/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. */ /** \file * \ingroup bli */ #include #include #include #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_dynstr.h" #include "BLI_string.h" #include "BLI_utildefines.h" #ifdef __GNUC__ # pragma GCC diagnostic error "-Wsign-conversion" #endif // #define DEBUG_STRSIZE /** * Duplicates the first \a len bytes of cstring \a str * into a newly mallocN'd string and returns it. \a str * is assumed to be at least len bytes long. * * \param str: The string to be duplicated * \param len: The number of bytes to duplicate * \retval Returns the duplicated string */ char *BLI_strdupn(const char *str, const size_t len) { char *n = MEM_mallocN(len + 1, "strdup"); memcpy(n, str, len); n[len] = '\0'; return n; } /** * Duplicates the cstring \a str into a newly mallocN'd * string and returns it. * * \param str: The string to be duplicated * \retval Returns the duplicated string */ char *BLI_strdup(const char *str) { return BLI_strdupn(str, strlen(str)); } /** * Appends the two strings, and returns new mallocN'ed string * \param str1: first string for copy * \param str2: second string for append * \retval Returns dst */ char *BLI_strdupcat(const char *__restrict str1, const char *__restrict str2) { /* include the NULL terminator of str2 only */ const size_t str1_len = strlen(str1); const size_t str2_len = strlen(str2) + 1; char *str, *s; str = MEM_mallocN(str1_len + str2_len, "strdupcat"); s = str; memcpy(s, str1, str1_len); /* NOLINT: bugprone-not-null-terminated-result */ s += str1_len; memcpy(s, str2, str2_len); return str; } /** * Like strncpy but ensures dst is always * '\0' terminated. * * \param dst: Destination for copy * \param src: Source string to copy * \param maxncpy: Maximum number of characters to copy (generally * the size of dst) * \retval Returns dst */ char *BLI_strncpy(char *__restrict dst, const char *__restrict src, const size_t maxncpy) { size_t srclen = BLI_strnlen(src, maxncpy - 1); BLI_assert(maxncpy != 0); #ifdef DEBUG_STRSIZE memset(dst, 0xff, sizeof(*dst) * maxncpy); #endif memcpy(dst, src, srclen); dst[srclen] = '\0'; return dst; } /** * Like BLI_strncpy but ensures dst is always padded by given char, * on both sides (unless src is empty). * * \param dst: Destination for copy * \param src: Source string to copy * \param pad: the char to use for padding * \param maxncpy: Maximum number of characters to copy (generally the size of dst) * \retval Returns dst */ char *BLI_strncpy_ensure_pad(char *__restrict dst, const char *__restrict src, const char pad, size_t maxncpy) { BLI_assert(maxncpy != 0); #ifdef DEBUG_STRSIZE memset(dst, 0xff, sizeof(*dst) * maxncpy); #endif if (src[0] == '\0') { dst[0] = '\0'; } else { /* Add heading/trailing wildcards if needed. */ size_t idx = 0; size_t srclen; if (src[idx] != pad) { dst[idx++] = pad; maxncpy--; } maxncpy--; /* trailing '\0' */ srclen = BLI_strnlen(src, maxncpy); if ((src[srclen - 1] != pad) && (srclen == maxncpy)) { srclen--; } memcpy(&dst[idx], src, srclen); idx += srclen; if (dst[idx - 1] != pad) { dst[idx++] = pad; } dst[idx] = '\0'; } return dst; } /** * Like strncpy but ensures dst is always * '\0' terminated. * * \note This is a duplicate of #BLI_strncpy that returns bytes copied. * And is a drop in replacement for 'snprintf(str, sizeof(str), "%s", arg);' * * \param dst: Destination for copy * \param src: Source string to copy * \param maxncpy: Maximum number of characters to copy (generally * the size of dst) * \retval The number of bytes copied (The only difference from BLI_strncpy). */ size_t BLI_strncpy_rlen(char *__restrict dst, const char *__restrict src, const size_t maxncpy) { size_t srclen = BLI_strnlen(src, maxncpy - 1); BLI_assert(maxncpy != 0); #ifdef DEBUG_STRSIZE memset(dst, 0xff, sizeof(*dst) * maxncpy); #endif memcpy(dst, src, srclen); dst[srclen] = '\0'; return srclen; } size_t BLI_strcpy_rlen(char *__restrict dst, const char *__restrict src) { size_t srclen = strlen(src); memcpy(dst, src, srclen + 1); return srclen; } /** * Portable replacement