/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup bli * * Parallel tasks over all elements in a container. */ #include #include "MEM_guardedalloc.h" #include "DNA_listBase.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_mempool.h" #include "BLI_task.h" #include "BLI_threads.h" #include "atomic_ops.h" /* Allows to avoid using malloc for userdata_chunk in tasks, when small enough. */ #define MALLOCA(_size) ((_size) <= 8192) ? alloca((_size)) : MEM_mallocN((_size), __func__) #define MALLOCA_FREE(_mem, _size) \ if (((_mem) != NULL) && ((_size) > 8192)) { \ MEM_freeN((_mem)); \ } \ ((void)0) BLI_INLINE void task_parallel_calc_chunk_size(const TaskParallelSettings *settings, const int tot_items, int num_tasks, int *r_chunk_size) { int chunk_size = 0; if (!settings->use_threading) { /* Some users of this helper will still need a valid chunk size in case processing is not * threaded. We can use a bigger one than in default threaded case then. */ chunk_size = 1024; num_tasks = 1; } else if (settings->min_iter_per_thread > 0) { /* Already set by user, no need to do anything here. */ chunk_size = settings->min_iter_per_thread; } else { /* Multiplier used in heuristics below to define "optimal" chunk size. * The idea here is to increase the chunk size to compensate for a rather measurable threading * overhead caused by fetching tasks. With too many CPU threads we are starting * to spend too much time in those overheads. * First values are: 1 if num_tasks < 16; * else 2 if num_tasks < 32; * else 3 if num_tasks < 48; * else 4 if num_tasks < 64; * etc. * Note: If we wanted to keep the 'power of two' multiplier, we'd need something like: * 1 << max_ii(0, (int)(sizeof(int) * 8) - 1 - bitscan_reverse_i(num_tasks) - 3) */ const int num_tasks_factor = max_ii(1, num_tasks >> 3); /* We could make that 'base' 32 number configurable in TaskParallelSettings too, or maybe just * always use that heuristic using TaskParallelSettings.min_iter_per_thread as basis? */ chunk_size = 32 * num_tasks_factor; /* Basic heuristic to avoid threading on low amount of items. * We could make that limit configurable in settings too. */ if (tot_items > 0 && tot_items < max_ii(256, chunk_size * 2)) { chunk_size = tot_items; } } BLI_assert(chunk_size > 0); *r_chunk_size = chunk_size; } typedef struct TaskParallelIteratorState { void *userdata; TaskParallelIteratorIterFunc iter_func; TaskParallelIteratorFunc func; /* *** Data used to 'acquire' chunks of items from the iterator. *** */ /* Common data also passed to the generator callback. */ TaskParallelIteratorStateShared iter_shared; /* Total number of items. If unknown, set it to a negative number. */ int tot_items; } TaskParallelIteratorState; static void parallel_iterator_func_do(TaskParallelIteratorState *__restrict state, void *userdata_chunk) { TaskParallelTLS tls = { .userdata_chunk = userdata_chunk, }; void **current_chunk_items; int *current_chunk_indices; int current_chunk_size; const size_t items_size = sizeof(*current_chunk_items) * (size_t)state->iter_shared.chunk_size; const size_t indices_size = sizeof(*current_chunk_indices) * (size_t)state->iter_shared.chunk_size; current_chunk_items = MALLOCA(items_size); current_chunk_indices = MALLOCA(indices_size); current_chunk_size = 0; for (bool do_abort = false; !do_abort;) { if (state->iter_shared.spin_lock != NULL) { BLI_spin_lock(state->iter_shared.spin_lock); } /* Get current status. */ int index = state->iter_shared.next_index; void *item = state->iter_shared.next_item; int i; /* 'Acquire' a chunk of items from the iterator function. */ for (i = 0; i < state->iter_shared.chunk_size && !state->iter_shared.is_finished; i++) { current_chunk_indices[i] = index; current_chunk_items[i] = item; state->iter_func(state->userdata, &tls, &item, &index, &state->iter_shared.is_finished); } /* Update current status. */ state->iter_shared.next_index = index; state->iter_shared.next_item = item; current_chunk_size = i; do_abort = state->iter_shared.is_finished; if (state->iter_shared.spin_lock != NULL) { BLI_spin_unlock(state->iter_shared.spin_lock); } for (i = 0; i < current_chunk_size; ++i) { state->func(state->userdata, current_chunk_items[i], current_chunk_indices[i], &tls); } } MALLOCA_FREE(current_chunk_items, items_size); MALLOCA_FREE(current_chunk_indices, indices_size); } static void parallel_iterator_func(TaskPool *__restrict pool, void *userdata_chunk) { TaskParallelIteratorState *__restrict state = BLI_task_pool_user_data(pool); parallel_iterator_func_do(state, userdata_chunk); } static void task_parallel_iterator_no_threads(const TaskParallelSettings *settings, TaskParallelIteratorState *state) { /* Prepare user's TLS data. */ void *userdata_chunk = settings->userdata_chunk; const size_t userdata_chunk_size = settings->userdata_chunk_size; void *userdata_chunk_local = NULL; const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL); if (use_userdata_chunk) { userdata_chunk_local = MALLOCA(userdata_chunk_size); memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size); } /* Also marking it as non-threaded for the iterator callback. */ state->iter_shared.spin_lock = NULL; parallel_iterator_func_do(state, userdata_chunk); if (use_userdata_chunk && settings->func_free != NULL) { /* `func_free` should only free data that was created during execution of `func`. */ settings->func_free(state->userdata, userdata_chunk_local); } } static void task_parallel_iterator_do(const TaskParallelSettings *settings, TaskParallelIteratorState *state) { const int num_threads = BLI_task_scheduler_num_threads(); task_parallel_calc_chunk_size( settings, state->tot_items, num_threads, &state->iter_shared.chunk_size); if (!settings->use_threading) { task_parallel_iterator_no_threads(settings, state); return; } const int chunk_size = state->iter_shared.chunk_size; const int tot_items = state->tot_items; const size_t num_tasks = tot_items >= 0 ? (size_t)min_ii(num_threads, state->tot_items / chunk_size) : (size_t)num_threads; BLI_assert(num_tasks > 0); if (num_tasks == 1) { task_parallel_iterator_no_threads(settings, state); return; } SpinLock spin_lock; BLI_spin_init(&spin_lock); state->iter_shared.spin_lock = &spin_lock; void *userdata_chunk = settings->userdata_chunk; const size_t userdata_chunk_size = settings->userdata_chunk_size; void *userdata_chunk_local = NULL; void *userdata_chunk_array = NULL; const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL); TaskPool *task_pool = BLI_task_pool_create(state, TASK_PRIORITY_HIGH); if (use_userdata_chunk) { userdata_chunk_array = MALLOCA(userdata_chunk_size * num_tasks); } for (size_t i = 0; i < num_tasks; i++) { if (use_userdata_chunk) { userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i); memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size); } /* Use this pool's pre-allocated tasks. */ BLI_task_pool_push(task_pool, parallel_iterator_func, userdata_chunk_local, false, NULL); } BLI_task_pool_work_and_wait(task_pool); BLI_task_pool_free(task_pool); if (use_userdata_chunk && (settings->func_reduce != NULL || settings->func_free != NULL)) { for (size_t i = 0; i < num_tasks; i++) { userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i); if (settings->func_reduce != NULL) { settings->func_reduce(state->userdata, userdata_chunk, userdata_chunk_local); } if (settings->func_free != NULL) { settings->func_free(state->userdata, userdata_chunk_local); } } MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * num_tasks); } BLI_spin_end(&spin_lock); state->iter_shared.spin_lock = NULL; } /** * This function allows to parallelize for loops using a generic iterator. * * \param userdata: Common userdata passed to all instances of \a func. * \param iter_func: Callback function used to generate chunks of items. * \param init_item: The initial item, if necessary (may be NULL if unused). * \param init_index: The initial index. * \param tot_items: The total amount of items to iterate over * (if unknown, set it to a negative number). * \param func: Callback function. * \param settings: See public API doc of TaskParallelSettings for description of all settings. * * \note Static scheduling is only