->max_xy[0]) pf2->max_xy[0] = pf1->max_xy[0]; if (pf2->max_xy[1] < pf1->max_xy[1]) pf2->max_xy[1] = pf1->max_xy[1]; if (pf2->min_xy[0] > pf1->min_xy[0]) pf2->min_xy[0] = pf1->min_xy[0]; if (pf2->min_xy[1] > pf1->min_xy[1]) pf2->min_xy[1] = pf1->min_xy[1]; return 1; } static void mergepolysSimp(ScanFillContext *sf_ctx, PolyFill *pf1, PolyFill *pf2) /* add pf2 to pf1 */ { ScanFillVert *eve; ScanFillEdge *eed; /* replace old poly numbers */ for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { if (eve->poly_nr == pf2->nr) { eve->poly_nr = pf1->nr; } } for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { if (eed->poly_nr == pf2->nr) { eed->poly_nr = pf1->nr; } } pf1->verts += pf2->verts; pf1->edges += pf2->edges; pf2->verts = pf2->edges = 0; pf1->f = (pf1->f | pf2->f); } static bool testedgeside(const float v1[2], const float v2[2], const float v3[2]) /* is v3 to the right of v1-v2 ? With exception: v3 == v1 || v3 == v2 */ { float inp; inp = (v2[0] - v1[0]) * (v1[1] - v3[1]) + (v1[1] - v2[1]) * (v1[0] - v3[0]); if (inp < 0.0f) { return 0; } else if (inp == 0.0f) { if (v1[0] == v3[0] && v1[1] == v3[1]) return 0; if (v2[0] == v3[0] && v2[1] == v3[1]) return 0; } return 1; } static bool addedgetoscanvert(ScanFillVertLink *sc, ScanFillEdge *eed) { /* find first edge to the right of eed, and insert eed before that */ ScanFillEdge *ed; float fac, fac1, x, y; if (sc->edge_first == NULL) { sc->edge_first = sc->edge_last = eed; eed->prev = eed->next = NULL; return 1; } x = eed->v1->xy[0]; y = eed->v1->xy[1]; fac1 = eed->v2->xy[1] - y; if (fac1 == 0.0f) { fac1 = 1.0e10f * (eed->v2->xy[0] - x); } else { fac1 = (x - eed->v2->xy[0]) / fac1; } for (ed = sc->edge_first; ed; ed = ed->next) { if (ed->v2 == eed->v2) { return 0; } fac = ed->v2->xy[1] - y; if (fac == 0.0f) { fac = 1.0e10f * (ed->v2->xy[0] - x); } else { fac = (x - ed->v2->xy[0]) / fac; } if (fac > fac1) { break; } } if (ed) BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed, eed); else BLI_addtail((ListBase *)&(sc->edge_first), eed); return 1; } static ScanFillVertLink *addedgetoscanlist(ScanFillVertLink *scdata, ScanFillEdge *eed, unsigned int len) { /* inserts edge at correct location in ScanFillVertLink list */ /* returns sc when edge already exists */ ScanFillVertLink *sc, scsearch; ScanFillVert *eve; /* which vert is left-top? */ if (eed->v1->xy[1] == eed->v2->xy[1]) { if (eed->v1->xy[0] > eed->v2->xy[0]) { eve = eed->v1; eed->v1 = eed->v2; eed->v2 = eve; } } else if (eed->v1->xy[1] < eed->v2->xy[1]) { eve = eed->v1; eed->v1 = eed->v2; eed->v2 = eve; } /* find location in list */ scsearch.vert = eed->v1; sc = (ScanFillVertLink *)bsearch(&scsearch, scdata, len, sizeof(ScanFillVertLink), vergscdata); if (UNLIKELY(sc == NULL)) { printf("Error in search edge: %p\n", (void *)eed); } else if (addedgetoscanvert(sc, eed) == false) { return sc; } return NULL; } static bool boundinsideEV(ScanFillEdge *eed, ScanFillVert *eve) /* is eve inside boundbox eed */ { float minx, maxx, miny, maxy; if (eed->v1->xy[0] < eed->v2->xy[0]) { minx = eed->v1->xy[0]; maxx = eed->v2->xy[0]; } else { minx = eed->v2->xy[0]; maxx = eed->v1->xy[0]; } if (eve->xy[0] >= minx && eve->xy[0] <= maxx) { if (eed->v1->xy[1] < eed->v2->xy[1]) { miny = eed->v1->xy[1]; maxy = eed->v2->xy[1]; } else { miny = eed->v2->xy[1]; maxy = eed->v1->xy[1]; } if (eve->xy[1] >= miny && eve->xy[1] <= maxy) { return 1; } } return 0; } static void testvertexnearedge(ScanFillContext *sf_ctx) { /* only vertices with (->edge_tot == 1) are being tested for * being close to an edge, if true insert */ ScanFillVert *eve; ScanFillEdge *eed, *ed1; for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { if (eve->edge_tot == 1) { /* find the edge which has vertex eve, * note: we _know_ this will crash if 'ed1' becomes NULL * but this will never happen. */ for (ed1 = sf_ctx->filledgebase.first; !(ed1->v1 == eve || ed1->v2 == eve); ed1 = ed1->next) { /* do nothing */ } if (ed1->v1 == eve) { ed1->v1 = ed1->v2; ed1->v2 = eve; } for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { if (eve != eed->v1 && eve != eed->v2 && eve->poly_nr == eed->poly_nr) { if (compare_v2v2(eve->xy, eed->v1->xy, SF_EPSILON)) { ed1->v2 = eed->v1; eed->v1->edge_tot++; eve->edge_tot = 0; break; } else if (compare_v2v2(eve->xy, eed->v2->xy, SF_EPSILON)) { ed1->v2 = eed->v2; eed->v2->edge_tot++; eve->edge_tot = 0; break; } else { if (boundinsideEV(eed, eve)) { const float dist = dist_squared_to_line_v2(eed->v1->xy, eed->v2->xy, eve->xy); if (dist < SF_EPSILON_SQ) { /* new edge */ ed1 = BLI_scanfill_edge_add(sf_ctx, eed->v1, eve); /* printf("fill: vertex near edge %x\n", eve); */ ed1->poly_nr = eed->poly_nr; eed->v1 = eve; eve->edge_tot = 3; break; } } } } } } } } static void splitlist(ScanFillContext *sf_ctx, ListBase *tempve, ListBase *temped, unsigned short nr) { /* everything is in templist, write only poly nr to fillist */ ScanFillVert *eve, *eve_next; ScanFillEdge *eed, *eed_next; BLI_movelisttolist(tempve, &sf_ctx->fillvertbase); BLI_movelisttolist(temped, &sf_ctx->filledgebase); for (eve = tempve->first; eve; eve = eve_next) { eve_next = eve->next; if (eve->poly_nr == nr) { BLI_remlink(tempve, eve); BLI_addtail(&sf_ctx->fillvertbase, eve); } } for (eed = temped->first; eed; eed = eed_next) { eed_next = eed->next; if (eed->poly_nr == nr) { BLI_remlink(temped, eed); BLI_addtail(&sf_ctx->filledgebase, eed); } } } static unsigned int scanfill(ScanFillContext *sf_ctx, PolyFill *pf, const int flag) { ScanFillVertLink *scdata; ScanFillVertLink *sc = NULL, *sc1; ScanFillVert *eve, *v1, *v2, *v3; ScanFillEdge *eed, *eed_next, *ed1, *ed2, *ed3; unsigned int a, b, verts, maxface, totface; const unsigned short nr = pf->nr; bool twoconnected = false; /* PRINTS */ #if 0 verts = pf->verts; for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { printf("vert: %x co: %f %f\n", eve, eve->xy[0], eve->xy[1]); } for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { printf("edge: %x verts: %x %x\n", eed, eed->v1, eed->v2); } #endif /* STEP 0: remove zero sized edges */ if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) { for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { if (equals_v2v2(eed->v1->xy, eed->v2->xy)) { if (eed->v1->f == SF_VERT_ZERO_LEN && eed->v2->f != SF_VERT_ZERO_LEN) { eed->v2->f = SF_VERT_ZERO_LEN; eed->v2->tmp.v = eed->v1->tmp.v; } else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f != SF_VERT_ZERO_LEN) { eed->v1->f = SF_VERT_ZERO_LEN; eed->v1->tmp.v = eed->v2->tmp.v; } else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f == SF_VERT_ZERO_LEN) { eed->v1->tmp.v = eed->v2->tmp.v; } else { eed->v2->f = SF_VERT_ZERO_LEN; eed->v2->tmp.v = eed->v1; } } } } /* STEP 1: make using FillVert and FillEdge lists a sorted * ScanFillVertLink list */ sc = scdata = MEM_mallocN(sizeof(*scdata) * pf->verts, "Scanfill1"); verts = 0; for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { if (eve->poly_nr == nr) { if (eve->f != SF_VERT_ZERO_LEN) { verts++; eve->f = SF_VERT_NEW; /* flag for connectedges later on */ sc->vert = eve; sc->edge_first = sc->edge_last = NULL; /* if (even->tmp.v == NULL) eve->tmp.u = verts; */ /* Note, debug print only will work for curve polyfill, union is in use for mesh */ sc++; } } } qsort(scdata, verts, sizeof(ScanFillVertLink), vergscdata); if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) { for (eed = sf_ctx->filledgebase.first; eed; eed = eed_next) { eed_next = eed->next; BLI_remlink(&sf_ctx->filledgebase, eed); /* This code is for handling zero-length edges that get * collapsed in step 0. It was removed for some time to * fix trunk bug #4544, so if that comes back, this code * may need some work, or there will have to be a better * fix to #4544. * * warning, this can hang on un-ordered edges, see: [#33281] * for now disable 'BLI_SCANFILL_CALC_REMOVE_DOUBLES' for ngons. */ if (eed->v1->f == SF_VERT_ZERO_LEN) { v1 = eed->v1; while ((eed->v1->f == SF_VERT_ZERO_LEN) && (eed->v1->tmp.v != v1) && (eed->v1 != eed->v1->tmp.v)) eed->v1 = eed->v1->tmp.v; } if (eed->v2->f == SF_VERT_ZERO_LEN) { v2 = eed->v2; while ((eed->v2->f == SF_VERT_ZERO_LEN) && (eed->v2->tmp.v != v2) && (eed->v2 != eed->v2->tmp.v)) eed->v2 = eed->v2->tmp.v; } if (eed->v1 != eed->v2) { addedgetoscanlist(scdata, eed, verts); } } } else { for (eed = sf_ctx->filledgebase.first; eed; eed = eed_next) { eed_next = eed->next; BLI_remlink(&sf_ctx->filledgebase, eed); if (eed->v1 != eed->v2) { addedgetoscanlist(scdata, eed, verts); } } } #if 0 sc = sf_ctx->_scdata; for (a = 0; a < verts; a++) { printf("\nscvert: %x\n", sc->vert); for (eed = sc->edge_first; eed; eed = eed->next) { printf(" ed %x %x %x\n", eed, eed->v1, eed->v2); } sc++; } #endif /* STEP 2: FILL LOOP */ if (pf->f == SF_POLY_NEW) twoconnected = true; /* (temporal) security: never much more faces than vertices */ totface = 0; if (flag & BLI_SCANFILL_CALC_HOLES) { maxface = 2 * verts; /* 2*verts: based at a filled circle within a triangle */ } else { maxface = verts - 2; /* when we don't calc any holes, we assume face is a non overlapping loop */ } sc = scdata; for (a = 0; a < verts; a++) { /* printf("VERTEX %d index %d\n", a, sc->vert->tmp.u); */ /* set connectflags */ for (ed1 = sc->edge_first; ed1; ed1 = eed_next) { eed_next = ed1->next; if (ed1->v1->edge_tot == 1 || ed1->v2->edge_tot == 1) { BLI_remlink((ListBase *)&(sc->edge_first), ed1); BLI_addtail(&sf_ctx->filledgebase, ed1); if (ed1->v1->edge_tot > 1) ed1->v1->edge_tot--; if (ed1->v2->edge_tot > 1) ed1->v2->edge_tot--; } else { ed1->v2->f = SF_VERT_AVAILABLE; } } while (sc->edge_first) { /* for as long there are edges */ ed1 = sc->edge_first; ed2 = ed1->next; /* commented out... the ESC here delivers corrupted memory (and doesnt work during grab) */ /* if (callLocalInterruptCallBack()) break; */ if (totface >= maxface) { /* printf("Fill error: endless loop. Escaped at vert %d, tot: %d.