for `vsnprintf`. */ size_t BLI_vsnprintf(char *__restrict buffer, size_t maxncpy, const char *__restrict format, va_list arg) { size_t n; BLI_assert(buffer != NULL); BLI_assert(maxncpy > 0); BLI_assert(format != NULL); n = (size_t)vsnprintf(buffer, maxncpy, format, arg); if (n != -1 && n < maxncpy) { buffer[n] = '\0'; } else { buffer[maxncpy - 1] = '\0'; } return n; } /** * A version of #BLI_vsnprintf that returns `strlen(buffer)` */ size_t BLI_vsnprintf_rlen(char *__restrict buffer, size_t maxncpy, const char *__restrict format, va_list arg) { size_t n; BLI_assert(buffer != NULL); BLI_assert(maxncpy > 0); BLI_assert(format != NULL); n = (size_t)vsnprintf(buffer, maxncpy, format, arg); if (n != -1 && n < maxncpy) { /* pass */ } else { n = maxncpy - 1; } buffer[n] = '\0'; return n; } /** * Portable replacement for #snprintf */ size_t BLI_snprintf(char *__restrict dst, size_t maxncpy, const char *__restrict format, ...) { size_t n; va_list arg; #ifdef DEBUG_STRSIZE memset(dst, 0xff, sizeof(*dst) * maxncpy); #endif va_start(arg, format); n = BLI_vsnprintf(dst, maxncpy, format, arg); va_end(arg); return n; } /** * A version of #BLI_snprintf that returns `strlen(dst)` */ size_t BLI_snprintf_rlen(char *__restrict dst, size_t maxncpy, const char *__restrict format, ...) { size_t n; va_list arg; #ifdef DEBUG_STRSIZE memset(dst, 0xff, sizeof(*dst) * maxncpy); #endif va_start(arg, format); n = BLI_vsnprintf_rlen(dst, maxncpy, format, arg); va_end(arg); return n; } /** * Print formatted string into a newly #MEM_mallocN'd string * and return it. */ char *BLI_sprintfN(const char *__restrict format, ...) { DynStr *ds; va_list arg; char *n; va_start(arg, format); ds = BLI_dynstr_new(); BLI_dynstr_vappendf(ds, format, arg); n = BLI_dynstr_get_cstring(ds); BLI_dynstr_free(ds); va_end(arg); return n; } /** * This roughly matches C and Python's string escaping with double quotes - `"`. * * Since every character may need escaping, * it's common to create a buffer twice as large as the input. * * \param dst: The destination string, at least \a dst_maxncpy, typically `(strlen(src) * 2) + 1`. * \param src: The un-escaped source string. * \param dst_maxncpy: The maximum number of bytes allowable to copy. * * \note This is used for creating animation paths in blend files. */ size_t BLI_str_escape(char *__restrict dst, const char *__restrict src, const size_t dst_maxncpy) { BLI_assert(dst_maxncpy != 0); size_t len = 0; for (; (len < dst_maxncpy) && (*src != '\0'); dst++, src++, len++) { char c = *src; if (ELEM(c, '\\', '"') || /* Use as-is. */ ((c == '\t') && ((void)(c = 't'), true)) || /* Tab. */ ((c == '\n') && ((void)(c = 'n'), true)) || /* Newline. */ ((c == '\r') && ((void)(c = 'r'), true)) || /* Carriage return. */ ((c == '\a') && ((void)(c = 'a'), true)) || /* Bell. */ ((c == '\b') && ((void)(c = 'b'), true)) || /* Backspace. */ ((c == '\f') && ((void)(c = 'f'), true))) /* Form-feed. */ { if (UNLIKELY(len + 1 >= dst_maxncpy)) { /* Not enough space to escape. */ break; } *dst++ = '\\'; len++; } *dst = c; } *dst = '\0'; return len; } BLI_INLINE bool str_unescape_pair(char c_next, char *r_out) { #define CASE_PAIR(value_src, value_dst) \ case value_src: { \ *r_out = value_dst; \ return true; \ } switch (c_next) { CASE_PAIR('"', '"'); /* Quote. */ CASE_PAIR('\\', '\\'); /* Backslash. */ CASE_PAIR('t', '\t'); /* Tab. */ CASE_PAIR('n', '\n'); /* Newline. */ CASE_PAIR('r', '\r'); /* Carriage return. */ CASE_PAIR('a', '\a'); /* Bell. */ CASE_PAIR('b', '\b'); /* Backspace. */ CASE_PAIR('f', '\f'); /* Form-feed. */ } #undef CASE_PAIR return false; } /** * This roughly matches C and Python's string escaping with double quotes - `"`. * * The destination will never be larger than the source, it will either be the same * or up to half when all characters are escaped. * * \param dst: The destination string, at least the size of `strlen(src) + 1`. * \param src: The escaped source string. * \param src_maxncpy: The maximum number of bytes allowable to copy from `src`. * \param dst_maxncpy: The maximum number