/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2007 Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Geoffrey Bantle. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/bmesh/intern/bmesh_structure.c * \ingroup bmesh * * Low level routines for manipulating the BM structure. */ #include "bmesh.h" #include "bmesh_private.h" /** * MISC utility functions. * */ int bmesh_vert_in_edge(BMEdge *e, BMVert *v) { if (e->v1 == v || e->v2 == v) return TRUE; return FALSE; } int bmesh_verts_in_edge(BMVert *v1, BMVert *v2, BMEdge *e) { if (e->v1 == v1 && e->v2 == v2) return TRUE; else if (e->v1 == v2 && e->v2 == v1) return TRUE; return FALSE; } BMVert *bmesh_edge_getothervert(BMEdge *e, BMVert *v) { if (e->v1 == v) { return e->v2; } else if (e->v2 == v) { return e->v1; } return NULL; } int bmesh_edge_swapverts(BMEdge *e, BMVert *orig, BMVert *newv) { if (e->v1 == orig) { e->v1 = newv; e->v1_disk_link.next = e->v1_disk_link.prev = NULL; return TRUE; } else if (e->v2 == orig) { e->v2 = newv; e->v2_disk_link.next = e->v2_disk_link.prev = NULL; return TRUE; } return FALSE; } /** * BMESH CYCLES * (this is somewhat outdate, though bits of its API are still used) - joeedh * * Cycles are circular doubly linked lists that form the basis of adjacency * information in the BME modeller. Full adjacency relations can be derived * from examining these cycles very quickly. Although each cycle is a double * circular linked list, each one is considered to have a 'base' or 'head', * and care must be taken by Euler code when modifying the contents of a cycle. * * The contents of this file are split into two parts. First there are the * bmesh_cycle family of functions which are generic circular double linked list * procedures. The second part contains higher level procedures for supporting * modification of specific cycle types. * * The three cycles explicitly stored in the BM data structure are as follows: * * 1: The Disk Cycle - A circle of edges around a vertex * Base: vertex->edge pointer. * * This cycle is the most complicated in terms of its structure. Each bmesh_Edge contains * two bmesh_CycleNode structures to keep track of that edge's membership in the disk cycle * of each of its vertices. However for any given vertex it may be the first in some edges * in its disk cycle and the second for others. The bmesh_disk_XXX family of functions contain * some nice utilities for navigating disk cycles in a way that hides this detail from the * tool writer. * * Note that the disk cycle is completley independent from face data. One advantage of this * is that wire edges are fully integrated into the topology database. Another is that the * the disk cycle has no problems dealing with non-manifold conditions involving faces. * * Functions relating to this cycle: * * bmesh_disk_append_edge * bmesh_disk_remove_edge * bmesh_disk_nextedge * bmesh_disk_getpointer * * 2: The Radial Cycle - A circle of face edges (bmesh_Loop) around an edge * Base: edge->l->radial structure. * * The radial cycle is similar to the radial cycle in the radial edge data structure.