/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Joseph Eagar, Geoffrey Bantle, Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/bmesh/intern/bmesh_core.c * \ingroup bmesh * */ #include "MEM_guardedalloc.h" #include "BLI_math_vector.h" #include "BKE_DerivedMesh.h" #include "BLI_listbase.h" #include "BLI_array.h" #include "bmesh.h" #include "intern/bmesh_private.h" /* use so valgrinds memcheck alerts us when undefined index is used. * TESTING ONLY! */ // #define USE_DEBUG_INDEX_MEMCHECK #ifdef USE_DEBUG_INDEX_MEMCHECK #define DEBUG_MEMCHECK_INDEX_INVALIDATE(ele) \ { \ int undef_idx; \ BM_elem_index_set(ele, undef_idx); /* set_ok_invalid */ \ } \ #endif BMVert *BM_vert_create(BMesh *bm, const float co[3], const BMVert *example) { BMVert *v = BLI_mempool_calloc(bm->vpool); #ifdef USE_DEBUG_INDEX_MEMCHECK DEBUG_MEMCHECK_INDEX_INVALIDATE(v) #else BM_elem_index_set(v, -1); /* set_ok_invalid */ #endif bm->elem_index_dirty |= BM_VERT; /* may add to middle of the pool */ bm->totvert++; v->head.htype = BM_VERT; /* 'v->no' is handled by BM_elem_attrs_copy */ if (co) { copy_v3_v3(v->co, co); } /* allocate flag */ v->oflags = BLI_mempool_calloc(bm->toolflagpool); CustomData_bmesh_set_default(&bm->vdata, &v->head.data); if (example) { BM_elem_attrs_copy(bm, bm, example, v); } BM_CHECK_ELEMENT(v); return v; } BMEdge *BM_edge_create(BMesh *bm, BMVert *v1, BMVert *v2, const BMEdge *example, int nodouble) { BMEdge *e; if (nodouble && (e = BM_edge_exists(v1, v2))) return e; e = BLI_mempool_calloc(bm->epool); #ifdef USE_DEBUG_INDEX_MEMCHECK DEBUG_MEMCHECK_INDEX_INVALIDATE(e) #else BM_elem_index_set(e, -1); /* set_ok_invalid */ #endif bm->elem_index_dirty |= BM_EDGE; /* may add to middle of the pool */ bm->totedge++; e->head.htype = BM_EDGE; /* allocate flag */ e->oflags = BLI_mempool_calloc(bm->toolflagpool); e->v1 = v1; e->v2 = v2; BM_elem_flag_enable(e, BM_ELEM_SMOOTH); CustomData_bmesh_set_default(&bm->edata, &e->head.data); bmesh_disk_edge_append(e, e->v1); bmesh_disk_edge_append(e, e->v2); if (example) BM_elem_attrs_copy(bm, bm, example, e); BM_CHECK_ELEMENT(e); return e; } static BMLoop *bm_loop_create(BMesh *bm, BMVert *v, BMEdge *e, BMFace *f, const BMLoop *example) { BMLoop *l = NULL; l = BLI_mempool_calloc(bm->lpool); l->next = l->prev = NULL; l->v = v; l->e = e; l->f = f; l->radial_next = l->radial_prev = NULL; l->head.data = NULL; l->head.htype = BM_LOOP; bm->totloop++; if (example) { CustomData_bmesh_copy_data(&bm->ldata, &bm->ldata, example->head.data, &l->head.data); } else { CustomData_bmesh_set_default(&bm->ldata, &l->head.data); } return l; } static BMLoop *bm_face_boundary_add(BMesh *bm, BMFace *f, BMVert *startv, BMEdge *starte) { #ifdef USE_BMESH_HOLES BMLoopList *lst = BLI_mempool_calloc(bm->looplistpool); #endif BMLoop *l = bm_loop_create(bm, startv, starte, f, NULL); bmesh_radial_append(starte, l); #ifdef USE_BMESH_HOLES lst->first = lst->last = l; BLI_addtail(&f->loops, lst); #else f->l_first = l; #endif l->f = f; return l; } BMFace *BM_face_copy(BMesh *bm, BMFace *f, const short copyverts, const short copyedges) { BMEdge **edges = NULL; BMVert **verts = NULL; BLI_array_staticdeclare(edges, BM_NGON_STACK_SIZE); BLI_array_staticdeclare(verts, BM_NGON_STACK_SIZE); BMLoop *l_iter; BMLoop *l_first; BMLoop *l2; BMFace *f2; int i; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { if (copyverts) { BMVert *v = BM_vert_create(bm, l_iter->v->co, l_iter->v); BLI_array_append(verts, v); } else { BLI_array_append(verts, l_iter->v); } } while ((l_iter = l_iter->next) != l_first); l_iter = l_first = BM_FACE_FIRST_LOOP(f); i = 0; do { if (copyedges) { BMEdge *e; BMVert *v1, *v2; if (l_iter->e->v1 == verts[i]) { v1 = verts[i]; v2 = verts[(i + 1) % f->len]; } else { v2 = verts[i]; v1 = verts[(i + 1) % f->len]; } e = BM_edge_create(bm, v1, v2, l_iter->e, FALSE); BLI_array_append(edges, e); } else { BLI_array_append(edges, l_iter->e); } i++; } while ((l_iter = l_iter->next) != l_first); f2 = BM_face_create(bm, verts, edges, f->len, FALSE); BM_elem_attrs_copy(bm, bm, f, f2); l_iter = l_first = BM_FACE_FIRST_LOOP(f); l2 = BM_FACE_FIRST_LOOP(f2); do { BM_elem_attrs_copy(bm, bm, l_iter, l2); l2 = l2->next; } while ((l_iter = l_iter->next) != l_first); return f2; } /** * only create the face, since this calloc's the length is initialized to 0, * leave adding loops to the caller. */ BLI_INLINE BMFace *bm_face_create__internal(BMesh *bm) { BMFace *f; f = BLI_mempool_calloc(bm->fpool); #ifdef USE_DEBUG_INDEX_MEMCHECK DEBUG_MEMCHECK_INDEX_INVALIDATE(f) #else BM_elem_index_set(f, -1); /* set_ok_invalid */ #endif bm->elem_index_dirty |= BM_FACE; /* may add to middle of the pool */ bm->totface++; f->head.htype = BM_FACE; /* allocate flag */ f->oflags = BLI_mempool_calloc(bm->toolflagpool); CustomData_bmesh_set_default(&bm->pdata, &f->head.data); #ifdef USE_BMESH_HOLES f->totbounds = 0; #endif return f; } BMFace *BM_face_create(BMesh *bm, BMVert **verts, BMEdge **edges, const int len, int nodouble) { BMFace *f = NULL; BMLoop *l, *startl, *lastl; int i, overlap; if (len == 0) { /* just return NULL for no */ return NULL; } if (nodouble) { /* Check if face already exists */ overlap = BM_face_exists(bm, verts, len, &f); if (overlap) { return f; } else { BLI_assert(f == NULL); } } f = bm_face_create__internal(bm); startl = lastl = bm_face_boundary_add(bm, f, verts[0], edges[0]); startl->v = verts[0]; startl->e = edges[0]; for (i = 1; i < len; i++) { l = bm_loop_create(bm, verts[i], edges[i], f, edges[i]->l); l->f = f; bmesh_radial_append(edges[i], l); l->prev = lastl; lastl->next = l; lastl = l; } startl->prev = lastl; lastl->next = startl; f->len = len; BM_CHECK_ELEMENT(f); return f; } int bmesh_elem_check(void *element, const char htype) { BMHeader *head = element; int err = 0; if (!element) return 1; if (head->htype != htype) return 2; switch (htype) { case BM_VERT: { BMVert *v = element; if (v->e && v->e->head.htype != BM_EDGE) { err |= 4; } break; } case BM_EDGE: { BMEdge *e = element; if (e->l && e->l->head.htype != BM_LOOP) err |= 8; if (e->l && e->l->f->head.htype != BM_FACE) err |= 16; if (e->v1_disk_link.prev == NULL || e->v2_disk_link.prev == NULL || e->v1_disk_link.next == NULL || e->v2_disk_link.next == NULL) { err |= 32; } if (e->l && (e->l->radial_next == NULL || e->l->radial_prev == NULL)) err |= 64; if (e->l && e->l->f->len <= 0) err |= 128; break; } case BM_LOOP: { BMLoop *l = element, *l2; int i; if (l->f->head.htype != BM_FACE) err |= 256; if (l->e->head.htype != BM_EDGE) err |= 512; if (l->v->head.htype != BM_VERT) err |= 1024; if (!BM_vert_in_edge(l->e, l->v)) { fprintf(stderr, "%s: fatal bmesh error (vert not in edge)! (bmesh internal error)\n", __func__); err |= 2048; } if (l->radial_next == NULL || l->radial_prev == NULL) err |= (1 << 12); if (l->f->len <= 0) err |= (1 << 13); /* validate boundary loop -- invalid for hole loops, of course, * but we won't be allowing those for a while yet */ l2 = l; i = 0; do { if (i >= BM_NGON_MAX) { break; } i++; } while ((l2 = l2->next) != l); if (i != l->f->len || l2 != l) err |= (1 << 14); if (!bmesh_radial_validate(bmesh_radial_length(l), l)) err |= (1 << 15); break; } case BM_FACE: { BMFace *f = element; BMLoop *l_iter; BMLoop *l_first; int len = 0; #ifdef USE_BMESH_HOLES if (!f->loops.first) #else if (!f->l_first) #endif { err |= (1 << 16); } l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { if (l_iter->f != f) { fprintf(stderr, "%s: loop inside one face points to another! (bmesh internal error)\n", __func__); err |= (1 << 17); } if (!l_iter->e) err |= (1 << 18); if (!l_iter->v) err |= (1 << 19); if (!BM_vert_in_edge(l_iter->e, l_iter->v) || !BM_vert_in_edge(l_iter->e, l_iter->next->v)) { err |= (1 << 20); } if (!bmesh_radial_validate(bmesh_radial_length(l_iter), l_iter)) err |= (1 << 21); if (!bmesh_disk_count(l_iter->v) || !bmesh_disk_count(l_iter->next->v)) err |= (1 << 22); len++; } while ((l_iter = l_iter->next) != l_first); if (len != f->len) err |= (1 << 23); } } BMESH_ASSERT(err == 0); return err; } /** * low level function, only free's, * does not change adjust surrounding geometry */ static void bm_kill_only_vert(BMesh *bm, BMVert *v) { bm->totvert--; bm->elem_index_dirty |= BM_VERT; BM_select_history_remove(bm, (BMElem *)v); if (v->head.data) CustomData_bmesh_free_block(&bm->vdata, &v->head.data); BLI_mempool_free(bm->toolflagpool, v->oflags); BLI_mempool_free(bm->vpool, v); } static void bm_kill_only_edge(BMesh *bm, BMEdge *e) { bm->totedge--; bm->elem_index_dirty |= BM_EDGE; BM_select_history_remove(bm, (BMElem *)e); if (e->head.data) CustomData_bmesh_free_block(&bm->edata, &e->head.data); BLI_mempool_free(bm->toolflagpool, e->oflags); BLI_mempool_free(bm->epool, e); } static void bm_kill_only_face(BMesh *bm, BMFace *f) { if (bm->act_face == f) bm->act_face = NULL; bm->totface--; bm->elem_index_dirty |= BM_FACE; BM_select_history_remove(bm, (BMElem *)f); if (f->head.data) CustomData_bmesh_free_block(&bm->pdata, &f->head.data); BLI_mempool_free(bm->toolflagpool, f->oflags); BLI_mempool_free(bm->fpool, f); } static void bm_kill_only_loop(BMesh *bm, BMLoop *l) { bm->totloop--; if (l->head.data) CustomData_bmesh_free_block(&bm->ldata, &l->head.data); BLI_mempool_free(bm->lpool, l); } /** * kills all edges associated with f, along with any other faces containing * those edges */ void BM_face_edges_kill(BMesh *bm, BMFace *f) { BMEdge **edges = NULL; BLI_array_staticdeclare(edges, BM_NGON_STACK_SIZE); BMLoop *l_iter; BMLoop *l_first; int i; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { BLI_array_append(edges, l_iter->e); } while ((l_iter = l_iter->next) != l_first); for (i = 0; i < BLI_array_count(edges); i++) { BM_edge_kill(bm, edges[i]); } BLI_array_free(edges); } /** * kills all verts associated with f, along with any other faces containing * those vertices */ void BM_face_verts_kill(BMesh *bm, BMFace *f) { BMVert **verts = NULL; BLI_array_staticdeclare(verts, BM_NGON_STACK_SIZE); BMLoop *l_iter; BMLoop *l_first; int i; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { BLI_array_append(verts, l_iter->v); } while ((l_iter = l_iter->next) != l_first); for (i = 0; i < BLI_array_count(verts); i++) { BM_vert_kill(bm, verts[i]); } BLI_array_free(verts); } void BM_face_kill(BMesh *bm, BMFace *f) { #ifdef USE_BMESH_HOLES BMLoopList *ls, *ls_next; #endif BM_CHECK_ELEMENT(f); #ifdef USE_BMESH_HOLES for (ls = f->loops.first; ls; ls = ls_next) #else if (f->l_first) #endif { BMLoop *l_iter, *l_next, *l_first; #ifdef USE_BMESH_HOLES ls_next = ls->next; l_iter = l_first = ls->first; #else l_iter = l_first = f->l_first; #endif do { l_next = l_iter->next; bmesh_radial_loop_remove(l_iter, l_iter->e); bm_kill_only_loop(bm, l_iter); } while ((l_iter = l_next) != l_first); #ifdef USE_BMESH_HOLES BLI_mempool_free(bm->looplistpool, ls); #endif } bm_kill_only_face(bm, f); } void BM_edge_kill(BMesh *bm, BMEdge *e) { bmesh_disk_edge_remove(e, e->v1); bmesh_disk_edge_remove(e, e->v2); if (e->l) { BMLoop *l = e->l, *lnext, *startl = e->l; do { lnext = l->radial_next; if (lnext->f == l->f) { BM_face_kill(bm, l->f); break; } BM_face_kill(bm, l->f); if (l == lnext) break; l = lnext; } while (l != startl); } bm_kill_only_edge(bm, e); } void BM_vert_kill(BMesh *bm, BMVert *v) { if (v->e) { BMEdge *e, *nexte; e = v->e; while (v->e) { nexte = bmesh_disk_edge_next(e, v); BM_edge_kill(bm, e); e = nexte; } } bm_kill_only_vert(bm, v); } /********** private disk and radial cycle functions ********** */ static int bm_loop_length(BMLoop *l) { BMLoop *l_first = l; int i = 0; do { i++; } while ((l = l->next) != l_first); return i; } /** * \brief Loop Reverse * * Changes the winding order of a face from CW to CCW or vice versa. * This euler is a bit peculiar in comparison to others as it is its * own inverse. * * BMESH_TODO: reinsert validation code. * * \return Success */ static int bm_loop_reverse_loop(BMesh *bm, BMFace *f #ifdef USE_BMESH_HOLES , BMLoopList *lst #endif ) { #ifdef USE_BMESH_HOLES BMLoop *l_first = lst->first; #else BMLoop *l_first = f->l_first; #endif BMLoop *l_iter, *oldprev, *oldnext; BMEdge **edar = NULL; MDisps *md; BLI_array_staticdeclare(edar, BM_NGON_STACK_SIZE); int i, j, edok, len = 0, do_disps = CustomData_has_layer(&bm->ldata, CD_MDISPS); len = bm_loop_length(l_first); for (i = 0, l_iter = l_first; i < len; i++, l_iter = l_iter->next) { BMEdge *curedge = l_iter->e; bmesh_radial_loop_remove(l_iter, curedge); BLI_array_append(edar, curedge); } /* actually reverse the loop */ for (i = 0, l_iter = l_first; i < len; i++) { oldnext = l_iter->next; oldprev = l_iter->prev; l_iter->next = oldprev; l_iter->prev = oldnext; l_iter = oldnext; if (do_disps) { float (*co)[3]; int x, y, sides; md = CustomData_bmesh_get(&bm->ldata, l_iter->head.data, CD_MDISPS); if (!md->totdisp || !md->disps) continue; sides = (int)sqrt(md->totdisp); co = md->disps; for (x = 0; x < sides; x++) { for (y = 0; y < x; y++) { swap_v3_v3(co[y * sides + x], co[sides * x + y]); } } } } if (len == 2) { /* two edged face */ /* do some verification here! */ l_first->e = edar[1]; l_first->next->e = edar[0]; } else { for (i = 0, l_iter = l_first; i < len; i++, l_iter = l_iter->next) { edok = 0; for (j = 0; j < len; j++) { edok = bmesh_verts_in_edge(l_iter->v, l_iter->next->v, edar[j]); if (edok) { l_iter->e = edar[j]; break; } } } } /* rebuild radia */ for (i = 0, l_iter = l_first; i < len; i++, l_iter = l_iter->next) bmesh_radial_append(l_iter->e, l_iter); /* validate radia */ for (i = 0, l_iter = l_first; i < len; i++, l_iter = l_iter->next) { BM_CHECK_ELEMENT(l_iter); BM_CHECK_ELEMENT(l_iter->e); BM_CHECK_ELEMENT(l_iter->v); BM_CHECK_ELEMENT(l_iter->f); } BLI_array_free(edar); BM_CHECK_ELEMENT(f); return 1; } int bmesh_loop_reverse(BMesh *bm, BMFace *f) { #ifdef USE_BMESH_HOLES return bmesh_loop_reverse_loop(bm, f, f->loops.first); #else return bm_loop_reverse_loop(bm, f); #endif } static void bm_elements_systag_enable(void *veles, int tot, int flag) { BMHeader **eles = veles; int i; for (i = 0; i < tot; i++) { BM_ELEM_API_FLAG_ENABLE((BMElemF *)eles[i], flag); } } static void bm_elements_systag_disable(void *veles, int tot, int flag) { BMHeader **eles = veles; int i; for (i = 0; i < tot; i++) { BM_ELEM_API_FLAG_DISABLE((BMElemF *)eles[i], flag); } } #define FACE_MARK (1 << 10) static int count_flagged_radial(BMesh *bm, BMLoop *l, int flag) { BMLoop *l2 = l; int i = 0, c = 0; do { if (UNLIKELY(!l2)) { BMESH_ASSERT(0); goto error; } i += BM_ELEM_API_FLAG_TEST(l2->f, flag) ? 1 : 0; l2 = l2->radial_next; if (UNLIKELY(c >= BM_LOOP_RADIAL_MAX)) { BMESH_ASSERT(0); goto error; } c++; } while (l2 != l); return i; error: BMO_error_raise(bm, bm->currentop, BMERR_MESH_ERROR, NULL); return 0; } static int UNUSED_FUNCTION(count_flagged_disk)(BMVert *v, int flag) { BMEdge *e = v->e; int i = 0; if (!e) return 0; do { i += BM_ELEM_API_FLAG_TEST(e, flag) ? 1 : 0; } while ((e = bmesh_disk_edge_next(e, v)) != v->e); return i; } static int disk_is_flagged(BMVert *v, int flag) { BMEdge *e = v->e; if (!e) return FALSE; do { BMLoop *l = e->l; if (!l) { return FALSE; } if (bmesh_radial_length(l) == 1) return FALSE; do { if (!BM_ELEM_API_FLAG_TEST(l->f, flag)) return FALSE; l = l->radial_next; } while (l != e->l); e = bmesh_disk_edge_next(e, v); } while (e != v->e); return TRUE; } /* Mid-level Topology Manipulation Functions */ /** * \brief Join Connected Faces * * Joins a collected group of faces into one. Only restriction on * the input data is that the faces must be connected to each other. * * \return The newly created combine BMFace. * * \note If a pair of faces share multiple edges, * the pair of faces will be joined at every edge. * * \note this is a generic, flexible join faces function, * almost everything uses this, including #BM_faces_join_pair */ BMFace *BM_faces_join(BMesh *bm, BMFace **faces, int totface, const short do_del) { BMFace *f, *newf; #ifdef USE_BMESH_HOLES BMLoopList *lst; ListBase holes = {NULL, NULL}; #endif BMLoop *l_iter; BMLoop *l_first; BMEdge **edges = NULL; BMEdge **deledges = NULL; BMVert **delverts = NULL; BLI_array_staticdeclare(edges, BM_NGON_STACK_SIZE); BLI_array_staticdeclare(deledges, BM_NGON_STACK_SIZE); BLI_array_staticdeclare(delverts, BM_NGON_STACK_SIZE); BMVert *v1 = NULL, *v2 = NULL; const char *err = NULL; int i, tote = 0; if (UNLIKELY(!totface)) { BMESH_ASSERT(0); return NULL; } if (totface == 1) return faces[0]; bm_elements_systag_enable(faces, totface, _FLAG_JF); for (i = 0; i < totface; i++) { f = faces[i]; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { int rlen = count_flagged_radial(bm, l_iter, _FLAG_JF); if (rlen > 2) { err = "Input faces do not form a contiguous manifold