/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup bli * * A generic task system which can be used for any task based subsystem. */ #include #include "MEM_guardedalloc.h" #include "DNA_listBase.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_mempool.h" #include "BLI_task.h" #include "BLI_threads.h" #include "atomic_ops.h" /* Define this to enable some detailed statistic print. */ #undef DEBUG_STATS /* Types */ /* Number of per-thread pre-allocated tasks. * * For more details see description of TaskMemPool. */ #define MEMPOOL_SIZE 256 /* Number of tasks which are pushed directly to local thread queue. * * This allows thread to fetch next task without locking the whole queue. */ #define LOCAL_QUEUE_SIZE 1 /* Number of tasks which are allowed to be scheduled in a delayed manner. * * This allows to use less locks per graph node children schedule. More details * could be found at TaskThreadLocalStorage::do_delayed_push. */ #define DELAYED_QUEUE_SIZE 4096 #ifndef NDEBUG # define ASSERT_THREAD_ID(scheduler, thread_id) \ do { \ if (!BLI_thread_is_main()) { \ TaskThread *thread = pthread_getspecific(scheduler->tls_id_key); \ if (thread == NULL) { \ BLI_assert(thread_id == 0); \ } \ else { \ BLI_assert(thread_id == thread->id); \ } \ } \ else { \ BLI_assert(thread_id == 0); \ } \ } while (false) #else # define ASSERT_THREAD_ID(scheduler, thread_id) #endif typedef struct Task { struct Task *next, *prev; TaskRunFunction run; void *taskdata; bool free_taskdata; TaskFreeFunction freedata; TaskPool *pool; } Task; /* This is a per-thread storage of pre-allocated tasks. * * The idea behind this is simple: reduce amount of malloc() calls when pushing * new task to the pool. This is done by keeping memory from the tasks which * were finished already, so instead of freeing that memory we put it to the * pool for the later re-use. * * The tricky part here is to avoid any inter-thread synchronization, hence no * lock must exist around this pool. The pool will become an owner of the pointer * from freed task, and only corresponding thread will be able to use this pool * (no memory stealing and such). * * This leads to the following use of the pool: * * - task_push() should provide proper thread ID from which the task is being * pushed from. * * - Task allocation function which check corresponding memory pool and if there * is any memory in there it'll mark memory as re-used, remove it from the pool * and use that memory for the new task. * * At this moment task queue owns the memory. * * - When task is done and task_free() is called the memory will be put to the * pool which corresponds to a thread which handled the task. */ typedef struct TaskMemPool { /* Number of pre-allocated tasks in the pool. */ int num_tasks; /* Pre-allocated task memory pointers. */ Task *tasks[MEMPOOL_SIZE]; } TaskMemPool; #ifdef DEBUG_STATS typedef struct TaskMemPoolStats { /* Number of allocations. */ int num_alloc; /* Number of avoided allocations (pointer was re-used from the pool). */ int num_reuse; /* Number of discarded memory due to pool saturation, */ int num_discard; } TaskMemPoolStats; #endif typedef struct TaskThreadLocalStorage { /* Memory pool for faster task allocation. * The idea is to re-use memory of finished/discarded tasks by this thread. */ TaskMemPool task_mempool; /* Local queue keeps thread alive by keeping small amount of tasks ready * to be picked up without causing global thread locks for synchronization. */ int num_local_queue; Task *local_queue[LOCAL_QUEUE_SIZE]; /* Thread can be marked for delayed tasks push. This is helpful when it's * know that lots of subsequent task pushed will happen from the same thread * without "interrupting" for task execution. * * We try to accumulate as much tasks as possible in a local queue without * any locks first, and then we push all of them into a scheduler's queue * from within a single mutex lock. */ bool do_delayed_push; int num_delayed_queue; Task *delayed_queue[DELAYED_QUEUE_SIZE]; } TaskThreadLocalStorage; struct TaskPool { TaskScheduler *scheduler; volatile size_t num; ThreadMutex num_mutex; ThreadCondition num_cond; void *userdata; ThreadMutex user_mutex; volatile bool do_cancel; volatile bool do_work; volatile bool is_suspended; bool start_suspended; ListBase suspended_queue; size_t num_suspended; /* If set, this pool may never be work_and_wait'ed, which means TaskScheduler * has to use its special background fallback thread in case we are in * single-threaded situation. */ bool run_in_background; /* This is a task scheduler's ID of a thread at which pool was constructed. * It will be used to access task TLS. */ int thread_id; /* For the pools which are created from non-main thread which is not a * scheduler worker thread we can't re-use any of scheduler's threads TLS * and have to use our own one. */ bool use_local_tls; TaskThreadLocalStorage local_tls; #ifndef NDEBUG pthread_t creator_thread_id; #endif #ifdef DEBUG_STATS TaskMemPoolStats *mempool_stats; #endif }; struct TaskScheduler { pthread_t *threads; struct TaskThread *task_threads; int num_threads; bool background_thread_only; ListBase queue; ThreadMutex queue_mutex; ThreadCondition queue_cond; ThreadMutex startup_mutex; ThreadCondition startup_cond; volatile int num_thread_started; volatile bool do_exit; /* NOTE: In pthread's TLS we store the whole TaskThread structure. */ pthread_key_t tls_id_key; }; typedef struct TaskThread { TaskScheduler *scheduler; int id; TaskThreadLocalStorage tls; } TaskThread; /* Helper */ BLI_INLINE void task_data_free(Task *task, const int thread_id) { if (task->free_taskdata) { if (task->freedata) { task->freedata(task->pool, task->taskdata, thread_id); } else { MEM_freeN(task->taskdata); } } } BLI_INLINE void initialize_task_tls(TaskThreadLocalStorage *tls) { memset(tls, 0, sizeof(TaskThreadLocalStorage)); } BLI_INLINE TaskThreadLocalStorage *get_task_tls(TaskPool *pool, const int thread_id) { TaskScheduler *scheduler = pool->scheduler; BLI_assert(thread_id >= 0); BLI_assert(thread_id <= scheduler->num_threads); if (pool->use_local_tls && thread_id == 0) { BLI_assert(pool->thread_id == 0); BLI_assert(!BLI_thread_is_main()); BLI_assert(pthread_equal(pthread_self(), pool->creator_thread_id)); return &pool->local_tls; } if (thread_id == 0) { BLI_assert(BLI_thread_is_main()); return &scheduler->task_threads[pool->thread_id].tls; } return &scheduler->task_threads[thread_id].tls; } BLI_INLINE void free_task_tls(TaskThreadLocalStorage *tls) { TaskMemPool *task_mempool = &tls->task_mempool; for (int i = 0; i < task_mempool->num_tasks; i++) { MEM_freeN(task_mempool->tasks[i]); } } static Task *task_alloc(TaskPool *pool, const int thread_id) { BLI_assert(thread_id <= pool->scheduler->num_threads); if (thread_id != -1) { BLI_assert(thread_id >= 0); BLI_assert(thread_id <= pool->scheduler->num_threads); TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id); TaskMemPool *task_mempool = &tls->task_mempool; /* Try to re-use task memory from a thread local storage. */ if (task_mempool->num_tasks > 0) { --task_mempool->num_tasks; /* Success! We've just avoided task allocation. */ #ifdef DEBUG_STATS pool->mempool_stats[thread_id].num_reuse++; #endif return task_mempool->tasks[task_mempool->num_tasks]; } /* We are doomed to allocate new task data. */ #ifdef DEBUG_STATS pool->mempool_stats[thread_id].num_alloc++; #endif } return MEM_mallocN(sizeof(Task), "New task"); } static void task_free(TaskPool *pool, Task *task, const int thread_id) { task_data_free(task, thread_id); BLI_assert(thread_id >= 0); BLI_assert(thread_id <= pool->scheduler->num_threads); if (thread_id == 0) { BLI_assert(pool->use_local_tls || BLI_thread_is_main()); } TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id); TaskMemPool *task_mempool = &tls->task_mempool; if (task_mempool->num_tasks < MEMPOOL_SIZE - 1) { /* Successfully allowed the task to be re-used later. */ task_mempool->tasks[task_mempool->num_tasks] = task; ++task_mempool->num_tasks; } else { /* Local storage saturated, no other way than just discard * the memory. * * TODO(sergey): We can perhaps store such pointer in a global * scheduler pool, maybe it'll be faster than discarding and * allocating again. */ MEM_freeN(task); #ifdef DEBUG_STATS pool->mempool_stats[thread_id].num_discard++; #endif } } /* Task Scheduler */ static void task_pool_num_decrease(TaskPool *pool, size_t done) { BLI_mutex_lock(&pool->num_mutex); BLI_assert(pool->num >= done); pool->num -= done; if (pool->num == 0) { BLI_condition_notify_all(&pool->num_cond); } BLI_mutex_unlock(&pool->num_mutex); } static void task_pool_num_increase(TaskPool *pool, size_t new) { BLI_mutex_lock(&pool->num_mutex); pool->num += new; BLI_condition_notify_all(&pool->num_cond); BLI_mutex_unlock(&pool->num_mutex); } static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task) { bool found_task = false; BLI_mutex_lock(&scheduler->queue_mutex); while (!scheduler->queue.first && !scheduler->do_exit) { BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex); } do { Task *current_task; /* Assuming we can only have a void queue in 'exit' case here seems logical * (we should only be here after our worker thread has been woken up from a * condition_wait(), which only happens after a new task was added to the queue), * but it is wrong. * Waiting on condition may wake up the thread even if condition is not signaled * (spurious wake-ups), and some race condition may also empty the queue **after** * condition has been signaled, but **before** awoken thread reaches this point... * See http://stackoverflow.com/questions/8594591 * * So we only abort here if do_exit is set. */ if (scheduler->do_exit) { BLI_mutex_unlock(&scheduler->queue_mutex); return false; } for (current_task = scheduler->queue.first; current_task != NULL; current_task = current_task->next) { TaskPool *pool = current_task->pool; if (scheduler->background_thread_only && !pool->run_in_background) { continue; } *task = current_task; found_task = true; BLI_remlink(&scheduler->queue, *task); break; } if (!found_task) { BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex); } } while (!found_task); BLI_mutex_unlock(&scheduler->queue_mutex); return true; } BLI_INLINE void handle_local_queue(TaskThreadLocalStorage *tls, const int thread_id) { BLI_assert(!tls->do_delayed_push); while (tls->num_local_queue > 0) { /* We pop task from queue before handling it so handler of the task can * push next job to the local queue. */ tls->num_local_queue--; Task *local_task = tls->local_queue[tls->num_local_queue]; /* TODO(sergey): Double-check work_and_wait() doesn't handle other's * pool tasks. */ TaskPool *local_pool = local_task->pool; local_task->run(local_pool, local_task->taskdata, thread_id); task_free(local_pool, local_task, thread_id); } BLI_assert(!tls->do_delayed_push); } static void *task_scheduler_thread_run(void *thread_p) { TaskThread *thread = (TaskThread *)thread_p; TaskThreadLocalStorage *tls = &thread->tls; TaskScheduler *scheduler = thread->scheduler; int thread_id = thread->id; Task *task; pthread_setspecific(scheduler->tls_id_key, thread); /* signal the main thread when all threads have started */ BLI_mutex_lock(&scheduler->startup_mutex); scheduler->num_thread_started++; if (scheduler->num_thread_started == scheduler->num_threads) { BLI_condition_notify_one(&scheduler->startup_cond); } BLI_mutex_unlock(&scheduler->startup_mutex); /* keep popping off tasks */ while (task_scheduler_thread_wait_pop(scheduler, &task)) { TaskPool *pool = task->pool; /* run task */ BLI_assert(!tls->do_delayed_push); task->run(pool, task->taskdata, thread_id); BLI_assert(!tls->do_delayed_push); /* delete task */ task_free(pool, task, thread_id); /* Handle all tasks from local queue. */ handle_local_queue(tls, thread_id); /* notify pool task was done */ task_pool_num_decrease(pool, 1); } return NULL; } TaskScheduler *BLI_task_scheduler_create(int num_threads) { TaskScheduler *scheduler = MEM_callocN(sizeof(TaskScheduler), "TaskScheduler"); /* multiple places can use this task scheduler, sharing the same * threads, so we keep track of the number of users. */ scheduler->do_exit = false; BLI_listbase_clear(&scheduler->queue); BLI_mutex_init(&scheduler->queue_mutex); BLI_condition_init(&scheduler->queue_cond); BLI_mutex_init(&scheduler->startup_mutex); BLI_condition_init(&scheduler->startup_cond); scheduler->num_thread_started = 0; if (num_threads == 0) { /* automatic number of threads will be main thread + num cores */ num_threads = BLI_system_thread_count(); } /* main thread will also work, so we count it too */ num_threads -= 1; /* Add background-only thread if needed. */ if (num_threads == 0) { scheduler->background_thread_only = true; num_threads = 1; } scheduler->task_threads = MEM_mallocN(sizeof(TaskThread) * (num_threads + 1), "TaskScheduler task threads"); /* Initialize TLS for main thread. */ initialize_task_tls(&scheduler->task_threads[0].tls); pthread_key_create(&scheduler->tls_id_key, NULL); /* launch threads that will be waiting for work */ if (num_threads > 0) { int i; scheduler->num_threads = num_threads; scheduler->threads = MEM_callocN(sizeof(pthread_t) * num_threads, "TaskScheduler threads"); for (i = 0; i < num_threads; i++) { TaskThread *thread = &scheduler->task_threads[i + 1]; thread->scheduler = scheduler; thread->id = i + 1; initialize_task_tls(&thread->tls); if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) { fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads); } } } /* Wait