* * Unlike the radial edge however, the radial cycle does not require a large amount of memory * to store non-manifold conditions since BM does not keep track of region/shell * information. * * Functions relating to this cycle: * * bmesh_radial_append * bmesh_radial_remove_loop * bmesh_radial_nextloop * bmesh_radial_find_face * * * 3: The Loop Cycle - A circle of face edges around a polygon. * Base: polygon->lbase. * * The loop cycle keeps track of a faces vertices and edges. It should be noted that the * direction of a loop cycle is either CW or CCW depending on the face normal, and is * not oriented to the faces editedges. * * Functions relating to this cycle: * * bmesh_cycle_XXX family of functions. * * * Note that the order of elements in all cycles except the loop cycle is undefined. This * leads to slightly increased seek time for deriving some adjacency relations, however the * advantage is that no intrinsic properties of the data structures are dependant upon the * cycle order and all non-manifold conditions are represented trivially. * */ int bmesh_disk_append_edge(struct BMEdge *e, struct BMVert *v) { if (!v->e) { BMDiskLink *dl1 = BM_EDGE_DISK_LINK_GET(e, v); v->e = e; dl1->next = dl1->prev = e; } else { BMDiskLink *dl1, *dl2, *dl3; dl1 = BM_EDGE_DISK_LINK_GET(e, v); dl2 = BM_EDGE_DISK_LINK_GET(v->e, v); dl3 = dl2->prev ? BM_EDGE_DISK_LINK_GET(dl2->prev, v) : NULL; dl1->next = v->e; dl1->prev = dl2->prev; dl2->prev = e; if (dl3) dl3->next = e; } return TRUE; } void bmesh_disk_remove_edge(struct BMEdge *e, struct BMVert *v) { BMDiskLink *dl1, *dl2; dl1 = BM_EDGE_DISK_LINK_GET(e, v); if (dl1->prev) { dl2 = BM_EDGE_DISK_LINK_GET(dl1->prev, v); dl2->next = dl1->next; } if (dl1->next) { dl2 = BM_EDGE_DISK_LINK_GET(dl1->next, v); dl2->prev = dl1->prev; } if (v->e == e) v->e = (e != (BMEdge *)dl1->next) ? (BMEdge *)dl1->next : NULL; dl1->next = dl1->prev = NULL; } /* * bmesh_disk_nextedge * * Find the next edge in a disk cycle * * Returns - * Pointer to the next edge in the disk cycle for the vertex v. */ struct BMEdge *bmesh_disk_nextedge(struct BMEdge *e, struct BMVert *v) { if (v == e->v1) return e->v1_disk_link.next; if (v == e->v2) return e->v2_disk_link.next; return NULL; } static BMEdge *bmesh_disk_prevedge(BMEdge *e, BMVert *v) { if (v == e->v1) return e->v1_disk_link.prev; if (v == e->v2) return e->v2_disk_link.prev; return NULL; } BMEdge *bmesh_disk_existedge(BMVert *v1, BMVert *v2) { BMEdge *curedge, *startedge; if (v1->e) { startedge = v1->e; curedge = startedge; do { if (bmesh_verts_in_edge(v1, v2, curedge)) { return curedge; } curedge = bmesh_disk_nextedge(curedge, v1); } while (curedge != startedge); } return NULL; } int bmesh_disk_count(struct BMVert *v) { BMEdge *e = v->e; int i = 0; if (!e) { return 0; } do { if (!e) { return 0; } e = bmesh_disk_nextedge(e, v); if (i >= (1 << 20)) { printf("bmesh error: infinite loop in disk cycle!\n"); return 0; } i++; } while (e != v->e); return i; } int bmesh_disk_validate(int len, BMEdge *e, BMVert *v) { BMEdge *e2; if (!BM_vert_in_edge(e, v)) return FALSE; if (bmesh_disk_count(v) != len || len == 0) return FALSE; e2 = e; do { if (len != 1 && bmesh_disk_prevedge(e2, v) == e2) { return FALSE; } e2 = bmesh_disk_nextedge(e2, v); } while (e2 != e); return TRUE; } /* * BME DISK COUNT FACE VERT * * Counts the number of loop users * for this vertex. Note that this is * equivalent to counting the number of * faces incident upon this vertex */ int bmesh_disk_count_facevert(BMVert *v) { BMEdge *curedge; int count = 0; /* is there an edge on this vert at all */ if (!v->e) return count; /* first, loop around edge */ curedge = v->e; do { if (curedge->l) count += bmesh_radial_count_facevert(curedge->l, v); curedge = bmesh_disk_nextedge(curedge, v); } while (curedge != v->e); return count; } /* * BME FIND FIRST FACE EDGE * * Finds the first edge in a vertices * Disk cycle that has one of this * vert's loops attached * to it. */ struct BMEdge *bmesh_disk_find_first_faceedge(struct BMEdge *e, struct BMVert *v) { BMEdge *searchedge = NULL; searchedge = e; do { if (searchedge->l && bmesh_radial_count_facevert(searchedge->l, v)) { return searchedge; } searchedge = bmesh_disk_nextedge(searchedge, v); } while (searchedge != e); return NULL; } struct BMEdge *bmesh_disk_find_next_faceedge(struct BMEdge *e, struct BMVert *v) { BMEdge *searchedge = NULL; searchedge = bmesh_disk_nextedge(e, v); do { if (searchedge->l && bmesh_radial_count_facevert(searchedge->l, v)) { return searchedge; } searchedge = bmesh_disk_nextedge(searchedge, v); } while (searchedge != e); return e; } /*****radial cycle functions, e.g. loops surrounding edges**** */ int bmesh_radial_validate(int radlen, BMLoop *l) { BMLoop *l_iter = l; int i = 0; if (bmesh_radial_length(l) != radlen) return FALSE; do { if (!l_iter) { bmesh_error(); return FALSE; } if (l_iter->e != l->e) return FALSE; if (l_iter->v != l->e->v1 && l_iter->v != l->e->v2) return FALSE; if (i > BM_LOOP_RADIAL_MAX) { bmesh_error(); return FALSE; } i++; } while ((l_iter = bmesh_radial_nextloop(l_iter)) != l); return TRUE; } /* * BMESH RADIAL REMOVE LOOP * * Removes a loop from an radial cycle. If edge e is non-NULL * it should contain the radial cycle, and it will also get * updated (in the case that the edge's link into the radial * cycle was the loop which is being removed from the cycle). */ void bmesh_radial_remove_loop(BMLoop *l, BMEdge *e) { /* if e is non-NULL, l must be in the radial cycle of e */ if (e && e != l->e) { bmesh_error(); } if (l->radial_next != l) { if (e && l == e->l) e->l = l->radial_next; l->radial_next->radial_prev = l->radial_prev; l->radial_prev->radial_next = l->radial_next; } else { if (e) { if (l == e->l) { e->l = NULL; } else { bmesh_error(); } } } /* l is no longer in a radial cycle; empty the links * to the cycle and the link back to an edge */ l->radial_next = l->radial_prev = NULL; l->e = NULL; } /* * BME RADIAL FIND FIRST FACE VERT * * Finds the first loop of v around radial * cycle */ BMLoop *bmesh_radial_find_first_faceloop(BMLoop *l, BMVert *v) { BMLoop *l_iter; l_iter = l; do { if (l_iter->v == v) { return l_iter; } } while ((l_iter = bmesh_radial_nextloop(l_iter)) != l); return NULL; } BMLoop *bmesh_radial_find_next_faceloop(BMLoop *l, BMVert *v) { BMLoop *l_iter; l_iter = bmesh_radial_nextloop(l); do { if (l_iter->v == v) { return l_iter; } } while ((l_iter = bmesh_radial_nextloop(l_iter)) != l); return l; } BMLoop *bmesh_radial_nextloop(BMLoop *l) { return l->radial_next; } int bmesh_radial_length(BMLoop *l) { BMLoop *l_iter = l; int i = 0; if (!l) return 0; do { if (!l_iter) { /* radial cycle is broken (not a circulat loop) */ bmesh_error(); return 0; } i++; if (i >= BM_LOOP_RADIAL_MAX) { bmesh_error(); return -1; } } while ((l_iter = l_iter->radial_next) != l); return i; } void bmesh_radial_append(BMEdge *e, BMLoop *l) { if (e->l == NULL) { e->l = l; l->radial_next = l->radial_prev = l; } else { l->radial_prev = e->l; l->radial_next = e->l->radial_next; e->l->radial_next->radial_prev = l; e->l->radial_next = l; e->l = l; } if (l->e && l->e != e) { /* l is