of bytes allowable to copy into `dst`. * \param r_is_complete: Set to true when */ size_t BLI_str_unescape_ex(char *__restrict dst, const char *__restrict src, const size_t src_maxncpy, /* Additional arguments to #BLI_str_unescape */ const size_t dst_maxncpy, bool *r_is_complete) { size_t len = 0; bool is_complete = true; for (const char *src_end = src + src_maxncpy; (src < src_end) && *src; src++) { if (UNLIKELY(len == dst_maxncpy)) { is_complete = false; break; } char c = *src; if (UNLIKELY(c == '\\') && (str_unescape_pair(*(src + 1), &c))) { src++; } dst[len++] = c; } dst[len] = 0; *r_is_complete = is_complete; return len; } /** * See #BLI_str_unescape_ex doc-string. * * This function makes the assumption that `dst` always has * at least `src_maxncpy` bytes available. * * Use #BLI_str_unescape_ex if `dst` has a smaller fixed size. * * \note This is used for parsing animation paths in blend files (runs often). */ size_t BLI_str_unescape(char *__restrict dst, const char *__restrict src, const size_t src_maxncpy) { size_t len = 0; for (const char *src_end = src + src_maxncpy; (src < src_end) && *src; src++) { char c = *src; if (UNLIKELY(c == '\\') && (str_unescape_pair(*(src + 1), &c))) { src++; } dst[len++] = c; } dst[len] = 0; return len; } /** * Find the first un-escaped quote in the string (to find the end of the string). * * \param str: Typically this is the first character in a quoted string. * Where the character before `*str` would be `"`. * \return The pointer to the first un-escaped quote. */ const char *BLI_str_escape_find_quote(const char *str) { bool escape = false; while (*str && (*str != '"' || escape)) { /* A pair of back-slashes represents a single back-slash, * only use a single back-slash for escaping. */ escape = (escape == false) && (*str == '\\'); str++; } return (*str == '"') ? str : NULL; } /** * Return the range of the quoted string (excluding quotes) `str` after `prefix`. * * A version of #BLI_str_quoted_substrN that calculates the range * instead of un-escaping and allocating the result. * * \param str: String potentially including `prefix`. * \param prefix: Quoted string prefix. * \param r_start: The start of the quoted string (after the first quote). * \param r_end: The end of the quoted string (before the last quote). * \return True when a quoted string range could be found after `prefix`. */ bool BLI_str_quoted_substr_range(const char *__restrict str, const char *__restrict prefix, int *__restrict r_start, int *__restrict r_end) { const char *str_start = strstr(str, prefix); if (str_start == NULL) { return false; } const size_t prefix_len = strlen(prefix); if (UNLIKELY(prefix_len == 0)) { BLI_assert_msg(0, "Zero length prefix passed in, " "caller must prevent this from happening!"); return false; } BLI_assert_msg(prefix[prefix_len - 1] != '"', "Prefix includes trailing quote, " "caller must prevent this from happening!"); str_start += prefix_len; if (UNLIKELY(*str_start != '\"')) { return false; } str_start += 1; const char *str_end = BLI_str_escape_find_quote(str_start); if (UNLIKELY(str_end == NULL)) { return false; } *r_start = (int)(str_start - str); *r_end = (int)(str_end - str); return true; } /* NOTE(@campbellbarton): in principal it should be possible to access a quoted string * with an arbitrary size, currently all callers for this functionality * happened to use a fixed size buffer, so only #BLI_str_quoted_substr is needed. */ #if 0 /** * Makes a copy of the text within the "" that appear after the contents of \a prefix. * i.e. for string `pose["apples"]` with prefix `pose[`, it will return `apples`. * * \param str: is the entire string to chop. * \param prefix: is the part of the string to step over. * * Assume that the strings returned must be freed afterwards, * and that the inputs will contain data we want. */ char *BLI_str_quoted_substrN(const char *__restrict str, const char *__restrict prefix) { int start_match_ofs, end_match_ofs; if (!BLI_str_quoted_substr_range(str, prefix, &start_match_ofs, &end_match_ofs)) { return NULL; } const