for all worker threads to start before returning to caller to prevent the case where * threads are still starting and pthread_join is called, which causes a deadlock on pthreads4w. */ BLI_mutex_lock(&scheduler->startup_mutex); /* NOTE: Use loop here to avoid false-positive everything-is-ready caused by spontaneous thread * wake up. */ while (scheduler->num_thread_started != num_threads) { BLI_condition_wait(&scheduler->startup_cond, &scheduler->startup_mutex); } BLI_mutex_unlock(&scheduler->startup_mutex); return scheduler; } void BLI_task_scheduler_free(TaskScheduler *scheduler) { Task *task; /* stop all waiting threads */ BLI_mutex_lock(&scheduler->queue_mutex); scheduler->do_exit = true; BLI_condition_notify_all(&scheduler->queue_cond); BLI_mutex_unlock(&scheduler->queue_mutex); pthread_key_delete(scheduler->tls_id_key); /* delete threads */ if (scheduler->threads) { int i; for (i = 0; i < scheduler->num_threads; i++) { if (pthread_join(scheduler->threads[i], NULL) != 0) { fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads); } } MEM_freeN(scheduler->threads); } /* Delete task thread data */ if (scheduler->task_threads) { for (int i = 0; i < scheduler->num_threads + 1; i++) { TaskThreadLocalStorage *tls = &scheduler->task_threads[i].tls; free_task_tls(tls); } MEM_freeN(scheduler->task_threads); } /* delete leftover tasks */ for (task = scheduler->queue.first; task; task = task->next) { task_data_free(task, 0); } BLI_freelistN(&scheduler->queue); /* delete mutex/condition */ BLI_mutex_end(&scheduler->queue_mutex); BLI_condition_end(&scheduler->queue_cond); BLI_mutex_end(&scheduler->startup_mutex); BLI_condition_end(&scheduler->startup_cond); MEM_freeN(scheduler); } int BLI_task_scheduler_num_threads(TaskScheduler *scheduler) { return scheduler->num_threads + 1; } static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority) { task_pool_num_increase(task->pool, 1); /* add task to queue */ BLI_mutex_lock(&scheduler->queue_mutex); if (priority == TASK_PRIORITY_HIGH) { BLI_addhead(&scheduler->queue, task); } else { BLI_addtail(&scheduler->queue, task); } BLI_condition_notify_one(&scheduler->queue_cond); BLI_mutex_unlock(&scheduler->queue_mutex); } static void task_scheduler_push_all(TaskScheduler *scheduler, TaskPool *pool, Task **tasks, int num_tasks) { if (num_tasks == 0) { return; } task_pool_num_increase(pool, num_tasks); BLI_mutex_lock(&scheduler->queue_mutex); for (int i = 0; i < num_tasks; i++) { BLI_addhead(&scheduler->queue, tasks[i]); } BLI_condition_notify_all(&scheduler->queue_cond); BLI_mutex_unlock(&scheduler->queue_mutex); } static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool) { Task *task, *nexttask; size_t done = 0; BLI_mutex_lock(&scheduler->queue_mutex); /* free all tasks from this pool from the queue */ for (task = scheduler->queue.first; task; task = nexttask) { nexttask = task->next; if (task->pool == pool) { task_data_free(task, pool->thread_id); BLI_freelinkN(&scheduler->queue, task); done++; } } BLI_mutex_unlock(&scheduler->queue_mutex); /* notify done */ task_pool_num_decrease(pool, done); } /* Task Pool */ static TaskPool *task_pool_create_ex(TaskScheduler *scheduler, void *userdata, const bool is_background, const bool is_suspended) { TaskPool *pool = MEM_mallocN(sizeof(TaskPool), "TaskPool"); #ifndef NDEBUG /* Assert we do not try to create a background pool from some parent task - * those only work OK from main thread. */ if (is_background) { const pthread_t thread_id = pthread_self(); int i = scheduler->num_threads; while (i--) { BLI_assert(!pthread_equal(scheduler->threads[i], thread_id)); } } #endif pool->scheduler = scheduler; pool->num = 0; pool->do_cancel = false; pool->do_work = false; pool->is_suspended = is_suspended; pool->start_suspended = is_suspended; pool->num_suspended = 0; pool->suspended_queue.first = pool->suspended_queue.last = NULL; pool->run_in_background = is_background; pool->use_local_tls = false; BLI_mutex_init(&pool->num_mutex); BLI_condition_init(&pool->num_cond); pool->userdata = userdata; BLI_mutex_init(&pool->user_mutex); if (BLI_thread_is_main()) { pool->thread_id = 0; } else { TaskThread *thread = pthread_getspecific(scheduler->tls_id_key); if (thread == NULL) { /* NOTE: Task pool is created from non-main thread which is not * managed by the task scheduler. We identify ourselves as thread ID * 0 but we do not use scheduler's TLS storage and use our own * instead to avoid any possible threading conflicts. */ pool->thread_id = 0; pool->use_local_tls = true; #ifndef NDEBUG pool->creator_thread_id = pthread_self(); #endif initialize_task_tls(&pool->local_tls); } else { pool->thread_id = thread->id; } } #ifdef DEBUG_STATS pool->mempool_stats = MEM_callocN(sizeof(*pool->mempool_stats) * (scheduler->num_threads + 1), "per-taskpool mempool stats"); #endif /* Ensure malloc will go fine from threads, * * This is needed because we could be in main thread here * and malloc could be non-thread safe at this point because * no other jobs are running. */ BLI_threaded_malloc_begin(); return pool; } /** * Create a normal task pool. Tasks will be executed as soon as they are added. */ TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata) { return task_pool_create_ex(scheduler, userdata, false, false); } /** * Create a background task pool. * In multi-threaded context, there is no differences with #BLI_task_pool_create(), * but in single-threaded case it is ensured to have at least one worker thread to run on * (i.e. you don't have to call #BLI_task_pool_work_and_wait * on it to be sure it will be processed). * * \note Background pools are non-recursive * (that is, you should not create other background pools in tasks assigned to a background pool, * they could end never being executed, since the 'fallback' background thread is already * busy with parent task in single-threaded context). */ TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler, void *userdata) { return task_pool_create_ex(scheduler, userdata, true, false); } /** * Similar to BLI_task_pool_create() but does not schedule any tasks for execution * for until BLI_task_pool_work_and_wait() is called. This helps reducing threading * overhead when pushing huge amount of small initial tasks from the main thread. */ TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler, void *userdata) { return task_pool_create_ex(scheduler, userdata, false, true); } void BLI_task_pool_free(TaskPool *pool) { BLI_task_pool_cancel(pool); BLI_mutex_end(&pool->num_mutex); BLI_condition_end(&pool->num_cond); BLI_mutex_end(&pool->user_mutex); #ifdef DEBUG_STATS printf("Thread ID Allocated Reused Discarded\n"); for (int i = 0; i < pool->scheduler->num_threads + 1; i++) { printf("%02d %05d %05d %05d\n", i, pool->mempool_stats[i].num_alloc, pool->mempool_stats[i].num_reuse, pool->mempool_stats[i].num_discard); } MEM_freeN(pool->mempool_stats); #endif if (pool->use_local_tls) { free_task_tls(&pool->local_tls); } MEM_freeN(pool); BLI_threaded_malloc_end(); } BLI_INLINE bool task_can_use_local_queues(TaskPool *pool, int thread_id) { return (thread_id != -1 && (thread_id != pool->thread_id || pool->do_work)); } static void task_pool_push(TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskFreeFunction freedata, TaskPriority priority, int thread_id) { /* Allocate task and fill it's properties. */ Task *task = task_alloc(pool, thread_id); task->run = run; task->taskdata = taskdata; task->free_taskdata = free_taskdata; task->freedata = freedata; task->pool = pool; /* For suspended pools we put everything yo a global queue first * and exit as soon as possible. * * This tasks will be moved to actual execution when pool is * activated by work_and_wait(). */ if (pool->is_suspended) { BLI_addhead(&pool->suspended_queue, task); atomic_fetch_and_add_z(&pool->num_suspended, 1); return; } /* Populate to any local queue first, this is cheapest push ever. */ if (task_can_use_local_queues(pool, thread_id)) { ASSERT_THREAD_ID(pool->scheduler, thread_id); TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id); /* Try to push to a local execution queue. * These tasks will be picked up next. */ if (tls->num_local_queue < LOCAL_QUEUE_SIZE) { tls->local_queue[tls->num_local_queue] = task; tls->num_local_queue++; return; } /* If we are in the delayed tasks push mode, we push tasks to a * temporary local queue first without any locks, and then move them * to global execution queue with a single lock. */ if (tls->do_delayed_push && tls->num_delayed_queue < DELAYED_QUEUE_SIZE) { tls->delayed_queue[tls->num_delayed_queue] = task; tls->num_delayed_queue++; return; } } /* Do push to a global execution pool, slowest possible method, * causes quite reasonable amount of threading overhead. */ task_scheduler_push(pool->scheduler, task, priority); } void BLI_task_pool_push_ex(TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskFreeFunction freedata, TaskPriority priority) { task_pool_push(pool, run, taskdata, free_taskdata, freedata, priority, -1); } void BLI_task_pool_push( TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskPriority priority) { BLI_task_pool_push_ex(pool, run, taskdata, free_taskdata, NULL, priority); } void BLI_task_pool_push_from_thread(TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskPriority priority, int thread_id) { task_pool_push(pool, run, taskdata, free_taskdata, NULL, priority, thread_id); } void BLI_task_pool_work_and_wait(TaskPool *pool) { TaskThreadLocalStorage *tls = get_task_tls(pool, pool->thread_id); TaskScheduler *scheduler = pool->scheduler; if (atomic_fetch_and_and_uint8((uint8_t *)&pool->is_suspended, 0)) { if (pool->num_suspended) { task_pool_num_increase(pool, pool->num_suspended); BLI_mutex_lock(&scheduler->queue_mutex); BLI_movelisttolist(&scheduler->queue, &pool->suspended_queue); BLI_condition_notify_all(&scheduler->queue_cond); BLI_mutex_unlock(&scheduler->queue_mutex); pool->num_suspended = 0; } } pool->do_work = true; ASSERT_THREAD_ID(pool->scheduler, pool->thread_id); handle_local_queue(tls, pool->thread_id); BLI_mutex_lock(&pool->num_mutex); while (pool->num != 0) { Task *task, *work_task = NULL; bool found_task = false; BLI_mutex_unlock(&pool->num_mutex); BLI_mutex_lock(&scheduler->queue_mutex); /* find task from this pool. if we get a task from another pool, * we can get into deadlock */ for (task = scheduler->queue.first; task; task = task->next) { if (task->pool == pool) { work_task = task; found_task = true; BLI_remlink(&scheduler->queue, task); break; } } BLI_mutex_unlock(&scheduler->queue_mutex); /* if found task, do it, otherwise wait until other tasks are done */ if (found_task) { /* run task */ BLI_assert(!tls->do_delayed_push); work_task->run(pool, work_task->taskdata, pool->thread_id); BLI_assert(!tls->do_delayed_push); /* delete task */ task_free(pool, task, pool->thread_id); /* Handle all tasks from local queue. */ handle_local_queue(tls, pool->thread_id); /* notify pool task was done */ task_pool_num_decrease(pool, 1); } BLI_mutex_lock(&pool->num_mutex); if (pool->num == 0) { break; } if (!found_task) { BLI_condition_wait(&pool->num_cond, &pool->num_mutex); } } BLI_mutex_unlock(&pool->num_mutex); BLI_assert(tls->num_local_queue == 0); } void BLI_task_pool_work_wait_and_reset(TaskPool *pool) { BLI_task_pool_work_and_wait(pool); pool->do_work = false; pool->is_suspended = pool->start_suspended; } void BLI_task_pool_cancel(TaskPool *pool) { pool->do_cancel = true; task_scheduler_clear(pool->scheduler, pool); /* wait until all entries are cleared */ BLI_mutex_lock(&pool->num_mutex); while (pool->num) { BLI_condition_wait(&pool->num_cond, &pool->num_mutex); } BLI_mutex_unlock(&pool->num_mutex); pool->do_cancel = false; } bool BLI_task_pool_canceled(TaskPool *pool) { return pool->do_cancel; } void *BLI_task_pool_userdata(TaskPool *pool) { return pool->userdata; } ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool) { return &pool->user_mutex; } void BLI_task_pool_delayed_push_begin(TaskPool *pool, int thread_id) { if (task_can_use_local_queues(pool, thread_id)) { ASSERT_THREAD_ID(pool->scheduler, thread_id); TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id); tls->do_delayed_push = true; } } void BLI_task_pool_delayed_push_end(TaskPool *pool, int thread_id) { if (task_can_use_local_queues(pool, thread_id)) { ASSERT_THREAD_ID(pool->scheduler, thread_id); TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id); BLI_assert(tls->do_delayed_push); task_scheduler_push_all(pool->scheduler, pool, tls->delayed_queue, tls->num_delayed_queue); tls->do_delayed_push = false; tls->num_delayed_queue = 0; } } /* Parallel range routines */ /** * * Main functions: * - #BLI_task_parallel_range * - #BLI_task_parallel_listbase (#ListBase - double linked list) * * TODO: * - #BLI_task_parallel_foreach_link (#Link - single linked list) * - #BLI_task_parallel_foreach_ghash/gset (#GHash/#GSet - hash & set) * - #BLI_task_parallel_foreach_mempool (#BLI_mempool - iterate over mempools) */ /* Allows to avoid using malloc for userdata_chunk in tasks, when small enough. */ #define MALLOCA(_size) ((_size) <= 8192) ? alloca((_size)) : MEM_mallocN((_size), __func__) #define MALLOCA_FREE(_mem, _size) \ if (((_mem) != NULL) && ((_size) > 8192)) \ MEM_freeN((_mem)) /* Stores all needed data to perform a parallelized iteration, * with a same operation (callback function). * It can be chained with other tasks in a