available when \a tot_items is >= 0. */ void BLI_task_parallel_iterator(void *userdata, TaskParallelIteratorIterFunc iter_func, void *init_item, const int init_index, const int tot_items, TaskParallelIteratorFunc func, const TaskParallelSettings *settings) { TaskParallelIteratorState state = {0}; state.tot_items = tot_items; state.iter_shared.next_index = init_index; state.iter_shared.next_item = init_item; state.iter_shared.is_finished = false; state.userdata = userdata; state.iter_func = iter_func; state.func = func; task_parallel_iterator_do(settings, &state); } static void task_parallel_listbase_get(void *__restrict UNUSED(userdata), const TaskParallelTLS *__restrict UNUSED(tls), void **r_next_item, int *r_next_index, bool *r_do_abort) { /* Get current status. */ Link *link = *r_next_item; if (link->next == NULL) { *r_do_abort = true; } *r_next_item = link->next; (*r_next_index)++; } /** * This function allows to parallelize for loops over ListBase items. * * \param listbase: The double linked list to loop over. * \param userdata: Common userdata passed to all instances of \a func. * \param func: Callback function. * \param settings: See public API doc of ParallelRangeSettings for description of all settings. * * \note There is no static scheduling here, * since it would need another full loop over items to count them. */ void BLI_task_parallel_listbase(ListBase *listbase, void *userdata, TaskParallelIteratorFunc func, const TaskParallelSettings *settings) { if (BLI_listbase_is_empty(listbase)) { return; } TaskParallelIteratorState state = {0}; state.tot_items = BLI_listbase_count(listbase); state.iter_shared.next_index = 0; state.iter_shared.next_item = listbase->first; state.iter_shared.is_finished = false; state.userdata = userdata; state.iter_func = task_parallel_listbase_get; state.func = func; task_parallel_iterator_do(settings, &state); } #undef MALLOCA #undef MALLOCA_FREE typedef struct ParallelMempoolState { void *userdata; TaskParallelMempoolFunc func; } ParallelMempoolState; static void parallel_mempool_func(TaskPool *__restrict pool, void *taskdata) { ParallelMempoolState *__restrict state = BLI_task_pool_user_data(pool); BLI_mempool_iter *iter = taskdata; MempoolIterData *item; while ((item = BLI_mempool_iterstep(iter)) != NULL) { state->func(state->userdata, item); } } /** * This function allows to parallelize for loops over Mempool items. * * \param mempool: The iterable BLI_mempool to loop over. * \param userdata: Common userdata passed to all instances of \a func. * \param func: Callback function. * \param use_threading: If \a true, actually split-execute loop in threads, * else just do a sequential for loop * (allows caller to use any kind of test to switch on parallelization or not). * * \note There is no static scheduling here. */ void BLI_task_parallel_mempool(BLI_mempool *mempool, void *userdata, TaskParallelMempoolFunc func, const bool use_threading) { TaskPool *task_pool; ParallelMempoolState state; int i, num_threads, num_tasks; if (BLI_mempool_len(mempool) == 0) { return; } if (!use_threading) { BLI_mempool_iter iter; BLI_mempool_iternew(mempool, &iter); for (void *item = BLI_mempool_iterstep(&iter); item != NULL; item = BLI_mempool_iterstep(&iter)) { func(userdata, item); } return; } task_pool = BLI_task_pool_create(&state, TASK_PRIORITY_HIGH); num_threads = BLI_task_scheduler_num_threads(); /* The idea here is to prevent creating task for each of the loop iterations * and instead have tasks which are evenly distributed across CPU cores and * pull next item to be crunched using the threaded-aware BLI_mempool_iter. */ num_tasks = num_threads + 2; state.userdata = userdata; state.func = func; BLI_mempool_iter *mempool_iterators = BLI_mempool_iter_threadsafe_create(mempool, (size_t)num_tasks); for (i = 0; i < num_tasks; i++) { /* Use this pool's pre-allocated tasks. */ BLI_task_pool_push(task_pool, parallel_mempool_func, &mempool_iterators[i], false, NULL); } BLI_task_pool_work_and_wait(task_pool); BLI_task_pool_free(task_pool); BLI_mempool_iter_threadsafe_free(mempool_iterators); }