size_t escaped_len = (size_t)(end_match_ofs - start_match_ofs); char *result = MEM_mallocN(sizeof(char) * (escaped_len + 1), __func__); const size_t unescaped_len = BLI_str_unescape(result, str + start_match_ofs, escaped_len); if (unescaped_len != escaped_len) { result = MEM_reallocN(result, sizeof(char) * (unescaped_len + 1)); } return result; } #endif /** * Fills \a result with text within "" that appear after some the contents of \a prefix. * i.e. for string `pose["apples"]` with prefix `pose[`, it will return `apples`. * * \param str: is the entire string to chop. * \param prefix: is the part of the string to step over. * \param result: The buffer to fill. * \param result_maxlen: The maximum size of the buffer (including nil terminator). * \return True if the prefix was found and the entire quoted string was copied into result. * * Assume that the strings returned must be freed afterwards, * and that the inputs will contain data we want. */ bool BLI_str_quoted_substr(const char *__restrict str, const char *__restrict prefix, char *result, size_t result_maxlen) { int start_match_ofs, end_match_ofs; if (!BLI_str_quoted_substr_range(str, prefix, &start_match_ofs, &end_match_ofs)) { return false; } const size_t escaped_len = (size_t)(end_match_ofs - start_match_ofs); bool is_complete; BLI_str_unescape_ex(result, str + start_match_ofs, escaped_len, result_maxlen, &is_complete); if (is_complete == false) { *result = '\0'; } return is_complete; } /** * string with all instances of substr_old replaced with substr_new, * Returns a copy of the c-string \a str into a newly #MEM_mallocN'd * and returns it. * * \note A rather wasteful string-replacement utility, though this shall do for now... * Feel free to replace this with an even safe + nicer alternative * * \param str: The string to replace occurrences of substr_old in * \param substr_old: The text in the string to find and replace * \param substr_new: The text in the string to find and replace * \retval Returns the duplicated string */ char *BLI_str_replaceN(const char *__restrict str, const char *__restrict substr_old, const char *__restrict substr_new) { DynStr *ds = NULL; size_t len_old = strlen(substr_old); const char *match; BLI_assert(substr_old[0] != '\0'); /* While we can still find a match for the old sub-string that we're searching for, * keep dicing and replacing. */ while ((match = strstr(str, substr_old))) { /* the assembly buffer only gets created when we actually need to rebuild the string */ if (ds == NULL) { ds = BLI_dynstr_new(); } /* If the match position does not match the current position in the string, * copy the text up to this position and advance the current position in the string. */ if (str != match) { /* Add the segment of the string from `str` to match to the buffer, * then restore the value at match. */ BLI_dynstr_nappend(ds, str, (match - str)); /* now our current position should be set on the start of the match */ str = match; } /* Add the replacement text to the accumulation buffer. */ BLI_dynstr_append(ds, substr_new); /* Advance the current position of the string up to the end of the replaced segment. */ str += len_old; } /* Finish off and return a new string that has had all occurrences of. */ if (ds) { char *str_new; /* Add what's left of the string to the assembly buffer * - we've been adjusting `str` to point at the end of the replaced segments. */ BLI_dynstr_append(ds, str); /* Convert to new c-string (MEM_malloc'd), and free the buffer. */ str_new = BLI_dynstr_get_cstring(ds); BLI_dynstr_free(ds); return str_new; } /* Just create a new copy of the entire string - we avoid going through the assembly buffer * for what should be a bit more efficiency. */ return BLI_strdup(str); } /** * In-place replace every \a src to \a dst in \a str. * * \param str: The string to operate on. * \param src: The character to replace. * \param dst: The character to replace with. */ void BLI_str_replace_char(char *str, char src, char dst) { while (*str) { if (*str == src) { *str = dst; } str++; } } /** * Simple