region"; goto error; } else if (rlen == 1) { BLI_array_append(edges, l_iter->e); if (!v1) { v1 = l_iter->v; v2 = BM_edge_other_vert(l_iter->e, l_iter->v); } tote++; } else if (rlen == 2) { int d1, d2; d1 = disk_is_flagged(l_iter->e->v1, _FLAG_JF); d2 = disk_is_flagged(l_iter->e->v2, _FLAG_JF); if (!d1 && !d2 && !BM_ELEM_API_FLAG_TEST(l_iter->e, _FLAG_JF)) { /* don't remove an edge it makes up the side of another face * else this will remove the face as well - campbell */ if (BM_edge_face_count(l_iter->e) <= 2) { if (do_del) { BLI_array_append(deledges, l_iter->e); } BM_ELEM_API_FLAG_ENABLE(l_iter->e, _FLAG_JF); } } else { if (d1 && !BM_ELEM_API_FLAG_TEST(l_iter->e->v1, _FLAG_JF)) { if (do_del) { BLI_array_append(delverts, l_iter->e->v1); } BM_ELEM_API_FLAG_ENABLE(l_iter->e->v1, _FLAG_JF); } if (d2 && !BM_ELEM_API_FLAG_TEST(l_iter->e->v2, _FLAG_JF)) { if (do_del) { BLI_array_append(delverts, l_iter->e->v2); } BM_ELEM_API_FLAG_ENABLE(l_iter->e->v2, _FLAG_JF); } } } } while ((l_iter = l_iter->next) != l_first); #ifdef USE_BMESH_HOLES for (lst = f->loops.first; lst; lst = lst->next) { if (lst == f->loops.first) { continue; } BLI_remlink(&f->loops, lst); BLI_addtail(&holes, lst); } #endif } /* create region face */ newf = BM_face_create_ngon(bm, v1, v2, edges, tote, FALSE); if (!newf || BMO_error_occurred(bm)) { if (!BMO_error_occurred(bm)) err = "Invalid boundary region to join faces"; goto error; } /* copy over loop data */ l_iter = l_first = BM_FACE_FIRST_LOOP(newf); do { BMLoop *l2 = l_iter->radial_next; do { if (BM_ELEM_API_FLAG_TEST(l2->f, _FLAG_JF)) break; l2 = l2->radial_next; } while (l2 != l_iter); if (l2 != l_iter) { /* I think this is correct */ if (l2->v != l_iter->v) { l2 = l2->next; } BM_elem_attrs_copy(bm, bm, l2, l_iter); } } while ((l_iter = l_iter->next) != l_first); BM_elem_attrs_copy(bm, bm, faces[0], newf); #ifdef USE_BMESH_HOLES /* add hole */ BLI_movelisttolist(&newf->loops, &holes); #endif /* update loop face pointer */ #ifdef USE_BMESH_HOLES for (lst = newf->loops.first; lst; lst = lst->next) #endif { #ifdef USE_BMESH_HOLES l_iter = l_first = lst->first; #else l_iter = l_first = BM_FACE_FIRST_LOOP(newf); #endif do { l_iter->f = newf; } while ((l_iter = l_iter->next) != l_first); } bm_elements_systag_disable(faces, totface, _FLAG_JF); BM_ELEM_API_FLAG_DISABLE(newf, _FLAG_JF); /* handle multi-res data */ if (CustomData_has_layer(&bm->ldata, CD_MDISPS)) { l_iter = l_first = BM_FACE_FIRST_LOOP(newf); do { for (i = 0; i < totface; i++) { BM_loop_interp_multires(bm, l_iter, faces[i]); } } while ((l_iter = l_iter->next) != l_first); } /* delete old geometry */ if (do_del) { for (i = 0; i < BLI_array_count(deledges); i++) { BM_edge_kill(bm, deledges[i]); } for (i = 0; i < BLI_array_count(delverts); i++) { BM_vert_kill(bm, delverts[i]); } } else { /* otherwise we get both old and new faces */ for (i = 0; i < totface; i++) { BM_face_kill(bm, faces[i]); } } BLI_array_free(edges); BLI_array_free(deledges); BLI_array_free(delverts); BM_CHECK_ELEMENT(newf); return newf; error: bm_elements_systag_disable(faces, totface, _FLAG_JF); BLI_array_free(edges); BLI_array_free(deledges); BLI_array_free(delverts); if (err) { BMO_error_raise(bm, bm->currentop, BMERR_DISSOLVEFACES_FAILED, err); } return NULL; } static BMFace *bm_face_create__sfme(BMesh *bm, BMFace *UNUSED(example)) { BMFace *f; #ifdef USE_BMESH_HOLES BMLoopList *lst; #endif f = bm_face_create__internal(bm); #ifdef USE_BMESH_HOLES lst = BLI_mempool_calloc(bm->looplistpool); BLI_addtail(&f->loops, lst); #endif #ifdef USE_BMESH_HOLES f->totbounds = 1; #endif return f; } /** * \brief Split Face Make Edge (SFME) * * Takes as input two vertices in a single face. An edge is created which divides the original face * into two distinct regions. One of the regions is assigned to the original face and it is closed off. * The second region has a new face assigned to it. * * \par Examples: * * Before: After: * +--------+ +--------+ * | | | | * | | | f1 | * v1 f1 v2 v1======v2 * | | | f2 | * | | | | * +--------+ +--------+ * * \note the input vertices can be part of the same edge. This will * result in a two edged face. This is desirable for advanced construction * tools and particularly essential for edge bevel. Because of this it is * up to the caller to decide what to do with the extra edge. * * \note If \a holes is NULL, then both faces will lose * all holes from the original face. Also, you cannot split between * a hole vert and a boundary vert; that case is handled by higher- * level wrapping functions (when holes are fully implemented, anyway). * * \note that holes represents which holes goes to the new face, and of * course this requires removing them from the existing face first, since * you cannot have linked list links inside multiple lists. * * \return A BMFace pointer */ BMFace *bmesh_sfme(BMesh *bm, BMFace *f, BMVert *v1, BMVert *v2, BMLoop **r_l, #ifdef USE_BMESH_HOLES ListBase *holes, #endif BMEdge *example, const short nodouble ) { #ifdef USE_BMESH_HOLES BMLoopList *lst, *lst2; #endif BMFace *f2; BMLoop *l_iter, *l_first; BMLoop *v1loop = NULL, *v2loop = NULL, *f1loop = NULL, *f2loop = NULL; BMEdge *e; int i, len, f1len, f2len, first_loop_f1; /* verify that v1 and v2 are in face */ len = f->len; for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f); i < len; i++, l_iter = l_iter->next) { if (l_iter->v == v1) v1loop = l_iter; else if (l_iter->v == v2) v2loop = l_iter; } if (!v1loop || !v2loop) { return NULL; } /* allocate new edge between v1 and v2 */ e = BM_edge_create(bm, v1, v2, example, nodouble); f2 = bm_face_create__sfme(bm, f); f1loop = bm_loop_create(bm, v2, e, f, v2loop); f2loop = bm_loop_create(bm, v1, e, f2, v1loop); f1loop->prev = v2loop->prev; f2loop->prev = v1loop->prev; v2loop->prev->next = f1loop; v1loop->prev->next = f2loop; f1loop->next = v1loop; f2loop->next = v2loop; v1loop->prev = f1loop; v2loop->prev = f2loop; #ifdef USE_BMESH_HOLES lst = f->loops.first; lst2 = f2->loops.first; lst2->first = lst2->last = f2loop; lst->first = lst->last = f1loop; #else /* find which of the faces the original first loop is in */ l_iter = l_first = f1loop; first_loop_f1 = 0; do { if (l_iter == f->l_first) first_loop_f1 = 1; } while ((l_iter = l_iter->next) != l_first); if (first_loop_f1) { /* original first loop was in f1, find a suitable first loop for f2 which is as similar as possible to f1. the order matters for tools such as duplifaces. */ if (f->l_first->prev == f1loop) f2->l_first = f2loop->prev; else if (f->l_first->next == f1loop) f2->l_first = f2loop->next; else f2->l_first = f2loop; } else { /* original first loop was in f2, further do same as above */ f2->l_first = f->l_first; if (f->l_first->prev == f2loop) f->l_first = f1loop->prev; else if (f->l_first->next == f2loop) f->l_first = f1loop->next; else f->l_first = f1loop; } #endif /* validate both loop */ /* I don't know how many loops are supposed to be in each face at this point! FIXME */ /* go through all of f2's loops and make sure they point to it properly */ l_iter = l_first = BM_FACE_FIRST_LOOP(f2); f2len = 0; do { l_iter->f = f2; f2len++; } while ((l_iter = l_iter->next) != l_first); /* link up the new loops into the new edges radial */ bmesh_radial_append(e, f1loop); bmesh_radial_append(e, f2loop); f2->len = f2len; f1len = 0; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { f1len++; } while ((l_iter = l_iter->next) != l_first); f->len = f1len; if (r_l) *r_l = f2loop; #ifdef USE_BMESH_HOLES if (holes) { BLI_movelisttolist(&f2->loops, holes); } else { /* this code is not significant until holes actually work */ //printf("warning: call to split face euler without holes argument; holes will be tossed.\n"); for (lst = f->loops.last; lst != f->loops.first; lst = lst2) { lst2 = lst->prev; BLI_mempool_free(bm->looplistpool, lst); } } #endif BM_CHECK_ELEMENT(e); BM_CHECK_ELEMENT(f); BM_CHECK_ELEMENT(f2); return f2; } /** * \brief Split Edge Make Vert (SEMV) * * Takes \a e edge and splits it into two, creating a new vert. * \a tv should be one end of \a e : the newly created edge * will be attached to that end and is returned in \a r_e. * * \par Examples: * * E * Before: OV-------------TV * * E RE * After: OV------NV-----TV * * \return The newly created BMVert pointer. */ BMVert *bmesh_semv(BMesh *bm, BMVert *tv, BMEdge *e, BMEdge **r_e) { BMLoop *nextl; BMEdge *ne; BMVert *nv, *ov; int i, edok, valence1 = 0, valence2 = 0; BLI_assert(bmesh_vert_in_edge(e, tv) != FALSE); ov = bmesh_edge_other_vert_get(e, tv); valence1 = bmesh_disk_count(ov); valence2 = bmesh_disk_count(tv); nv = BM_vert_create(bm, tv->co, tv); ne = BM_edge_create(bm, nv, tv, e, FALSE); bmesh_disk_edge_remove(ne, tv); bmesh_disk_edge_remove(ne, nv); /* remove e from tv's disk cycle */ bmesh_disk_edge_remove(e, tv); /* swap out tv for nv in e */ bmesh_edge_swapverts(e, tv, nv); /* add e to nv's disk cycle */ bmesh_disk_edge_append(e, nv); /* add ne to nv's disk cycle */ bmesh_disk_edge_append(ne, nv); /* add ne to tv's disk cycle */ bmesh_disk_edge_append(ne, tv); /* verify disk cycle */ edok = bmesh_disk_validate(valence1, ov->e, ov); BMESH_ASSERT(edok != FALSE); edok = bmesh_disk_validate(valence2, tv->e, tv); BMESH_ASSERT(edok != FALSE); edok = bmesh_disk_validate(2, nv->e, nv); BMESH_ASSERT(edok != FALSE); /* Split the radial cycle if present */ nextl = e->l; e->l = NULL; if (nextl) { BMLoop *nl, *l; int radlen = bmesh_radial_length(nextl); int first1 = 0, first2 = 0; /* Take the next loop. Remove it from radial. Split it. Append to appropriate radials */ while (nextl) { l = nextl; l->f->len++; nextl = nextl != nextl->radial_next ? nextl->radial_next : NULL; bmesh_radial_loop_remove(l, NULL); nl = bm_loop_create(bm, NULL, NULL, l->f, l); nl->prev = l; nl->next = (l->next); nl->prev->next = nl; nl->next->prev = nl; nl->v = nv; /* assign the correct edge to the correct loop */ if (bmesh_verts_in_edge(nl->v, nl->next->v, e)) { nl->e = e; l->e = ne; /* append l into ne's rad cycle */ if (!first1) { first1 = 1; l->radial_next = l->radial_prev = NULL; } if (!first2) { first2 = 1; l->radial_next = l->radial_prev = NULL; } bmesh_radial_append(nl->e, nl); bmesh_radial_append(l->e, l); } else if (bmesh_verts_in_edge(nl->v, nl->next->v, ne)) { nl->e = ne; l->e = e; /* append l into ne's rad cycle */ if (!first1) { first1 = 1; l->radial_next = l->radial_prev = NULL; } if (!first2) { first2 = 1; l->radial_next = l->radial_prev = NULL; } bmesh_radial_append(nl->e, nl); bmesh_radial_append(l->e, l); } } /* verify length of radial cycle */ edok = bmesh_radial_validate(radlen, e->l); BMESH_ASSERT(edok != FALSE); edok = bmesh_radial_validate(radlen, ne->l); BMESH_ASSERT(edok != FALSE); /* verify loop->v and loop->next->v pointers for e */ for (i = 0, l = e->l; i < radlen; i++, l = l->radial_next) { BMESH_ASSERT(l->e == e); //BMESH_ASSERT(l->radial_next == l); BMESH_ASSERT(!