already in a radial cycle for a different edge */ bmesh_error(); } l->e = e; } int bmesh_radial_find_face(BMEdge *e, BMFace *f) { BMLoop *l_iter; int i, len; len = bmesh_radial_length(e->l); for (i = 0, l_iter = e->l; i < len; i++, l_iter = l_iter->radial_next) { if (l_iter->f == f) return TRUE; } return FALSE; } /* * BME RADIAL COUNT FACE VERT * * Returns the number of times a vertex appears * in a radial cycle * */ int bmesh_radial_count_facevert(BMLoop *l, BMVert *v) { BMLoop *l_iter; int count = 0; l_iter = l; do { if (l_iter->v == v) { count++; } } while ((l_iter = bmesh_radial_nextloop(l_iter)) != l); return count; } /*****loop cycle functions, e.g. loops surrounding a face**** */ int bmesh_loop_validate(BMFace *f) { int i; int len = f->len; BMLoop *l_iter, *l_first; l_first = BM_FACE_FIRST_LOOP(f); if (l_first == NULL) { return FALSE; } /* Validate that the face loop cycle is the length specified by f->len */ for (i = 1, l_iter = l_first->next; i < len; i++, l_iter = l_iter->next) { if ( (l_iter->f != f) || (l_iter == l_first)) { return FALSE; } } if (l_iter != l_first) { return FALSE; } /* Validate the loop->prev links also form a cycle of length f->len */ for (i = 1, l_iter = l_first->prev; i < len; i++, l_iter = l_iter->prev) { if (l_iter == l_first) { return FALSE; } } if (l_iter != l_first) { return FALSE; } return TRUE; } #if 0 /** * bmesh_cycle_length * * Count the nodes in a cycle. * * Returns - * Integer */ int bmesh_cycle_length(BMEdge *e, BMVert *v) { BMEdge *next, *prev, *cur; int len, vi = v == e->v1 ? 0 : 1; /* should skip 2 forward if v is 1, happily reduces to (v * 2) */ prev = *(&e->v1_prev + vi * 2); cur = e; len = 1; while (cur != prev) { vi = cur->v1 == v ? 0 : 1; len++; cur = *(&cur->v1_next + vi * 2); } return len; } /* Begin Disk Cycle routine */ /** * bmesh_disk_getpointer * * Given an edge and one of its vertices, find the apporpriate CycleNode * * Returns - * Pointer to bmesh_CycleNode. */ BMNode *bmesh_disk_getpointer(BMEdge *e, BMVert *v) { /* returns pointer to the cycle node for the appropriate vertex in this dis */ if (e->v1 == v) { return &(e->d1); } else if (e->v2 == v) { return &(e->d2); } return NULL; } /** * bmesh_disk_next_edgeflag * * Searches the disk cycle of v, starting with e, for the * next edge that has either eflag or tflag. * * bmesh_Edge pointer. */ BMEdge *bmesh_disk_next_edgeflag(BMEdge *e, BMVert *v, int eflag, int tflag) { BMNode *diskbase; BMEdge *curedge; int len, ok; if (eflag && tflag) { return NULL; } ok = bmesh_vert_in_edge(e, v); if (ok) { diskbase = bmesh_disk_getpointer(e, v); len = bmesh_cycle_length(diskbase); curedge = bmesh_disk_nextedge(e, v); while (curedge != e) { if (eflag) { if (curedge->head.eflag1 == eflag) { return curedge; } } curedge = bmesh_disk_nextedge(curedge, v); } } return NULL; } int bmesh_disk_hasedge(BMVert *v, BMEdge *e) { BMNode *diskbase; BMEdge *curedge; int i, len = 0; if (v->e) { diskbase = bmesh_disk_getpointer(v->e, v); len = bmesh_cycle_length(diskbase); for (i = 0, curedge = v->e; i < len; i++) { if (curedge == e) { return TRUE; } else curedge = bmesh_disk_nextedge(curedge, v); } } return FALSE; } struct BMLoop *bmesh_loop_find_loop(struct BMFace *f, struct BMVert *v) { BMLoop *l; int i, len; len = bmesh_cycle_length(f->lbase); for (i = 0, l = f->loopbase; i < len; i++, l = l->next) { if (l->v == v) { return l; } } return NULL; } #endif