exact-match string replacement. * * \param replace_table: Array of source, destination pairs. * * \note Larger tables should use a hash table. */ bool BLI_str_replace_table_exact(char *string, const size_t string_len, const char *replace_table[][2], int replace_table_len) { for (int i = 0; i < replace_table_len; i++) { if (STREQ(string, replace_table[i][0])) { BLI_strncpy(string, replace_table[i][1], string_len); return true; } } return false; } /** \} */ /** * Compare two strings without regard to case. * * \retval True if the strings are equal, false otherwise. */ int BLI_strcaseeq(const char *a, const char *b) { return (BLI_strcasecmp(a, b) == 0); } /** * Portable replacement for `strcasestr` (not available in MSVC) */ char *BLI_strcasestr(const char *s, const char *find) { char c, sc; size_t len; if ((c = *find++) != 0) { c = tolower(c); len = strlen(find); do { do { if ((sc = *s++) == 0) { return NULL; } sc = tolower(sc); } while (sc != c); } while (BLI_strncasecmp(s, find, len) != 0); s--; } return ((char *)s); } int BLI_string_max_possible_word_count(const int str_len) { return (str_len / 2) + 1; } bool BLI_string_has_word_prefix(const char *haystack, const char *needle, size_t needle_len) { const char *match = BLI_strncasestr(haystack, needle, needle_len); if (match) { if ((match == haystack) || (*(match - 1) == ' ') || ispunct(*(match - 1))) { return true; } return BLI_string_has_word_prefix(match + 1, needle, needle_len); } return false; } bool BLI_string_all_words_matched(const char *name, const char *str, int (*words)[2], const int words_len) { int index; for (index = 0; index < words_len; index++) { if (!BLI_string_has_word_prefix(name, str + words[index][0], (size_t)words[index][1])) { break; } } const bool all_words_matched = (index == words_len); return all_words_matched; } /** * Variation of #BLI_strcasestr with string length limited to \a len */ char *BLI_strncasestr(const char *s, const char *find, size_t len) { char c, sc; if ((c = *find++) != 0) { c = tolower(c); if (len > 1) { do { do { if ((sc = *s++) == 0) { return NULL; } sc = tolower(sc); } while (sc != c); } while (BLI_strncasecmp(s, find, len - 1) != 0); } else { { do { if ((sc = *s++) == 0) { return NULL; } sc = tolower(sc); } while (sc != c); } } s--; } return ((char *)s); } int BLI_strcasecmp(const char *s1, const char *s2) { int i; char c1, c2; for (i = 0;; i++) { c1 = tolower(s1[i]); c2 = tolower(s2[i]); if (c1 < c2) { return -1; } if (c1 > c2) { return 1; } if (c1 == 0) { break; } } return 0; } int BLI_strncasecmp(const char *s1, const char *s2, size_t len) { size_t i; char c1, c2; for (i = 0; i < len; i++) { c1 = tolower(s1[i]); c2 = tolower(s2[i]); if (c1 < c2) { return -1; } if (c1 > c2) { return 1; } if (c1 == 0) { break; } } return 0; } /* compare number on the left size of the string */ static int left_number_strcmp(const char *s1, const char *s2, int *tiebreaker) { const char *p1 = s1, *p2 = s2; int numdigit, numzero1, numzero2; /* count and skip leading zeros */ for (numzero1 = 0; *p1 == '0'; numzero1++) { p1++; } for (numzero2 = 0; *p2 == '0'; numzero2++) { p2++; } /* find number of consecutive digits */ for (numdigit = 0;; numdigit++) { if (isdigit(*(p1 + numdigit)) && isdigit(*(p2 + numdigit))) { continue; } if (isdigit(*(p1 + numdigit))) { return 1; /* s2 is bigger */ } if (isdigit(*(p2 + numdigit))) { return -1; /* s1 is bigger */ } break; } /* same number of digits, compare size of number */ if (numdigit > 0) { int compare = (int)strncmp(p1, p2, (size_t)numdigit); if (compare != 0) { return compare; } } /* use number of leading zeros as tie breaker if still equal */ if (*tiebreaker == 0) { if (numzero1 > numzero2) { *tiebreaker = 1; } else if (numzero1 < numzero2) { *tiebreaker = -1; } } return 0; } /** * Case insensitive, *natural* string comparison, * keeping numbers in order. */ int BLI_strcasecmp_natural(const char *s1, const char *s2) { int d1 = 0, d2 = 0; char c1, c2; int tiebreaker = 0; /* if both chars are numeric, to a left_number_strcmp(). * then increase string deltas