(l->prev->e != ne && l->next->e != ne)); edok = bmesh_verts_in_edge(l->v, l->next->v, e); BMESH_ASSERT(edok != FALSE); BMESH_ASSERT(l->v != l->next->v); BMESH_ASSERT(l->e != l->next->e); /* verify loop cycle for kloop-> */ BM_CHECK_ELEMENT(l); BM_CHECK_ELEMENT(l->v); BM_CHECK_ELEMENT(l->e); BM_CHECK_ELEMENT(l->f); } /* verify loop->v and loop->next->v pointers for ne */ for (i = 0, l = ne->l; i < radlen; i++, l = l->radial_next) { BMESH_ASSERT(l->e == ne); // BMESH_ASSERT(l->radial_next == l); BMESH_ASSERT(!(l->prev->e != e && l->next->e != e)); edok = bmesh_verts_in_edge(l->v, l->next->v, ne); BMESH_ASSERT(edok != FALSE); BMESH_ASSERT(l->v != l->next->v); BMESH_ASSERT(l->e != l->next->e); BM_CHECK_ELEMENT(l); BM_CHECK_ELEMENT(l->v); BM_CHECK_ELEMENT(l->e); BM_CHECK_ELEMENT(l->f); } } BM_CHECK_ELEMENT(ne); BM_CHECK_ELEMENT(nv); BM_CHECK_ELEMENT(ov); BM_CHECK_ELEMENT(e); BM_CHECK_ELEMENT(tv); if (r_e) *r_e = ne; return nv; } /** * \brief Join Edge Kill Vert (JEKV) * * Takes an edge \a ke and pointer to one of its vertices \a kv * and collapses the edge on that vertex. * * \par Examples: * * Before: OE KE * ------- ------- * | || | * OV KV TV * * * After: OE * --------------- * | | * OV TV * * \par Restrictions: * KV is a vertex that must have a valance of exactly two. Furthermore * both edges in KV's disk cycle (OE and KE) must be unique (no double edges). * * \return The resulting edge, NULL for failure. * * \note This euler has the possibility of creating * faces with just 2 edges. It is up to the caller to decide what to do with * these faces. */ BMEdge *bmesh_jekv(BMesh *bm, BMEdge *ke, BMVert *kv, const short check_edge_double) { BMEdge *oe; BMVert *ov, *tv; BMLoop *killoop, *l; int len, radlen = 0, halt = 0, i, valence1, valence2, edok; if (bmesh_vert_in_edge(ke, kv) == 0) { return NULL; } len = bmesh_disk_count(kv); if (len == 2) { oe = bmesh_disk_edge_next(ke, kv); tv = bmesh_edge_other_vert_get(ke, kv); ov = bmesh_edge_other_vert_get(oe, kv); halt = bmesh_verts_in_edge(kv, tv, oe); /* check for double edge */ if (halt) { return NULL; } else { BMEdge *e_splice; /* For verification later, count valence of ov and t */ valence1 = bmesh_disk_count(ov); valence2 = bmesh_disk_count(tv); if (check_edge_double) { e_splice = BM_edge_exists(tv, ov); } /* remove oe from kv's disk cycle */ bmesh_disk_edge_remove(oe, kv); /* relink oe->kv to be oe->tv */ bmesh_edge_swapverts(oe, kv, tv); /* append oe to tv's disk cycle */ bmesh_disk_edge_append(oe, tv); /* remove ke from tv's disk cycle */ bmesh_disk_edge_remove(ke, tv); /* deal with radial cycle of ke */ radlen = bmesh_radial_length(ke->l); if (ke->l) { /* first step, fix the neighboring loops of all loops in ke's radial cycle */ for (i = 0, killoop = ke->l; i < radlen; i++, killoop = killoop->radial_next) { /* relink loops and fix vertex pointer */ if (killoop->next->v == kv) { killoop->next->v = tv; } killoop->next->prev = killoop->prev; killoop->prev->next = killoop->next; if (BM_FACE_FIRST_LOOP(killoop->f) == killoop) { BM_FACE_FIRST_LOOP(killoop->f) = killoop->next; } killoop->next = NULL; killoop->prev = NULL; /* fix len attribute of face */ killoop->f->len--; } /* second step, remove all the hanging loops attached to ke */ radlen = bmesh_radial_length(ke->l); if (LIKELY(radlen)) { BMLoop **loops = NULL; BLI_array_fixedstack_declare(loops, BM_NGON_STACK_SIZE, radlen, __func__); killoop = ke->l; /* this should be wrapped into a bme_free_radial function to be used by bmesh_KF as well... */ for (i = 0; i < radlen; i++) { loops[i] = killoop; killoop = killoop->radial_next; } for (i = 0; i < radlen; i++) { bm->totloop--; BLI_mempool_free(bm->lpool, loops[i]); } BLI_array_fixedstack_free(loops); } /* Validate radial cycle of oe */ edok = bmesh_radial_validate(radlen, oe->l); BMESH_ASSERT(edok != FALSE); } /* deallocate edg */ bm_kill_only_edge(bm, ke); /* deallocate verte */ bm_kill_only_vert(bm, kv); /* Validate disk cycle lengths of ov, tv are unchanged */ edok = bmesh_disk_validate(valence1, ov->e, ov); BMESH_ASSERT(edok != FALSE); edok = bmesh_disk_validate(valence2, tv->e, tv); BMESH_ASSERT(edok != FALSE); /* Validate loop cycle of all faces attached to oe */ for (i = 0, l = oe->l; i < radlen; i++, l = l->radial_next) { BMESH_ASSERT(l->e == oe); edok = bmesh_verts_in_edge(l->v, l->next->v, oe); BMESH_ASSERT(edok != FALSE); edok = bmesh_loop_validate(l->f); BMESH_ASSERT(edok != FALSE); BM_CHECK_ELEMENT(l); BM_CHECK_ELEMENT(l->v); BM_CHECK_ELEMENT(l->e); BM_CHECK_ELEMENT(l->f); } if (check_edge_double) { if (e_splice) { /* removes e_splice */ BM_edge_splice(bm, e_splice, oe); } } BM_CHECK_ELEMENT(ov); BM_CHECK_ELEMENT(tv); BM_CHECK_ELEMENT(oe); return oe; } } return NULL; } /** * \brief Join Face Kill Edge (JFKE) * * Takes two faces joined by a single 2-manifold edge and fuses them together. * The edge shared by the faces must not be connected to any other edges which have * Both faces in its radial cycle * * \par Examples: * * A B * +--------+ +--------+ * | | | | * | f1 | | f1 | * v1========v2 = Ok! v1==V2==v3 == Wrong! * | f2 | | f2 | * | | | | * +--------+ +--------+ * * In the example A, faces \a f1 and \a f2 are joined by a single edge, * and the euler can safely be used. * In example B however, \a f1 and \a f2 are joined by multiple edges and will produce an error. * The caller in this case should call #bmesh_jekv on the extra edges * before attempting to fuse \a f1 and \a f2. * * \note The order of arguments decides whether or not certain per-face attributes are present * in the resultant face. For instance vertex winding, material index, smooth flags, etc are inherited * from \a f1, not \a f2. * * \return A BMFace pointer */ BMFace *bmesh_jfke(BMesh *bm, BMFace *f1, BMFace *f2, BMEdge *e) { BMLoop *l_iter, *f1loop = NULL, *f2loop = NULL; int newlen = 0, i, f1len = 0, f2len = 0, edok; /* can't join a face to itself */ if (f1 == f2) { return NULL; } /* validate that edge is 2-manifold edge */ if (!BM_edge_is_manifold(e)) { return NULL; } /* verify that e is in both f1 and f2 */ f1len = f1->len; f2len = f2->len; if (!