single-linked list way. */ typedef struct TaskParallelRangeState { struct TaskParallelRangeState *next; /* Start and end point of integer value iteration. */ int start, stop; /* User-defined data, shared between all worker threads. */ void *userdata_shared; /* User-defined callback function called for each value in [start, stop[ specified range. */ TaskParallelRangeFunc func; /* Each instance of looping chunks will get a copy of this data * (similar to OpenMP's firstprivate). */ void *initial_tls_memory; /* Pointer to actual user-defined 'tls' data. */ size_t tls_data_size; /* Size of that data. */ void *flatten_tls_storage; /* 'tls' copies of initial_tls_memory for each running task. */ /* Number of 'tls' copies in the array, i.e. number of worker threads. */ size_t num_elements_in_tls_storage; /* Function called from calling thread once whole range have been processed. */ TaskParallelFinalizeFunc func_finalize; /* Current value of the iterator, shared between all threads (atomically updated). */ int iter_value; int iter_chunk_num; /* Amount of iterations to process in a single step. */ } TaskParallelRangeState; /* Stores all the parallel tasks for a single pool. */ typedef struct TaskParallelRangePool { /* The workers' task pool. */ TaskPool *pool; /* The number of worker tasks we need to create. */ int num_tasks; /* The total number of iterations in all the added ranges. */ int num_total_iters; /* The size (number of items) processed at once by a worker task. */ int chunk_size; /* Linked list of range tasks to process. */ TaskParallelRangeState *parallel_range_states; /* Current range task beeing processed, swapped atomically. */ TaskParallelRangeState *current_state; /* Scheduling settings common to all tasks. */ TaskParallelSettings *settings; } TaskParallelRangePool; BLI_INLINE void task_parallel_calc_chunk_size(const TaskParallelSettings *settings, const int tot_items, int num_tasks, int *r_chunk_size) { int chunk_size = 0; if (!settings->use_threading) { /* Some users of this helper will still need a valid chunk size in case processing is not * threaded. We can use a bigger one than in default threaded case then. */ chunk_size = 1024; num_tasks = 1; } else if (settings->min_iter_per_thread > 0) { /* Already set by user, no need to do anything here. */ chunk_size = settings->min_iter_per_thread; } else { /* Multiplier used in heuristics below to define "optimal" chunk size. * The idea here is to increase the chunk size to compensate for a rather measurable threading * overhead caused by fetching tasks. With too many CPU threads we are starting * to spend too much time in those overheads. * First values are: 1 if num_tasks < 16; * else 2 if num_tasks < 32; * else 3 if num_tasks < 48; * else 4 if num_tasks < 64; * etc. * Note: If we wanted to keep the 'power of two' multiplier, we'd need something like: * 1 << max_ii(0, (int)(sizeof(int) * 8) - 1 - bitscan_reverse_i(num_tasks) - 3) */ const int num_tasks_factor = max_ii(1, num_tasks >> 3); /* We could make that 'base' 32 number configurable in TaskParallelSettings too, or maybe just * always use that heuristic using TaskParallelSettings.min_iter_per_thread as basis? */ chunk_size = 32 * num_tasks_factor; /* Basic heuristic to avoid threading on low amount of items. * We could make that limit configurable in settings too. */ if (tot_items > 0 && tot_items < max_ii(256, chunk_size * 2)) { chunk_size = tot_items; } } BLI_assert(chunk_size > 0); if (tot_items > 0) { switch (settings->scheduling_mode) { case TASK_SCHEDULING_STATIC: *r_chunk_size = max_ii(chunk_size, tot_items / num_tasks); break; case TASK_SCHEDULING_DYNAMIC: *r_chunk_size = chunk_size; break; } } else { /* If total amount of items is unknown, we can only use dynamic scheduling. */ *r_chunk_size = chunk_size; } } BLI_INLINE void task_parallel_range_calc_chunk_size(TaskParallelRangePool *range_pool) { int num_iters = 0; int min_num_iters = INT_MAX; for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL; state = state->next) { const int ni = state->stop - state->start; num_iters += ni; if (min_num_iters > ni) { min_num_iters = ni; } } range_pool->num_total_iters = num_iters; /* Note: Passing min_num_iters here instead of num_iters kind of partially breaks the 'static' * scheduling, but pooled range iterator is inherently non-static anyway, so adding a small level * of dynamic scheduling here should be fine. */ task_parallel_calc_chunk_size( range_pool->settings, min_num_iters, range_pool->num_tasks, &range_pool->chunk_size); } BLI_INLINE bool parallel_range_next_iter_get(TaskParallelRangePool *__restrict range_pool, int *__restrict r_iter, int *__restrict r_count, TaskParallelRangeState **__restrict r_state) { /* We need an atomic op here as well to fetch the initial state, since some other thread might * have already updated it. */ TaskParallelRangeState *current_state = atomic_cas_ptr( (void **)&range_pool->current_state, NULL, NULL); int previter = INT32_MAX; while (current_state != NULL && previter >= current_state->stop) { previter = atomic_fetch_and_add_int32(¤t_state->iter_value, range_pool->chunk_size); *r_iter = previter; *r_count = max_ii(0, min_ii(range_pool->chunk_size, current_state->stop - previter)); if (previter >= current_state->stop) { /* At this point the state we got is done, we need to go to the next one. In case some other * thread already did it, then this does nothing, and we'll just get current valid state * at start of the next loop. */ TaskParallelRangeState *current_state_from_atomic_cas = atomic_cas_ptr( (void **)&range_pool->current_state, current_state, current_state->next); if (current_state == current_state_from_atomic_cas) { /* The atomic CAS operation was successful, we did update range_pool->current_state, so we * can safely switch to next state. */ current_state = current_state->next; } else { /* The atomic CAS operation failed, but we still got range_pool->current_state value out of * it, just use it as our new current state. */ current_state = current_state_from_atomic_cas; } } } *r_state = current_state; return (current_state != NULL && previter < current_state->stop); } static void parallel_range_func(TaskPool *__restrict pool, void *tls_data_idx, int thread_id) { TaskParallelRangePool *__restrict range_pool = BLI_task_pool_userdata(pool); TaskParallelTLS tls = { .thread_id = thread_id, .userdata_chunk = NULL, }; TaskParallelRangeState *state; int iter, count; while (parallel_range_next_iter_get(range_pool, &iter, &count, &state)) { tls.userdata_chunk = (char *)state->flatten_tls_storage + (((size_t)POINTER_AS_INT(tls_data_idx)) * state->tls_data_size); for (int i = 0; i < count; i++) { state->func(state->userdata_shared, iter + i, &tls); } } } static