as long they are * numeric, else do a tolower and char compare */ while (1) { if (isdigit(s1[d1]) && isdigit(s2[d2])) { int numcompare = left_number_strcmp(s1 + d1, s2 + d2, &tiebreaker); if (numcompare != 0) { return numcompare; } /* Some wasted work here, left_number_strcmp already consumes at least some digits. */ d1++; while (isdigit(s1[d1])) { d1++; } d2++; while (isdigit(s2[d2])) { d2++; } } /* Test for end of strings first so that shorter strings are ordered in front. */ if (ELEM(0, s1[d1], s2[d2])) { break; } c1 = tolower(s1[d1]); c2 = tolower(s2[d2]); if (c1 == c2) { /* Continue iteration */ } /* Check for '.' so "foo.bar" comes before "foo 1.bar". */ else if (c1 == '.') { return -1; } else if (c2 == '.') { return 1; } else if (c1 < c2) { return -1; } else if (c1 > c2) { return 1; } d1++; d2++; } if (tiebreaker) { return tiebreaker; } /* we might still have a different string because of lower/upper case, in * that case fall back to regular string comparison */ return strcmp(s1, s2); } /** * Like strcmp, but will ignore any heading/trailing pad char for comparison. * So e.g. if pad is '*', '*world' and 'world*' will compare equal. */ int BLI_strcmp_ignore_pad(const char *str1, const char *str2, const char pad) { size_t str1_len, str2_len; while (*str1 == pad) { str1++; } while (*str2 == pad) { str2++; } str1_len = strlen(str1); str2_len = strlen(str2); while (str1_len && (str1[str1_len - 1] == pad)) { str1_len--; } while (str2_len && (str2[str2_len - 1] == pad)) { str2_len--; } if (str1_len == str2_len) { return strncmp(str1, str2, str2_len); } if (str1_len > str2_len) { int ret = strncmp(str1, str2, str2_len); if (ret == 0) { ret = 1; } return ret; } { int ret = strncmp(str1, str2, str1_len); if (ret == 0) { ret = -1; } return ret; } } /* determine the length of a fixed-size string */ size_t BLI_strnlen(const char *s, const size_t maxlen) { size_t len; for (len = 0; len < maxlen; len++, s++) { if (!*s) { break; } } return len; } void BLI_str_tolower_ascii(char *str, const size_t len) { size_t i; for (i = 0; (i < len) && str[i]; i++) { if (str[i] >= 'A' && str[i] <= 'Z') { str[i] += 'a' - 'A'; } } } void BLI_str_toupper_ascii(char *str, const size_t len) { size_t i; for (i = 0; (i < len) && str[i]; i++) { if (str[i] >= 'a' && str[i] <= 'z') { str[i] -= 'a' - 'A'; } } } /** * Strip white-space from end of the string. */ void BLI_str_rstrip(char *str) { for (int i = (int)strlen(str) - 1; i >= 0; i--) { if (isspace(str[i])) { str[i] = '\0'; } else { break; } } } /** * Strip trailing zeros from a float, eg: * 0.0000 -> 0.0 * 2.0010 -> 2.001 * * \param str: * \param pad: * \return The number of zeros stripped. */ int BLI_str_rstrip_float_zero(char *str, const char pad) { char *p = strchr(str, '.'); int totstrip = 0; if (p) { char *end_p; p++; /* position at first decimal place */ end_p = p + (strlen(p) - 1); /* position at last character */ if (end_p > p) { while (end_p != p && *end_p == '0') { *end_p = pad; end_p--; totstrip++; } } } return totstrip; } /** * Return index of a string in a string array. * * \param str: The string to find. * \param str_array: Array of strings. * \param str_array_len: The length of the array, or -1 for a NULL-terminated array. * \return The index of str in str_array or -1. */ int BLI_str_index_in_array_n(const char *__restrict str, const char **__restrict str_array, const int str_array_len) { int index; const char **str_iter = str_array; for (index = 0; index < str_array_len; str_iter++, index++) { if (STREQ(str, *str_iter)) { return index; } } return -1; } /** * Return index of a string in a string array. * * \param str: The string to find. * \param str_array: Array of strings, (must be NULL-terminated). * \return The index of str in str_array or -1. */ int BLI_str_index_in_array(const char *__restrict str, const char **__restrict str_array) { int index; const char **str_iter = str_array; for (index = 0; *str_iter; str_iter++, index++) { if (STREQ(str, *str_iter)) { return index; } } return -1; } /** * Find if a string starts with another