((f1loop = BM_face_edge_share_loop(f1, e)) && (f2loop = BM_face_edge_share_loop(f2, e)))) { return NULL; } /* validate direction of f2's loop cycle is compatible */ if (f1loop->v == f2loop->v) { return NULL; } /* validate that for each face, each vertex has another edge in its disk cycle that is * not e, and not shared. */ if (bmesh_radial_face_find(f1loop->next->e, f2) || bmesh_radial_face_find(f1loop->prev->e, f2) || bmesh_radial_face_find(f2loop->next->e, f1) || bmesh_radial_face_find(f2loop->prev->e, f1) ) { return NULL; } /* validate only one shared edge */ if (BM_face_share_edge_count(f1, f2) > 1) { return NULL; } /* validate no internal join */ for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f1); i < f1len; i++, l_iter = l_iter->next) { BM_elem_flag_disable(l_iter->v, BM_ELEM_INTERNAL_TAG); } for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f2); i < f2len; i++, l_iter = l_iter->next) { BM_elem_flag_disable(l_iter->v, BM_ELEM_INTERNAL_TAG); } for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f1); i < f1len; i++, l_iter = l_iter->next) { if (l_iter != f1loop) { BM_elem_flag_enable(l_iter->v, BM_ELEM_INTERNAL_TAG); } } for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f2); i < f2len; i++, l_iter = l_iter->next) { if (l_iter != f2loop) { /* as soon as a duplicate is found, bail out */ if (BM_elem_flag_test(l_iter->v, BM_ELEM_INTERNAL_TAG)) { return NULL; } } } /* join the two loop */ f1loop->prev->next = f2loop->next; f2loop->next->prev = f1loop->prev; f1loop->next->prev = f2loop->prev; f2loop->prev->next = f1loop->next; /* if f1loop was baseloop, make f1loop->next the base. */ if (BM_FACE_FIRST_LOOP(f1) == f1loop) BM_FACE_FIRST_LOOP(f1) = f1loop->next; /* increase length of f1 */ f1->len += (f2->len - 2); /* make sure each loop points to the proper face */ newlen = f1->len; for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f1); i < newlen; i++, l_iter = l_iter->next) l_iter->f = f1; /* remove edge from the disk cycle of its two vertices */ bmesh_disk_edge_remove(f1loop->e, f1loop->e->v1); bmesh_disk_edge_remove(f1loop->e, f1loop->e->v2); /* deallocate edge and its two loops as well as f2 */ BLI_mempool_free(bm->toolflagpool, f1loop->e->oflags); BLI_mempool_free(bm->epool, f1loop->e); bm->totedge--; BLI_mempool_free(bm->lpool, f1loop); bm->totloop--; BLI_mempool_free(bm->lpool, f2loop); bm->totloop--; BLI_mempool_free(bm->toolflagpool, f2->oflags); BLI_mempool_free(bm->fpool, f2); bm->totface--; /* account for both above */ bm->elem_index_dirty |= BM_EDGE | BM_FACE; BM_CHECK_ELEMENT(f1); /* validate the new loop cycle */ edok = bmesh_loop_validate(f1); BMESH_ASSERT(edok != FALSE); return f1; } /** * \brief Splice Vert * * Merges two verts into one (\a v into \a vtarget). * * \return Success */ int BM_vert_splice(BMesh *bm, BMVert *v, BMVert *vtarget) { BMEdge *e; BMLoop *l; BMIter liter; /* verts already spliced */ if (v == vtarget) { return FALSE; } /* retarget all the loops of v to vtarget */ BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) { l->v = vtarget; } /* move all the edges from v's disk to vtarget's disk */ while ((e = v->e)) { bmesh_disk_edge_remove(e, v); bmesh_edge_swapverts(e, v, vtarget); bmesh_disk_edge_append(e, vtarget); } BM_CHECK_ELEMENT(v); BM_CHECK_ELEMENT(vtarget); /* v is unused now, and can be killed */ BM_vert_kill(bm, v); return TRUE; } /** * \brief Separate Vert * * Separates all disjoint fans that meet at a vertex, making a unique * vertex for each region. returns an array of all resulting vertices. * * \note this is a low level function, bm_edge_separate needs to run on edges first * or, the faces sharing verts must not be sharing edges for them to split at least. * * \return Success */ int bmesh_vert_separate(BMesh *bm, BMVert *v, BMVert ***r_vout, int *r_vout_len) { BMEdge **stack = NULL; BLI_array_declare(stack); BMVert **verts = NULL; GHash *visithash; BMIter eiter, liter; BMLoop *l; BMEdge *e; int i, maxindex; BMLoop *nl; visithash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, __func__); maxindex = 0; BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (BLI_ghash_haskey(visithash, e)) { continue; } /* Prime the stack with this unvisited edge */ BLI_array_append(stack, e); /* Considering only edges and faces incident on vertex v, walk * the edges & faces and assign an index to each connected set */ while ((e = BLI_array_pop(stack))) { BLI_ghash_insert(visithash, e, SET_INT_IN_POINTER(maxindex)); BM_ITER_ELEM (l, &liter, e, BM_LOOPS_OF_EDGE) { nl = (l->v == v) ? l->prev : l->next; if (!BLI_ghash_haskey(visithash, nl->e)) { BLI_array_append(stack, nl->e); } } } maxindex++; } /* Make enough verts to split v for each group */ verts = MEM_callocN(sizeof(BMVert *) * maxindex, __func__); verts[0] = v; for (i = 1; i < maxindex; i++) { verts[i] = BM_vert_create(bm, v->co, v); } /* Replace v with the new verts in each group */ #if 0 BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) { /* call first since its faster then a hash lookup */ if (l->v != v) { continue; } i = GET_INT_FROM_POINTER(BLI_ghash_lookup(visithash, l->e)); if (i == 0) { continue; } /* Loops here should always refer to an edge that has v as an * endpoint. For each appearance of this vert in a face, there * will actually be two iterations: one for the loop heading * towards vertex v, and another for the loop heading out from * vertex v. Only need to swap the vertex on one of those times, * on the outgoing loop. */ /* XXX - because this clobbers the iterator, this *whole* block is commented, see below */ l->v = verts[i]; } #else /* note: this is the same as the commented code above *except* that it doesn't break iterator * by modifying data it loops over [#30632], this re-uses the 'stack' variable which is a bit * bad practice but save alloc'ing a new array - note, the comment above is useful, keep it * if you are tidying up code - campbell */ BLI_array_empty(stack); BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) { if (l->v == v) { BLI_array_append(stack, (BMEdge *)l); } } while ((l = (BMLoop *)(BLI_array_pop(stack)))) { if ((i = GET_INT_FROM_POINTER(BLI_ghash_lookup(visithash, l->e)))) { l->v = verts[i]; } } #endif BLI_array_free(stack); BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { i = GET_INT_FROM_POINTER(BLI_ghash_lookup(visithash, e)); if (i == 0) { continue; } BLI_assert(e->v1 == v || e->v2 == v); bmesh_disk_edge_remove(e, v); bmesh_edge_swapverts(e, v, verts[i]); bmesh_disk_edge_append(e, verts[i]); } BLI_ghash_free(visithash, NULL, NULL); for (i = 0; i < maxindex; i++) { BM_CHECK_ELEMENT(verts[i]); } if (r_vout_len != NULL) { *r_vout_len = maxindex; } if (r_vout != NULL) { *r_vout = verts; } else { MEM_freeN(verts); } return TRUE; } /** * High level function which wraps both #bm_vert_separate and #bm_edge_separate */ int BM_vert_separate(BMesh *bm, BMVert *v, BMVert ***r_vout, int *r_vout_len, BMEdge **e_in, int e_in_len) { int i; for (i = 0; i < e_in_len; i++) { BMEdge *e = e_in[i]; if (e->l && BM_vert_in_edge(e, v)) { bmesh_edge_separate(bm, e, e->l); } } return bmesh_vert_separate(bm, v, r_vout, r_vout_len); } /** * \brief Splice Edge * * Splice two unique edges which share the same two vertices into one edge. * * \return Success * * \note Edges must already have the same vertices. */ int BM_edge_splice(BMesh *bm, BMEdge *e, BMEdge *etarget) { BMLoop *l; if (!BM_vert_in_edge(e, etarget->v1) || !BM_vert_in_edge(e, etarget->v2)) { /* not the same vertices can't splice */ return FALSE; } while (e->l) { l = e->l; BLI_assert(BM_vert_in_edge(etarget, l->v)); BLI_assert(BM_vert_in_edge(etarget, l->next->v)); bmesh_radial_loop_remove(l, e); bmesh_radial_append(etarget, l); } BLI_assert(bmesh_radial_length(e->l) == 0); BM_CHECK_ELEMENT(e); BM_CHECK_ELEMENT(etarget); /* removes from disks too */ BM_edge_kill(bm, e); return TRUE; } /** * \brief Separate Edge * * Separates a single edge into two edge: the original edge and * a new edge that has only \a l_sep in its radial. * * \return Success * * \note Does nothing if \a l_sep is already the only loop in the * edge radial. */ int bmesh_edge_separate(BMesh *bm, BMEdge *e, BMLoop *l_sep) { BMEdge *ne; int radlen; BLI_assert(l_sep->e == e); BLI_assert(e->l); radlen = bmesh_radial_length(e->l); if (radlen < 2) { /* no cut required */ return TRUE; } if (l_sep == e->l) { e->l = l_sep->radial_next; } ne = BM_edge_create(bm, e->v1, e->v2, e, FALSE); bmesh_radial_loop_remove(l_sep, e); bmesh_radial_append(ne, l_sep); l_sep->e = ne; BLI_assert(bmesh_radial_length(e->l) == radlen - 1); BLI_assert(bmesh_radial_length(ne->l) == 1); BM_CHECK_ELEMENT(ne); BM_CHECK_ELEMENT(e); return TRUE; } /** * \brief Unglue Region Make Vert (URMV) * * Disconnects a face from its vertex fan at loop \a sl * * \return The newly created BMVert */ BMVert *bmesh_urmv_loop(BMesh *bm, BMLoop *sl) { BMVert **vtar; int len, i; BMVert *nv = NULL; BMVert *sv = sl->v; /* peel the face from the edge radials on both sides of the * loop vert, disconnecting the face from its fan */ bmesh_edge_separate(bm, sl->e, sl); bmesh_edge_separate(bm, sl->prev->e, sl->prev); if (bmesh_disk_count(sv) == 2) { /* If there are still only two edges out of sv, then * this whole URMV was just a no-op, so exit now. */ return sv; } /* Update the disk start, so that v->e points to an edge * not touching the split loop. This is so that BM_vert_split * will leave the original sv on some *other* fan (not the * one-face fan that holds the unglue face). */ while (sv->e == sl->e || sv->e == sl->prev->e) { sv->e = bmesh_disk_edge_next(sv->e, sv); } /* Split all fans connected to the vert, duplicating it for * each fans. */ bmesh_vert_separate(bm, sv, &vtar, &len); /* There should have been at least two fans cut apart here, * otherwise the early exit would have kicked in. */ BLI_assert(len >= 2); nv = sl->v; /* Desired result here is that a new vert should always be * created for the unglue face. This is so we can glue any * extras back into the original vert. */ BLI_assert(nv != sv); BLI_assert(sv == vtar[0]); /* If there are more than two verts as a result, glue together * all the verts except the one this URMV intended to create */ if (len > 2) { for (i = 0; i < len; i++) { if (vtar[i] == nv) { break; } } if (i != len) { /* Swap the single vert that was needed for the * unglue into the last array slot */ SWAP(BMVert *, vtar[i], vtar[len - 1]); /* And then glue the rest back together */ for (i = 1; i < len - 1; i++) { BM_vert_splice(bm, vtar[i], vtar[0]); } } } MEM_freeN(vtar); return nv; } /** * \brief Unglue Region Make Vert (URMV) * * Disconnects sf from the vertex fan at \a sv * * \return The newly created BMVert */ BMVert *bmesh_urmv(BMesh *bm, BMFace *sf, BMVert *sv) { BMLoop *l = BM_face_vert_share_loop(sf, sv); return bmesh_urmv_loop(bm, l); }