\n", a, verts); */ a = verts; break; } if (ed2 == NULL) { sc->edge_first = sc->edge_last = NULL; /* printf("just 1 edge to vert\n"); */ BLI_addtail(&sf_ctx->filledgebase, ed1); ed1->v2->f = SF_VERT_NEW; ed1->v1->edge_tot--; ed1->v2->edge_tot--; } else { /* test rest of vertices */ ScanFillVertLink *best_sc = NULL; float best_angle = 3.14f; float miny; bool firsttime = false; v1 = ed1->v2; v2 = ed1->v1; v3 = ed2->v2; /* this happens with a serial of overlapping edges */ if (v1 == v2 || v2 == v3) break; /* printf("test verts %d %d %d\n", v1->tmp.u, v2->tmp.u, v3->tmp.u); */ miny = min_ff(v1->xy[1], v3->xy[1]); sc1 = sc + 1; for (b = a + 1; b < verts; b++, sc1++) { if (sc1->vert->f == SF_VERT_NEW) { if (sc1->vert->xy[1] <= miny) break; if (testedgeside(v1->xy, v2->xy, sc1->vert->xy)) { if (testedgeside(v2->xy, v3->xy, sc1->vert->xy)) { if (testedgeside(v3->xy, v1->xy, sc1->vert->xy)) { /* point is in triangle */ /* because multiple points can be inside triangle (concave holes) */ /* we continue searching and pick the one with sharpest corner */ if (best_sc == NULL) { /* even without holes we need to keep checking [#35861] */ best_sc = sc1; } else { float angle; /* prevent angle calc for the simple cases only 1 vertex is found */ if (firsttime == false) { best_angle = angle_v2v2v2(v2->xy, v1->xy, best_sc->vert->xy); firsttime = true; } angle = angle_v2v2v2(v2->xy, v1->xy, sc1->vert->xy); if (angle < best_angle) { best_sc = sc1; best_angle = angle; } } } } } } } if (best_sc) { /* make new edge, and start over */ /* printf("add new edge %d %d and start again\n", v2->tmp.u, best_sc->vert->tmp.u); */ ed3 = BLI_scanfill_edge_add(sf_ctx, v2, best_sc->vert); BLI_remlink(&sf_ctx->filledgebase, ed3); BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed2, ed3); ed3->v2->f = SF_VERT_AVAILABLE; ed3->f = SF_EDGE_INTERNAL; ed3->v1->edge_tot++; ed3->v2->edge_tot++; } else { /* new triangle */ /* printf("add face %d %d %d\n", v1->tmp.u, v2->tmp.u, v3->tmp.u); */ addfillface(sf_ctx, v1, v2, v3); totface++; BLI_remlink((ListBase *)&(sc->edge_first), ed1); BLI_addtail(&sf_ctx->filledgebase, ed1); ed1->v2->f = SF_VERT_NEW; ed1->v1->edge_tot--; ed1->v2->edge_tot--; /* ed2 can be removed when it's a boundary edge */ if (((ed2->f == SF_EDGE_NEW) && twoconnected) /* || (ed2->f == SF_EDGE_BOUNDARY) */) { BLI_remlink((ListBase *)&(sc->edge_first), ed2); BLI_addtail(&sf_ctx->filledgebase, ed2); ed2->v2->f = SF_VERT_NEW; ed2->v1->edge_tot--; ed2->v2->edge_tot--; } /* new edge */ ed3 = BLI_scanfill_edge_add(sf_ctx, v1, v3); BLI_remlink(&sf_ctx->filledgebase, ed3); ed3->f = SF_EDGE_INTERNAL; ed3->v1->edge_tot++; ed3->v2->edge_tot++; /* printf("add new edge %x %x\n", v1, v3); */ sc1 = addedgetoscanlist(scdata, ed3, verts); if (sc1) { /* ed3 already exists: remove if a boundary */ /* printf("Edge exists\n"); */ ed3->v1->edge_tot--; ed3->v2->edge_tot--; for (ed3 = sc1->edge_first; ed3; ed3 = ed3->next) { if ((ed3->v1 == v1 && ed3->v2 == v3) || (ed3->v1 == v3 && ed3->v2 == v1)) { if (twoconnected /* || (ed3->f == SF_EDGE_BOUNDARY) */) { BLI_remlink((ListBase *)&(sc1->edge_first), ed3); BLI_addtail(&sf_ctx->filledgebase, ed3); ed3->v1->edge_tot--; ed3->v2->edge_tot--; } break; } } } } } /* test for loose edges */ for (ed1 = sc->edge_first; ed1; ed1 = eed_next) { eed_next = ed1->next; if (ed1->v1->edge_tot < 2 || ed1->v2->edge_tot < 2) { BLI_remlink((ListBase *)&(sc->edge_first), ed1); BLI_addtail(&sf_ctx->filledgebase, ed1); if (ed1->v1->edge_tot > 1) ed1->v1->edge_tot--; if (ed1->v2->edge_tot > 1) ed1->v2->edge_tot--; } } /* done with loose edges */ } sc++; } MEM_freeN(scdata); BLI_assert(totface <= maxface); return totface; } void BLI_scanfill_begin(ScanFillContext *sf_ctx) { memset(sf_ctx, 0, sizeof(*sf_ctx)); sf_ctx->poly_nr = SF_POLY_UNSET; sf_ctx->arena = BLI_memarena_new(BLI_SCANFILL_ARENA_SIZE, __func__); } void BLI_scanfill_begin_arena(ScanFillContext *sf_ctx, MemArena *arena) { memset(sf_ctx, 0, sizeof(*sf_ctx)); sf_ctx->poly_nr = SF_POLY_UNSET; sf_ctx->arena = arena; } void BLI_scanfill_end(ScanFillContext *sf_ctx) { BLI_memarena_free(sf_ctx->arena); sf_ctx->arena = NULL; BLI_listbase_clear(&sf_ctx->fillvertbase); BLI_listbase_clear(&sf_ctx->filledgebase); BLI_listbase_clear(&sf_ctx->fillfacebase); } void BLI_scanfill_end_arena(ScanFillContext *sf_ctx, MemArena *arena) { BLI_memarena_clear(arena); BLI_assert(sf_ctx->arena == arena); BLI_listbase_clear(&sf_ctx->fillvertbase); BLI_listbase_clear(&sf_ctx->filledgebase); BLI_listbase_clear(&sf_ctx->fillfacebase); } unsigned int BLI_scanfill_calc_ex(ScanFillContext *sf_ctx, const int flag, const float nor_proj[3]) { /* * - fill works with its own lists, so create that first (no faces!) * - for vertices, put in ->tmp.v the old pointer * - struct elements xs en ys are not used here: don't hide stuff in it * - edge flag ->f becomes 2 when it's a new edge * - mode: & 1 is check for crossings, then create edges (TO DO ) * - returns number of triangle faces added. */ ListBase tempve, temped; ScanFillVert *eve; ScanFillEdge *eed, *eed_next; PolyFill *pflist, *pf; float *min_xy_p, *max_xy_p; unsigned int totfaces = 0; /* total faces added */ unsigned short a, c, poly = 0; bool ok; float mat_2d[3][3]; BLI_assert(!nor_proj || len_squared_v3(nor_proj) > FLT_EPSILON); #ifdef DEBUG for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { /* these values used to be set, * however they should always be zero'd so check instead */ BLI_assert(eve->f == 0); BLI_assert(sf_ctx->poly_nr || eve->poly_nr == 0); BLI_assert(eve->edge_tot == 0); } #endif #if 0 if (flag & BLI_SCANFILL_CALC_QUADTRI_FASTPATH) { const int totverts = BLI_countlist(&sf_ctx->fillvertbase); if (totverts == 3) { eve = sf_ctx->fillvertbase.first; addfillface(sf_ctx, eve, eve->next, eve->next->next); return 1; } else if (totverts == 4) { float vec1[3], vec2[3]; eve = sf_ctx->fillvertbase.first; /* no need to check 'eve->next->next->next' is valid, already counted */ /* use shortest diagonal for quad */ sub_v3_v3v3(vec1, eve->co, eve->next->next->co); sub_v3_v3v3(vec2, eve->next->co, eve->next->next->next->co); if (dot_v3v3(vec1, vec1) < dot_v3v3(vec2, vec2)) { addfillface(sf_ctx, eve, eve->next, eve->next->next); addfillface(sf_ctx, eve->next->next, eve->next->next->next, eve); } else { addfillface(sf_ctx, eve->next, eve->next->next, eve->next->next->next); addfillface(sf_ctx, eve->next->next->next, eve, eve->next); } return 2; } } #endif /* first test vertices if they are in edges */ /* including resetting of flags */ for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { BLI_assert(sf_ctx->poly_nr != SF_POLY_UNSET || eed->poly_nr == SF_POLY_UNSET); eed->v1->f = SF_VERT_AVAILABLE; eed->v2->f = SF_VERT_AVAILABLE; } for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { if (eve->f == SF_VERT_AVAILABLE) { break; } } if (UNLIKELY(eve == NULL)) { return 0; } else { float n[3]; if (nor_proj) { copy_v3_v3(n, nor_proj); } else { /* define projection: with 'best' normal */ /* Newell's Method */ /* Similar code used elsewhere, but this checks for double ups * which historically this function supports so better not change */ const float *v_prev; zero_v3(n); eve = sf_ctx->fillvertbase.last; v_prev = eve->co; for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { if (LIKELY(!compare_v3v3(v_prev, eve->co, SF_EPSILON))) { add_newell_cross_v3_v3v3(n, v_prev, eve->co); v_prev = eve->co; } } } if (UNLIKELY(normalize_v3(n) == 0.0f)) { return 0; } axis_dominant_v3_to_m3(mat_2d, n); } /* STEP 1: COUNT POLYS */ if (sf_ctx->poly_nr != SF_POLY_UNSET) { poly = (unsigned short)(sf_ctx->poly_nr + 1); sf_ctx->poly_nr = SF_POLY_UNSET; } if (flag & BLI_SCANFILL_CALC_POLYS && (poly == 0)) { for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { mul_v2_m3v3(eve->xy, mat_2d, eve->co); /* get first vertex with no poly number */ if (eve->poly_nr == SF_POLY_UNSET) { unsigned int toggle = 0; /* now a sort of select connected */ ok = true; eve->poly_nr = poly; while (ok) { ok = false; toggle++; for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last; eed; eed = (toggle & 1) ? eed->next : eed->prev) { if (eed->v1->poly_nr == SF_POLY_UNSET && eed->v2->poly_nr == poly) { eed->v1->poly_nr = poly; eed->poly_nr = poly; ok = true; } else if (eed->v2->poly_nr == SF_POLY_UNSET && eed->v1->poly_nr == poly) { eed->v2->poly_nr = poly; eed->poly_nr = poly; ok = true; } else if (eed->poly_nr == SF_POLY_UNSET) { if (eed->v1->poly_nr == poly && eed->v2->poly_nr == poly) { eed->poly_nr = poly; ok = true; } } } } poly++; } } /* printf("amount of poly's: %d\n", poly); */ } else if (poly) { /* we pre-calculated poly_nr */ for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { mul_v2_m3v3(eve->xy, mat_2d, eve->co); } } else { poly = 1; for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { mul_v2_m3v3(eve->xy, mat_2d, eve->co); eve->poly_nr = 0; } for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { eed->poly_nr = 0; } } /* STEP 2: remove loose edges and strings of edges */ if (flag & BLI_SCANFILL_CALC_LOOSE) { unsigned int toggle = 0; for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { if (eed->v1->edge_tot++ > 250) break; if (eed->v2->edge_tot++ > 250) break; } if (eed) { /* otherwise it's impossible to be sure you can clear vertices */ #ifdef DEBUG printf("No vertices with 250 edges allowed!\n"); #endif return 0; } /* does it only for vertices with (->edge_tot == 1) */ testvertexnearedge(sf_ctx); ok = true; while (ok) { ok = false; toggle++; for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last; eed; eed = eed_next) { eed_next = (toggle & 1) ? eed->next : eed->prev; if (eed->v1->edge_tot == 1) { eed->v2->edge_tot--; BLI_remlink(&sf_ctx->fillvertbase, eed->v1); BLI_remlink(&sf_ctx->filledgebase, eed); ok = true; } else if (eed->v2->edge_tot == 1) { eed->v1->edge_tot--; BLI_remlink(&sf_ctx->fillvertbase, eed->v2); BLI_remlink(&sf_ctx->filledgebase, eed); ok = true; } } } if (BLI_listbase_is_empty(&sf_ctx->filledgebase)) { /* printf("All edges removed\n"); */ return 0; } } else { /* skip checks for loose edges */ for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { eed->v1->edge_tot++; eed->v2->edge_tot++; } #ifdef DEBUG /* ensure we're right! */ for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { BLI_assert(eed->v1->edge_tot != 1); BLI_assert(eed->v2->edge_tot != 1); } #endif } /* CURRENT STATUS: * - eve->f :1 = available in edges * - eve->poly_nr :polynumber * - eve->edge_tot :amount of edges connected to vertex * - eve->tmp.v :store! original vertex number * * - eed->f :1 = boundary edge (optionally set by caller) * - eed->poly_nr :poly number */ /* STEP 3: MAKE POLYFILL STRUCT */ pflist = MEM_mallocN(sizeof(*pflist) * (size_t)poly, "edgefill"); pf = pflist; for (a = 0; a < poly; a++) { pf->edges = pf->verts = 0; pf->min_xy[0] = pf->min_xy[1] = 1.0e20f; pf->max_xy[0] = pf->max_xy[1] = -1.0e20f; pf->f = SF_POLY_NEW; pf->nr = a; pf++; } for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) { pflist[eed->poly_nr].edges++; } for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) { pflist[eve->poly_nr].verts++; min_xy_p = pflist[eve->poly_nr].min_xy; max_xy_p = pflist[eve->poly_nr].max_xy; min_xy_p[0] = (min_xy_p[0]) < (eve->xy[0]) ? (min_xy_p[0]) : (eve->xy[0]); min_xy_p[1] = (min_xy_p[1]) < (eve->xy[1]) ? (min_xy_p[1]) : (eve->xy[1]); max_xy_p[0] = (max_xy_p[0]) > (eve->xy[0]) ? (max_xy_p[0]) : (eve->xy[0]); max_xy_p[1] = (max_xy_p[1]) > (eve->xy[1]) ? (max_xy_p[1]) : (eve->xy[1]); if (eve->edge_tot > 2) { pflist[eve->poly_nr].f = SF_POLY_VALID; } } /* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM * ( bounds just to divide it in pieces for optimization, * the edgefill itself has good auto-hole detection) * WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */ if ((flag & BLI_SCANFILL_CALC_HOLES) && (poly > 1)) { unsigned short *polycache, *pc; /* so, sort first */ qsort(pflist, (size_t)poly, sizeof(PolyFill), vergpoly); #if 0 pf = pflist; for (a = 0; a < poly; a++) { printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f); PRINT2(f, f, pf->min[0], pf->min[1]); pf++; } #endif polycache = pc = MEM_callocN(sizeof(*polycache) * (size_t)poly, "polycache"); pf = pflist; for (a = 0; a < poly; a++, pf++) { for (c = (unsigned short)(a + 1); c < poly; c++) { /* if 'a' inside 'c': join (bbox too) * Careful: 'a' can also be inside another poly. */ if (boundisect(pf, pflist + c)) { *pc = c; pc++; } /* only for optimize! */ /* else if (pf->max_xy[0] < (pflist+c)->min[cox]) break; */ } while (pc != polycache) { pc--; mergepolysSimp(sf_ctx, pf, pflist + *pc); } } MEM_freeN(polycache); } #if 0 printf("after merge\n"); pf = pflist; for (a = 0; a < poly; a++) { printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f); pf++; } #endif /* STEP 5: MAKE TRIANGLES */ tempve.first = sf_ctx->fillvertbase.first; tempve.last = sf_ctx->fillvertbase.last; temped.first = sf_ctx->filledgebase.first; temped.last = sf_ctx->filledgebase.last; BLI_listbase_clear(&sf_ctx->fillvertbase); BLI_listbase_clear(&sf_ctx->filledgebase); pf = pflist; for (a = 0; a < poly; a++) { if (pf->edges > 1) { splitlist(sf_ctx, &tempve, &temped, pf->nr); totfaces += scanfill(sf_ctx, pf, flag); } pf++; } BLI_movelisttolist(&sf_ctx->fillvertbase, &tempve); BLI_movelisttolist(&sf_ctx->filledgebase, &temped); /* FREE */ MEM_freeN(pflist); return totfaces; } unsigned int BLI_scanfill_calc(ScanFillContext *sf_ctx, const int flag) { return BLI_scanfill_calc_ex(sf_ctx, flag, NULL); }