void parallel_range_single_thread(TaskParallelRangePool *range_pool) { for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL; state = state->next) { const int start = state->start; const int stop = state->stop; void *userdata = state->userdata_shared; TaskParallelRangeFunc func = state->func; void *initial_tls_memory = state->initial_tls_memory; const size_t tls_data_size = state->tls_data_size; void *flatten_tls_storage = NULL; const bool use_tls_data = (tls_data_size != 0) && (initial_tls_memory != NULL); if (use_tls_data) { flatten_tls_storage = MALLOCA(tls_data_size); memcpy(flatten_tls_storage, initial_tls_memory, tls_data_size); } TaskParallelTLS tls = { .thread_id = 0, .userdata_chunk = flatten_tls_storage, }; for (int i = start; i < stop; i++) { func(userdata, i, &tls); } if (state->func_finalize != NULL) { state->func_finalize(userdata, flatten_tls_storage); } MALLOCA_FREE(flatten_tls_storage, tls_data_size); } } /** * This function allows to parallelized for loops in a similar way to OpenMP's * 'parallel for' statement. * * See public API doc of ParallelRangeSettings for description of all settings. */ void BLI_task_parallel_range(const int start, const int stop, void *userdata, TaskParallelRangeFunc func, TaskParallelSettings *settings) { if (start == stop) { return; } BLI_assert(start < stop); TaskParallelRangeState state = { .next = NULL, .start = start, .stop = stop, .userdata_shared = userdata, .func = func, .iter_value = start, .initial_tls_memory = settings->userdata_chunk, .tls_data_size = settings->userdata_chunk_size, .func_finalize = settings->func_finalize, }; TaskParallelRangePool range_pool = { .pool = NULL, .parallel_range_states = &state, .current_state = NULL, .settings = settings}; int i, num_threads, num_tasks; void *tls_data = settings->userdata_chunk; const size_t tls_data_size = settings->userdata_chunk_size; if (tls_data_size != 0) { BLI_assert(tls_data != NULL); } const bool use_tls_data = (tls_data_size != 0) && (tls_data != NULL); void *flatten_tls_storage = NULL; /* If it's not enough data to be crunched, don't bother with tasks at all, * do everything from the current thread. */ if (!settings->use_threading) { parallel_range_single_thread(&range_pool); return; } TaskScheduler *task_scheduler = BLI_task_scheduler_get(); num_threads = BLI_task_scheduler_num_threads(task_scheduler); /* The idea here is to prevent creating task for each of the loop iterations * and instead have tasks which are evenly distributed across CPU cores and * pull next iter to be crunched using the queue. */ range_pool.num_tasks = num_tasks = num_threads + 2; task_parallel_range_calc_chunk_size(&range_pool); range_pool.num_tasks = num_tasks = min_ii(num_tasks, max_ii(1, (stop - start) / range_pool.chunk_size)); if (num_tasks == 1) { parallel_range_single_thread(&range_pool); return; } TaskPool *task_pool = range_pool.pool = BLI_task_pool_create_suspended(task_scheduler, &range_pool); range_pool.current_state = &state; if (use_tls_data) { state.flatten_tls_storage = flatten_tls_storage = MALLOCA(tls_data_size * (size_t)num_tasks); state.tls_data_size = tls_data_size; } for (i = 0; i < num_tasks; i++) { if (use_tls_data) { void *userdata_chunk_local = (char *)flatten_tls_storage + (tls_data_size * (size_t)i); memcpy(userdata_chunk_local, tls_data, tls_data_size); } /* Use this pool's pre-allocated tasks. */ BLI_task_pool_push_from_thread(task_pool, parallel_range_func, POINTER_FROM_INT(i), false, TASK_PRIORITY_HIGH, task_pool->thread_id); } BLI_task_pool_work_and_wait(task_pool); BLI_task_pool_free(task_pool); if (use_tls_data) { if (settings->func_finalize != NULL) { for (i = 0; i < num_tasks; i++) { void *userdata_chunk_local = (char *)flatten_tls_storage + (tls_data_size * (size_t)i); settings->func_finalize(userdata, userdata_chunk_local); } } MALLOCA_FREE(flatten_tls_storage, tls_data_size * (size_t)num_tasks); } } /** * Initialize a task pool to parallelize several for loops at the same time. * * See public API doc of ParallelRangeSettings for description of all settings. * Note that loop-specific settings (like 'tls' data or finalize function) must be left NULL here. * Only settings controlling how iteration is parallelized must be defined, as those will affect * all loops added to that pool. */ TaskParallelRangePool *BLI_task_parallel_range_pool_init(const TaskParallelSettings *settings) { TaskParallelRangePool *range_pool = MEM_callocN(sizeof(*range_pool), __func__); BLI_assert(settings->userdata_chunk == NULL); BLI_assert(settings->func_finalize == NULL); range_pool->settings = MEM_mallocN(sizeof(*range_pool->settings), __func__); *range_pool->settings = *settings; return range_pool; } /** * Add a loop task to the pool. It does not execute it at all. * * See public API doc of ParallelRangeSettings for description of all settings. * Note that only 'tls'-related data are used here. */ void BLI_task_parallel_range_pool_push(TaskParallelRangePool *range_pool, const int start, const int stop, void *userdata, TaskParallelRangeFunc func, const TaskParallelSettings *settings) { BLI_assert(range_pool->pool == NULL); if (start == stop) { return; } BLI_assert(start < stop); if (settings->userdata_chunk_size != 0) { BLI_assert(settings->userdata_chunk != NULL); } TaskParallelRangeState *state = MEM_callocN(sizeof(*state), __func__); state->start = start; state->stop = stop; state->userdata_shared = userdata; state->func = func; state->iter_value = start; state->initial_tls_memory = settings->userdata_chunk; state->tls_data_size = settings->userdata_chunk_size; state->func_finalize = settings->func_finalize; state->next = range_pool->parallel_range_states; range_pool->parallel_range_states = state; } static void parallel_range_func_finalize(TaskPool *__restrict pool, void *v_state, int UNUSED(thread_id)) { TaskParallelRangePool *__restrict range_pool = BLI_task_pool_userdata(pool); TaskParallelRangeState *state = v_state; for (int i = 0; i < range_pool->num_tasks; i++) { void *tls_data = (char *)state->flatten_tls_storage + (state->tls_data_size * (size_t)i); state->func_finalize(state->userdata_shared, tls_data); } } /** * Run all tasks pushed to the range_pool. * * Note that the range pool is re-usable (you may push new tasks into it and call this function * again). */ void BLI_task_parallel_range_pool_work_and_wait(TaskParallelRangePool *range_pool) { BLI_assert(range_pool->pool == NULL); /* If it's not enough data to be crunched, don't bother with tasks at all, * do everything from the current thread. */ if (!range_pool->settings->use_threading) { parallel_range_single_thread(range_pool); return; } TaskScheduler *task_scheduler = BLI_task_scheduler_get(); const int num_threads = BLI_task_scheduler_num_threads(task_scheduler); /* The idea here is to prevent creating task for each of the loop iterations * and instead have tasks which are evenly distributed across CPU cores and * pull next iter to be crunched using the queue. */ int num_tasks = num_threads + 2; range_pool->num_tasks = num_tasks; task_parallel_range_calc_chunk_size(range_pool); range_pool->num_tasks = num_tasks = min_ii( num_tasks, max_ii(1, range_pool->num_total_iters / range_pool->chunk_size)); if (num_tasks == 1) { parallel_range_single_thread(range_pool); return; } /* We create all 'tls' data here in a single loop. */ for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL; state = state->next) { void *userdata_chunk = state->initial_tls_memory; const size_t userdata_chunk_size = state->tls_data_size; if (userdata_chunk_size == 0) { BLI_assert(userdata_chunk == NULL); continue; } void *userdata_chunk_array = NULL; state->flatten_tls_storage = userdata_chunk_array = MALLOCA(userdata_chunk_size * (size_t)num_tasks); for (int i = 0; i < num_tasks; i++) { void *userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * (size_t)i); memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size); } } TaskPool *task_pool = range_pool->pool = BLI_task_pool_create_suspended(task_scheduler, range_pool); range_pool->current_state = range_pool->parallel_range_states; for (int i = 0; i < num_tasks; i++) { BLI_task_pool_push_from_thread(task_pool, parallel_range_func, POINTER_FROM_INT(i), false, TASK_PRIORITY_HIGH, task_pool->thread_id); } BLI_task_pool_work_and_wait(task_pool); BLI_assert(atomic_cas_ptr((void **)&range_pool->current_state, NULL, NULL) == NULL); /* Finalize all tasks. */ for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL; state = state->next) { const size_t userdata_chunk_size = state->tls_data_size; void *userdata_chunk_array = state->flatten_tls_storage; UNUSED_VARS_NDEBUG(userdata_chunk_array); if (userdata_chunk_size == 0) { BLI_assert(userdata_chunk_array == NULL); continue; } if (state->func_finalize != NULL) { BLI_task_pool_push_from_thread(task_pool, parallel_range_func_finalize, state, false, TASK_PRIORITY_HIGH, task_pool->thread_id); } } BLI_task_pool_work_and_wait(task_pool); BLI_task_pool_free(task_pool); range_pool->pool = NULL; /* Cleanup all tasks. */ TaskParallelRangeState *state_next; for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL; state = state_next) { state_next = state->next; const size_t userdata_chunk_size = state->tls_data_size; void *userdata_chunk_array = state->flatten_tls_storage; if (userdata_chunk_size != 0) { BLI_assert(userdata_chunk_array != NULL); MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * (size_t)num_tasks); } MEM_freeN(state); } range_pool->parallel_range_states = NULL; } /** * Clear/free given \a range_pool. */ void BLI_task_parallel_range_pool_free(TaskParallelRangePool *range_pool) { TaskParallelRangeState *state_next = NULL; for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL; state = state_next) { state_next = state->next; MEM_freeN(state); } MEM_freeN(range_pool->settings); MEM_freeN(range_pool); } typedef struct TaskParallelIteratorState { void *userdata; TaskParallelIteratorIterFunc iter_func; TaskParallelIteratorFunc func; /* *** Data used to 'acquire' chunks of items from the iterator. *** */ /* Common data also passed to the generator callback. */ TaskParallelIteratorStateShared iter_shared; /* Total number of items. If unknown, set it to a negative number. */ int tot_items; } TaskParallelIteratorState; BLI_INLINE void task_parallel_iterator_calc_chunk_size(const TaskParallelSettings *settings, const int num_tasks, TaskParallelIteratorState *state) { task_parallel_calc_chunk_size( settings, state->tot_items, num_tasks, &state->iter_shared.chunk_size); } static void parallel_iterator_func_do(TaskParallelIteratorState *__restrict state, void *userdata_chunk, int threadid) { TaskParallelTLS tls = { .thread_id = threadid, .userdata_chunk = userdata_chunk, }; void **current_chunk_items; int *current_chunk_indices; int current_chunk_size; const size_t items_size = sizeof(*current_chunk_items) * (size_t)state->iter_shared.chunk_size; const size_t indices_size = sizeof(*current_chunk_indices) * (size_t)state->iter_shared.chunk_size; current_chunk_items = MALLOCA(items_size); current_chunk_indices = MALLOCA(indices_size); current_chunk_size = 0; for (bool do_abort = false; !do_abort;) { if (state->iter_shared.spin_lock != NULL) { BLI_spin_lock(state->iter_shared.spin_lock); } /* Get current status. */ int index = state->iter_shared.next_index; void *item = state->iter_shared.next_item; int i; /* 'Acquire' a chunk of items from the iterator function. */ for (i = 0; i < state->iter_shared.chunk_size && !state->iter_shared.is_finished; i++) { current_chunk_indices[i] = index; current_chunk_items[i] = item; state->iter_func(state->userdata, &tls, &item, &index, &state->iter_shared.is_finished); } /* Update current status. */ state->iter_shared.next_index = index; state->iter_shared.next_item = item; current_chunk_size = i; do_abort = state->iter_shared.is_finished; if (state->iter_shared.spin_lock != NULL) { BLI_spin_unlock(state->iter_shared.spin_lock); } for (i = 0; i < current_chunk_size; ++i) { state->func(state->userdata, current_chunk_items[i], current_chunk_indices[i], &tls); } } MALLOCA_FREE(current_chunk_items, items_size); MALLOCA_FREE(current_chunk_indices, indices_size); } static void parallel_iterator_func(TaskPool *__restrict pool, void *userdata_chunk, int threadid) { TaskParallelIteratorState *__restrict state = BLI_task_pool_userdata(pool); parallel_iterator_func_do(state, userdata_chunk, threadid); } static void task_parallel_iterator_no_threads(const TaskParallelSettings *settings, TaskParallelIteratorState *state) { /* Prepare user's TLS data. */ void *userdata_chunk = settings->userdata_chunk; const size_t userdata_chunk_size = settings->userdata_chunk_size; void *userdata_chunk_local = NULL; const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL); if (use_userdata_chunk) { userdata_chunk_local = MALLOCA(userdata_chunk_size); memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size); } /* Also marking it as non-threaded for the iterator callback. */ state->iter_shared.spin_lock = NULL; parallel_iterator_func_do(state, userdata_chunk, 0); if (use_userdata_chunk) { if (settings->func_finalize != NULL) { settings->func_finalize(state->userdata, userdata_chunk_local); } MALLOCA_FREE(userdata_chunk_local, userdata_chunk_size); } } static void task_parallel_iterator_do(const TaskParallelSettings *settings, TaskParallelIteratorState *state) { TaskScheduler *task_scheduler = BLI_task_scheduler_get(); const int num_threads = BLI_task_scheduler_num_threads(task_scheduler); task_parallel_iterator_calc_chunk_size(settings, num_threads, state); if (!settings->use_threading) { task_parallel_iterator_no_threads(settings, state); return; } const int chunk_size = state->iter_shared.chunk_size; const int tot_items = state->tot_items; const size_t num_tasks = tot_items >= 0 ? (size_t)min_ii(num_threads, state->tot_items / chunk_size) : (size_t)num_threads; BLI_assert(num_tasks > 0); if (num_tasks == 1) { task_parallel_iterator_no_threads(settings, state); return; } SpinLock spin_lock; BLI_spin_init(&spin_lock); state->iter_shared.spin_lock = &spin_lock; void *userdata_chunk = settings->userdata_chunk; const size_t userdata_chunk_size = settings->userdata_chunk_size; void *userdata_chunk_local = NULL; void *userdata_chunk_array = NULL; const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL); TaskPool *task_pool = BLI_task_pool_create_suspended(task_scheduler, state); if (use_userdata_chunk) { userdata_chunk_array = MALLOCA(userdata_chunk_size * num_tasks); } for (size_t i = 0; i < num_tasks; i++) { if (use_userdata_chunk) { userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i); memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size); } /* Use this pool's pre-allocated tasks. */ BLI_task_pool_push_from_thread(task_pool, parallel_iterator_func, userdata_chunk_local, false, TASK_PRIORITY_HIGH, task_pool->thread_id); } BLI_task_pool_work_and_wait(task_pool); BLI_task_pool_free(task_pool); if (use_userdata_chunk) { if (settings->func_finalize != NULL) { for (size_t i = 0; i < num_tasks; i++) { userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i); settings->func_finalize(state->userdata, userdata_chunk_local); } } MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * num_tasks); } BLI_spin_end(&spin_lock); state->iter_shared.spin_lock = NULL; } /** * This function allows to parallelize for loops using a generic iterator. * * \param userdata: Common userdata passed to all instances of \a func. * \param iter_func: Callback function used to generate chunks of items. * \param init_item: The initial item, if necessary (may be NULL if unused). * \param init_index: The initial index. * \param tot_items: The total amount of items to iterate over * (if unknown, set it to a negative number). * \param func: Callback function. * \param settings: See public API doc of TaskParallelSettings for description of all settings. * * \note Static scheduling is only available when \a tot_items is >= 0. */ void BLI_task_parallel_iterator(void *userdata, TaskParallelIteratorIterFunc iter_func, void *init_item, const int init_index, const int tot_items, TaskParallelIteratorFunc func, const TaskParallelSettings *settings) { TaskParallelIteratorState state = {0}; state.tot_items = tot_items; state.iter_shared.next_index = init_index; state.iter_shared.next_item = init_item; state.iter_shared.is_finished = false; state.userdata = userdata; state.iter_func = iter_func; state.func = func; task_parallel_iterator_do(settings, &state); } static void task_parallel_listbase_get(void *__restrict UNUSED(userdata), const TaskParallelTLS *__restrict UNUSED(tls), void **r_next_item, int *r_next_index, bool *r_do_abort) { /* Get current status. */ Link *link = *r_next_item; if (link->next == NULL) { *r_do_abort = true; } *r_next_item = link->next; (*r_next_index)++; } /** * This function allows to parallelize for loops over ListBase items. * * \param listbase: The double linked list to loop over. * \param userdata: Common userdata passed to all instances of \a func. * \param func: Callback function. * \param settings: See public API doc of ParallelRangeSettings for description of all settings. * * \note There is no static scheduling here, * since it would need another full loop over items to count them. */ void BLI_task_parallel_listbase(ListBase *listbase, void *userdata, TaskParallelIteratorFunc func, const TaskParallelSettings *settings) { if (BLI_listbase_is_empty(listbase)) { return; } TaskParallelIteratorState state = {0}; state.tot_items = BLI_listbase_count(listbase); state.iter_shared.next_index = 0; state.iter_shared.next_item = listbase->first; state.iter_shared.is_finished = false; state.userdata = userdata; state.iter_func = task_parallel_listbase_get; state.func = func; task_parallel_iterator_do(settings, &state); } #undef MALLOCA #undef MALLOCA_FREE typedef struct ParallelMempoolState { void *userdata; TaskParallelMempoolFunc func; } ParallelMempoolState; static void parallel_mempool_func(TaskPool *__restrict pool, void *taskdata, int UNUSED(threadid)) { ParallelMempoolState *__restrict state = BLI_task_pool_userdata(pool); BLI_mempool_iter *iter = taskdata; MempoolIterData *item; while ((item = BLI_mempool_iterstep(iter)) != NULL) { state->func(state->userdata, item); } } /** * This function allows to parallelize for loops over Mempool items. * * \param mempool: The iterable BLI_mempool to loop over. * \param userdata: Common userdata passed to all instances of \a func. * \param func: Callback function. * \param use_threading: If \a true, actually split-execute loop in threads, * else just do a sequential for loop * (allows caller to use any kind of test to switch on parallelization or not). * * \note There is no static scheduling here. */ void BLI_task_parallel_mempool(BLI_mempool *mempool, void *userdata, TaskParallelMempoolFunc func, const bool use_threading) { TaskScheduler *task_scheduler; TaskPool *task_pool; ParallelMempoolState state; int i, num_threads, num_tasks; if (BLI_mempool_len(mempool) == 0) { return; } if (!use_threading) { BLI_mempool_iter iter; BLI_mempool_iternew(mempool, &iter); for (void *item = BLI_mempool_iterstep(&iter); item != NULL; item = BLI_mempool_iterstep(&iter)) { func(userdata, item); } return; } task_scheduler = BLI_task_scheduler_get(); task_pool = BLI_task_pool_create_suspended(task_scheduler, &state); num_threads = BLI_task_scheduler_num_threads(task_scheduler); /* The idea here is to prevent creating task for each of the loop iterations * and instead have tasks which are evenly distributed across CPU cores and * pull next item to be crunched using the threaded-aware BLI_mempool_iter. */ num_tasks = num_threads + 2; state.userdata = userdata; state.func = func; BLI_mempool_iter *mempool_iterators = BLI_mempool_iter_threadsafe_create(mempool, (size_t)num_tasks); for (i = 0; i < num_tasks; i++) { /* Use this pool's pre-allocated tasks. */ BLI_task_pool_push_from_thread(task_pool, parallel_mempool_func, &mempool_iterators[i], false, TASK_PRIORITY_HIGH, task_pool->thread_id); } BLI_task_pool_work_and_wait(task_pool); BLI_task_pool_free(task_pool); BLI_mempool_iter_threadsafe_free(mempool_iterators); }