string. * * \param str: The string to search within. * \param start: The string we look for at the start. * \return If str starts with start. */ bool BLI_str_startswith(const char *__restrict str, const char *__restrict start) { for (; *str && *start; str++, start++) { if (*str != *start) { return false; } } return (*start == '\0'); } bool BLI_strn_endswith(const char *__restrict str, const char *__restrict end, size_t slength) { size_t elength = strlen(end); if (elength < slength) { const char *iter = &str[slength - elength]; while (*iter) { if (*iter++ != *end++) { return false; } } return true; } return false; } /** * Find if a string ends with another string. * * \param str: The string to search within. * \param end: The string we look for at the end. * \return If str ends with end. */ bool BLI_str_endswith(const char *__restrict str, const char *__restrict end) { const size_t slength = strlen(str); return BLI_strn_endswith(str, end, slength); } /** * Find the first char matching one of the chars in \a delim, from left. * * \param str: The string to search within. * \param delim: The set of delimiters to search for, as unicode values. * \param sep: Return value, set to the first delimiter found (or NULL if none found). * \param suf: Return value, set to next char after the first delimiter found * (or NULL if none found). * \return The length of the prefix (i.e. *sep - str). */ size_t BLI_str_partition(const char *str, const char delim[], const char **sep, const char **suf) { return BLI_str_partition_ex(str, NULL, delim, sep, suf, false); } /** * Find the first char matching one of the chars in \a delim, from right. * * \param str: The string to search within. * \param delim: The set of delimiters to search for, as unicode values. * \param sep: Return value, set to the first delimiter found (or NULL if none found). * \param suf: Return value, set to next char after the first delimiter found * (or NULL if none found). * \return The length of the prefix (i.e. *sep - str). */ size_t BLI_str_rpartition(const char *str, const char delim[], const char **sep, const char **suf) { return BLI_str_partition_ex(str, NULL, delim, sep, suf, true); } /** * Find the first char matching one of the chars in \a delim, either from left or right. * * \param str: The string to search within. * \param end: If non-NULL, the right delimiter of the string. * \param delim: The set of delimiters to search for, as unicode values. * \param sep: Return value, set to the first delimiter found (or NULL if none found). * \param suf: Return value, set to next char after the first delimiter found * (or NULL if none found). * \param from_right: If %true, search from the right of \a str, else, search from its left. * \return The length of the prefix (i.e. *sep - str). */ size_t BLI_str_partition_ex(const char *str, const char *end, const char delim[], const char **sep, const char **suf, const bool from_right) { const char *d; char *(*func)(const char *str, int c) = from_right ? strrchr : strchr; BLI_assert(end == NULL || end > str); *sep = *suf = NULL; for (d = delim; *d != '\0'; d++) { const char *tmp; if (end) { if (from_right) { for (tmp = end - 1; (tmp >= str) && (*tmp != *d); tmp--) { /* pass */ } if (tmp < str) { tmp = NULL; } } else { tmp = func(str, *d); if (tmp >= end) { tmp = NULL; } } } else { tmp = func(str, *d); } if (tmp && (from_right ? (*sep < tmp) : (!*sep || *sep > tmp))) { *sep = tmp; } } if (*sep) { *suf = *sep + 1; return (size_t)(*sep - str); } return end ? (size_t)(end - str) : strlen(str); } static size_t BLI_str_format_int_grouped_ex(char src[16], char dst[16], int num_len) { char *p_src = src; char *p_dst = dst; const char separator = ','; int commas; if (*p_src == '-') { *p_dst++ = *p_src++; num_len--; } for (commas = 2 - num_len % 3; *p_src; commas = (commas + 1) % 3) { *p_dst++ = *p_src++; if (commas == 1) { *p_dst++ = separator; } } *--p_dst = '\0'; return (size_t)(p_dst - dst); } /** * Format ints with decimal grouping. * 1000 -> 1,000 * * \param dst: The resulting string * \param num: Number to format * \return The length of \a dst */ size_t BLI_str_format_int_grouped(char dst[16], int num) { char src[16]; int num_len = sprintf(src, "%d", num); return BLI_str_format_int_grouped_ex(src, dst, num_len); } /** * Format uint64_t with decimal grouping. * 1000 -> 1,000 * * \param dst: The resulting string * \param num: Number to format * \return The length of \a dst */ size_t BLI_str_format_uint64_grouped(char dst[16], uint64_t num) { /* NOTE: Buffer to hold maximum unsigned int64, which is 1.8e+19. but * we also need space for commas and null-terminator. */ char src[27]; int num_len = sprintf(src, "%" PRIu64 "", num); return BLI_str_format_int_grouped_ex(src, dst, num_len); } /** * Format a size in bytes using binary units. * 1000 -> 1 KB * Number of decimal places grows with the used unit (e.g. 1.5 MB, 1.55 GB, 1.545 TB). * * \param dst: The resulting string. * Dimension of 14 to support largest possible value for \a bytes (#LLONG_MAX). * \param bytes: Number to format. * \param base_10: Calculate using base 10 (GB, MB, ...) or 2 (GiB, MiB, ...). */ void BLI_str_format_byte_unit(char dst[15], long long int bytes, const bool base_10) { double bytes_converted = bytes; int order = 0; int decimals; const int base = base_10 ? 1000 : 1024; const char *units_base_10[] = {"B", "KB", "MB", "GB", "TB", "PB"}; const char *units_base_2[] = {"B", "KiB", "MiB", "GiB", "TiB", "PiB"}; const int tot_units = ARRAY_SIZE(units_base_2); BLI_STATIC_ASSERT(ARRAY_SIZE(units_base_2) == ARRAY_SIZE(units_base_10), "array size mismatch"); while ((fabs(bytes_converted) >= base) && ((order + 1) < tot_units)) { bytes_converted /= base; order++; } decimals = MAX2(order - 1, 0); /* Format value first, stripping away floating zeroes. */ const size_t dst_len = 15; size_t len = BLI_snprintf_rlen(dst, dst_len, "%.*f", decimals, bytes_converted); len -= (size_t)BLI_str_rstrip_float_zero(dst, '\0'); dst[len++] = ' '; BLI_strncpy(dst + len, base_10 ? units_base_10[order] : units_base_2[order], dst_len - len); } /** * Format a count to up to 6 places (plus '\0' terminator) string using long number * names abbreviations. Used to produce a compact representation of large numbers. * * 1 -> 1 * 15 -> 15 * 155 -> 155 * 1555 -> 1.6K * 15555 -> 15.6K * 155555 -> 156K * 1555555 -> 1.6M * 15555555 -> 15.6M * 155555555 -> 156M * 1000000000 -> 1B * ... * * Length of 7 is the maximum of the resulting string, for example, `-15.5K\0`. */ void BLI_str_format_attribute_domain_size(char dst[7], int number_to_format) { float number_to_format_converted = number_to_format; int order = 0; const float base = 1000; const char *units[] = {"", "K", "M", "B"}; const int tot_units = ARRAY_SIZE(units); while ((fabsf(number_to_format_converted) >= base) && ((order + 1) < tot_units)) { number_to_format_converted /= base; order++; } const size_t dst_len = 7; int decimals = 0; if ((order > 0) && fabsf(number_to_format_converted) < 100.0f) { decimals = 1; } BLI_snprintf(dst, dst_len, "%.*f%s", decimals, number_to_format_converted, units[order]); } /** * Find the ranges needed to split \a str into its individual words. * * \param str: The string to search for words. * \param len: Size of the string to search. * \param delim: Character to use as a delimiter. * \param r_words: Info about the words found. Set to [index, len] pairs. * \param words_max: Max number of words to find * \return The number of words found in \a str */ int BLI_string_find_split_words( const char *str, const size_t len, const char delim, int r_words[][2], int words_max) { int n = 0, i; bool charsearch = true; /* Skip leading spaces */ for (i = 0; (i < len) && (str[i] != '\0'); i++) { if (str[i] != delim) { break; } } for (; (i < len) && (str[i] != '\0') && (n < words_max); i++) { if ((str[i] != delim) && (charsearch == true)) { r_words[n][0] = i; charsearch = false; } else { if ((str[i] == delim) && (charsearch == false)) { r_words[n][1] = i - r_words[n][0]; n++; charsearch = true; } } } if (charsearch == false) { r_words[n][1] = i - r_words[n][0]; n++; } return n; }