/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup bmesh * * Connect verts across faces (splits faces) and bridge tool. */ #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "bmesh.h" #include "intern/bmesh_operators_private.h" /* own include */ #define EDGE_MARK 4 #define EDGE_OUT 8 #define FACE_OUT 16 /* el_a and el_b _must_ be same size */ static void bm_bridge_splice_loops(BMesh *bm, LinkData *el_a, LinkData *el_b, const float merge_factor) { BMOperator op_weld; BMOpSlot *slot_targetmap; BMO_op_init(bm, &op_weld, 0, "weld_verts"); slot_targetmap = BMO_slot_get(op_weld.slots_in, "targetmap"); do { BMVert *v_a = el_a->data, *v_b = el_b->data; BM_data_interp_from_verts(bm, v_a, v_b, v_b, merge_factor); interp_v3_v3v3(v_b->co, v_a->co, v_b->co, merge_factor); BLI_assert(v_a != v_b); BMO_slot_map_elem_insert(&op_weld, slot_targetmap, v_a, v_b); } while ((void)(el_b = el_b->next), (el_a = el_a->next)); BMO_op_exec(bm, &op_weld); BMO_op_finish(bm, &op_weld); } /* get the 2 loops matching 2 verts. * first attempt to get the face corners that use the edge defined by v1 & v2, * if that fails just get any loop that's on the vert (the first one) */ static void bm_vert_loop_pair(BMesh *bm, BMVert *v1, BMVert *v2, BMLoop **l1, BMLoop **l2) { BMEdge *e = BM_edge_exists(v1, v2); BMLoop *l = e->l; if (l) { if (l->v == v1) { *l1 = l; *l2 = l->next; } else { *l2 = l; *l1 = l->next; } } else { /* fallback to _any_ loop */ *l1 = BM_iter_at_index(bm, BM_LOOPS_OF_VERT, v1, 0); *l2 = BM_iter_at_index(bm, BM_LOOPS_OF_VERT, v2, 0); } } /* el_b can have any offset */ static float bm_edgeloop_offset_length(LinkData *el_a, LinkData *el_b, LinkData *el_b_first, const float len_max) { float len = 0.0f; BLI_assert(el_a->prev == NULL); /* must be first */ do { len += len_v3v3(((BMVert *)el_a->data)->co, ((BMVert *)el_b->data)->co); } while ((void)(el_b = el_b->next ? el_b->next : el_b_first), (el_a = el_a->next) && (len < len_max)); return len; } static void bm_bridge_best_rotation(struct BMEdgeLoopStore *el_store_a, struct BMEdgeLoopStore *el_store_b) { ListBase *lb_a = BM_edgeloop_verts_get(el_store_a); ListBase *lb_b = BM_edgeloop_verts_get(el_store_b); LinkData *el_a = lb_a->first; LinkData *el_b = lb_b->first; LinkData *el_b_first = el_b; LinkData *el_b_best = NULL; float len_best = FLT_MAX; for (; el_b; el_b = el_b->next) { const float len = bm_edgeloop_offset_length(el_a, el_b, el_b_first, len_best); if (len < len_best) { el_b_best = el_b; len_best = len; } } if (el_b_best) { BLI_listbase_rotate_first(lb_b, el_b_best); } } static void bm_face_edges_tag_out(BMesh *bm, BMFace *f) { BMLoop *l_iter, *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { BMO_edge_flag_enable(bm, l_iter->e, EDGE_OUT); } while ((l_iter = l_iter->next) != l_first); } static bool bm_edge_test_cb(BMEdge *e, void *bm_v) { return BMO_edge_flag_test((BMesh *)bm_v, e, EDGE_MARK); } static void bridge_loop_pair(BMesh *bm, struct BMEdgeLoopStore *el_store_a, struct BMEdgeLoopStore *el_store_b, const bool use_merge, const float merge_factor, const int twist_offset) { const float eps = 0.00001f; LinkData *el_a_first, *el_b_first; const bool is_closed = BM_edgeloop_is_closed(el_store_a) && BM_edgeloop_is_closed(el_store_b); int el_store_a_len, el_store_b_len; bool el_store_b_free = false; float el_dir[3]; float dot_a, dot_b; const bool use_edgeout = true; el_store_a_len = BM_edgeloop_length_get((struct BMEdgeLoopStore *)el_store_a); el_store_b_len = BM_edgeloop_length_get((struct BMEdgeLoopStore *)el_store_b); if (el_store_a_len < el_store_b_len) { SWAP(int, el_store_a_len, el_store_b_len); SWAP(struct BMEdgeLoopStore *, el_store_a, el_store_b); } if (use_merge) { BLI_assert(el_store_a_len == el_store_b_len); } if (el_store_a_len != el_store_b_len) { BM_mesh_elem_hflag_disable_all(bm, BM_FACE | BM_EDGE, BM_ELEM_TAG, false); } sub_v3_v3v3(el_dir, BM_edgeloop_center_get(el_store_a), BM_edgeloop_center_get(el_store_b)); if (is_closed) { /* if all loops are closed this will calculate twice for all loops */ BM_edgeloop_calc_normal(bm, el_store_a); BM_edgeloop_calc_normal(bm, el_store_b); } else { ListBase *lb_a = BM_edgeloop_verts_get(el_store_a); ListBase *lb_b = BM_edgeloop_verts_get(el_store_b); /* normalizing isn't strictly needed but without we may get very large values */ float no[3]; float dir_a_orig[3], dir_b_orig[3]; float dir_a[3], dir_b[3]; const float *test_a, *test_b; sub_v3_v3v3(dir_a_orig, ((BMVert *)(((LinkData *)lb_a->first)->data))->co, ((BMVert *)(((LinkData *)lb_a->last)->data))->co); sub_v3_v3v3(dir_b_orig, ((BMVert *)(((LinkData *)lb_b->first)->data))->co, ((BMVert *)(((LinkData *)lb_b->last)->data))->co); /* make the directions point out from the normals, 'no' is used as a temp var */ cross_v3_v3v3(no, dir_a_orig, el_dir); cross_v3_v3v3(dir_a, no, el_dir); cross_v3_v3v3(no, dir_b_orig, el_dir); cross_v3_v3v3(dir_b, no, el_dir); if (LIKELY(!is_zero_v3(dir_a) && !is_zero_v3(dir_b))) { test_a = dir_a; test_b = dir_b; } else { /** * This is a corner case: * *
       *  (loop a)    (loop b)
       * +--------+  +--------+
       * 
* * When loops are aligned to the direction between * the loops values of 'dir_a/b' is degenerate, * in this case compare the original directions * (before they were corrected by 'el_dir'), * see: T43013 */ test_a = dir_a_orig; test_b = dir_b_orig; } if (dot_v3v3(test_a, test_b) < 0.0f) { BM_edgeloop_flip(bm, el_store_b); } normalize_v3_v3(no, el_dir); BM_edgeloop_calc_normal_aligned(bm, el_store_a, no); BM_edgeloop_calc_normal_aligned(bm, el_store_b, no); } dot_a = dot_v3v3(BM_edgeloop_normal_get(el_store_a), el_dir); dot_b = dot_v3v3(BM_edgeloop_normal_get(el_store_b), el_dir); if (UNLIKELY((len_squared_v3(el_dir) < eps) || ((fabsf(dot_a) < eps) && (fabsf(dot_b) < eps)))) { /* in this case there is no depth between the two loops, * eg: 2x 2d circles, one scaled smaller, * in this case 'el_dir' can't be used, just ensure we have matching flipping. */ if (dot_v3v3(BM_edgeloop_normal_get(el_store_a), BM_edgeloop_normal_get(el_store_b)) < 0.0f) { BM_edgeloop_flip(bm, el_store_b); } } else if ((dot_a < 0.0f) != (dot_b < 0.0f)) { BM_edgeloop_flip(bm, el_store_b); } /* we only care about flipping if we make faces */ if (use_merge == false) { float no[3]; add_v3_v3v3(no, BM_edgeloop_normal_get(el_store_a), BM_edgeloop_normal_get(el_store_b)); if (dot_v3v3(no, el_dir) < 0.0f) { BM_edgeloop_flip(bm, el_store_a); BM_edgeloop_flip(bm, el_store_b); } /* vote on winding (so new face winding is based on existing connected faces) */ if (bm->totface) { struct BMEdgeLoopStore *estore_pair[2] = {el_store_a, el_store_b}; int i; int winding_votes[2] = {0, 0}; int winding_dir = 1; for (i = 0; i < 2; i++, winding_dir = -winding_dir) { LinkData *el; for (el = BM_edgeloop_verts_get(estore_pair[i])->first; el; el = el->next) { LinkData *el_next = BM_EDGELINK_NEXT(estore_pair[i], el); if (el_next) { BMEdge *e = BM_edge_exists(el->data, el_next->data); if (e && BM_edge_is_boundary(e)) { winding_votes[i] += ((e->l->v == el->data) ? winding_dir : -winding_dir); } } } } if (winding_votes[0] || winding_votes[1]) { bool flip[2] = {false, false}; /* for direction aligned loops we can't rely on the directly we have, * use the winding defined by the connected faces (see T48356). */ if (fabsf(dot_a) < eps) { if (winding_votes[0] < 0) { flip[0] = !flip[0]; winding_votes[0] *= -1; } } if (fabsf(dot_b) < eps) { if (winding_votes[1] < 0) { flip[1] = !flip[1]; winding_votes[1] *= -1; } } /* when both loops contradict the winding, flip them so surrounding geometry matches */ if ((winding_votes[0] + winding_votes[1]) < 0) { flip[0] = !flip[0]; flip[1] = !flip[1]; /* valid but unused */ #if 0 winding_votes[0] *= -1; winding_votes[1] *= -1; #endif } if (flip[0]) { BM_edgeloop_flip(bm, el_store_a); } if (flip[1]) { BM_edgeloop_flip(bm, el_store_b); } } } } if (el_store_a_len > el_store_b_len) { el_store_b = BM_edgeloop_copy(el_store_b); BM_edgeloop_expand(bm, el_store_b, el_store_a_len, false, NULL); el_store_b_free = true; } if (is_closed) { bm_bridge_best_rotation(el_store_a, el_store_b); /* add twist */ if (twist_offset != 0) { const int len_b = BM_edgeloop_length_get(el_store_b); ListBase *lb_b = BM_edgeloop_verts_get(el_store_b); LinkData *el_b = BLI_rfindlink(lb_b, mod_i(twist_offset, len_b)); BLI_listbase_rotate_first(lb_b, el_b); } } /* Assign after flipping is finalized */ el_a_first = BM_edgeloop_verts_get(el_store_a)->first; el_b_first = BM_edgeloop_verts_get(el_store_b)->first; if (use_merge) { bm_bridge_splice_loops(bm, el_a_first, el_b_first, merge_factor); } else { LinkData *el_a = el_a_first; LinkData *el_b = el_b_first; LinkData *el_a_next; LinkData *el_b_next; while (true) { BMFace *f, *f_example; BMLoop *l_iter; BMVert *v_a, *v_b, *v_a_next, *v_b_next; BMLoop *l_a = NULL; BMLoop *l_b = NULL; BMLoop *l_a_next = NULL; BMLoop *l_b_next = NULL; if (is_closed) { el_a_next = BM_EDGELINK_NEXT(el_store_a, el_a); el_b_next = BM_EDGELINK_NEXT(el_store_b, el_b); } else { el_a_next = el_a->next; el_b_next = el_b->next; if (ELEM(NULL, el_a_next, el_b_next)) { break; } } v_a = el_a->data; v_b = el_b->data; v_a_next = el_a_next->data; v_b_next = el_b_next->data; /* get loop data - before making the face */ if (v_b != v_b_next) { bm_vert_loop_pair(bm, v_a, v_a_next, &l_a, &l_a_next); bm_vert_loop_pair(bm, v_b, v_b_next, &l_b, &l_b_next); } else { /* lazy, could be more clever here */ bm_vert_loop_pair(bm, v_a, v_a_next, &l_a, &l_a_next); l_b = l_b_next = BM_iter_at_index(bm, BM_LOOPS_OF_VERT, v_b, 0); } if (l_a && l_a_next == NULL) { l_a_next = l_a; } if (l_a_next && l_a == NULL) { l_a = l_a_next; } if (l_b && l_b_next == NULL) { l_b_next = l_b; } if (l_b_next && l_b == NULL) { l_b = l_b_next; } f_example = l_a ? l_a->f : (l_b ? l_b->f : NULL); if (v_b != v_b_next) { BMVert *v_arr[4] = {v_b, v_b_next, v_a_next, v_a}; f = BM_face_exists(v_arr, 4); if (f == NULL) { /* copy if loop data if its is missing on one ring */ f = BM_face_create_verts(bm, v_arr, 4, NULL, BM_CREATE_NOP, true); l_iter = BM_FACE_FIRST_LOOP(f); if (l_b) { BM_elem_attrs_copy(bm, bm, l_b, l_iter); } l_iter = l_iter->next; if (l_b_next) { BM_elem_attrs_copy(bm, bm, l_b_next, l_iter); } l_iter = l_iter->next; if (l_a_next) { BM_elem_attrs_copy(bm, bm, l_a_next, l_iter); } l_iter = l_iter->next; if (l_a) { BM_elem_attrs_copy(bm, bm, l_a, l_iter); } } } else { BMVert *v_arr[3] = {v_b, v_a_next, v_a}; f = BM_face_exists(v_arr, 3); if (f == NULL) { /* fan-fill a triangle */ f = BM_face_create_verts(bm, v_arr, 3, NULL, BM_CREATE_NOP, true); l_iter = BM_FACE_FIRST_LOOP(f); if (l_b) { BM_elem_attrs_copy(bm, bm, l_b, l_iter); } l_iter = l_iter->next; if (l_a_next) { BM_elem_attrs_copy(bm, bm, l_a_next, l_iter); } l_iter = l_iter->next; if (l_a) { BM_elem_attrs_copy(bm, bm, l_a, l_iter); } } } if (f_example && (f_example != f)) { BM_elem_attrs_copy(bm, bm, f_example, f); } BMO_face_flag_enable(bm, f, FACE_OUT); BM_elem_flag_enable(f, BM_ELEM_TAG); /* tag all edges of the face, untag the loop edges after */ if (use_edgeout) { bm_face_edges_tag_out(bm, f); } if (el_a_next == el_a_first) { break; } el_a = el_a_next; el_b = el_b_next; } } if (el_store_a_len != el_store_b_len) { struct BMEdgeLoopStore *estore_pair[2] = {el_store_a, el_store_b}; int i; BMOperator op_sub; /* when we have to bridge between different sized edge-loops, * be clever and post-process for best results */ /* triangulate inline */ BMO_op_initf(bm, &op_sub, 0, "triangulate faces=%hf", BM_ELEM_TAG, true); /* calc normals for input faces before executing */ { BMOIter siter; BMFace *f; BMO_ITER (f, &siter, op_sub.slots_in, "faces", BM_FACE) { BM_face_normal_update(f); } } BMO_op_exec(bm, &op_sub); BMO_slot_buffer_flag_enable(bm, op_sub.slots_out, "faces.out", BM_FACE, FACE_OUT); BMO_slot_buffer_hflag_enable(bm, op_sub.slots_out, "faces.out", BM_FACE, BM_ELEM_TAG, false); BMO_op_finish(bm, &op_sub); /* tag verts on each side so we can restrict rotation of edges to verts on the same side */ for (i = 0; i < 2; i++) { LinkData *el; for (el = BM_edgeloop_verts_get(estore_pair[i])->first; el; el = el->next) { BM_elem_flag_set((BMVert *)el->data, BM_ELEM_TAG, i); } } BMO_op_initf(bm, &op_sub, 0, "beautify_fill faces=%hf edges=ae use_restrict_tag=%b method=%i", BM_ELEM_TAG, true, 1); if (use_edgeout) { BMOIter siter; BMFace *f; BMO_ITER (f, &siter, op_sub.slots_in, "faces", BM_FACE) { BMO_face_flag_enable(bm, f, FACE_OUT); bm_face_edges_tag_out(bm, f); } } BMO_op_exec(bm, &op_sub); /* there may also be tagged faces that didn't rotate, mark input */ if (use_edgeout) { BMOIter siter; BMFace *f; BMO_ITER (f, &siter, op_sub.slots_out, "geom.out", BM_FACE) { BMO_face_flag_enable(bm, f, FACE_OUT); bm_face_edges_tag_out(bm, f); } } else { BMO_slot_buffer_flag_enable(bm, op_sub.slots_out, "geom.out", BM_FACE, FACE_OUT); } BMO_op_finish(bm, &op_sub); } if (use_edgeout && use_merge == false) { /* we've enabled all face edges above, now disable all loop edges */ struct BMEdgeLoopStore *estore_pair[2] = {el_store_a, el_store_b}; int i; for (i = 0; i < 2; i++) { LinkData *el; for (el = BM_edgeloop_verts_get(estore_pair[i])->first; el; el = el->next) { LinkData *el_next = BM_EDGELINK_NEXT(estore_pair[i], el); if (el_next) { if (el->data != el_next->data) { BMEdge *e = BM_edge_exists(el->data, el_next->data); BMO_edge_flag_disable(bm, e, EDGE_OUT); } } } } } if (el_store_b_free) { BM_edgeloop_free(el_store_b); } } void bmo_bridge_loops_exec(BMesh *bm, BMOperator *op) { ListBase eloops = {NULL}; LinkData *el_store; /* merge-bridge support */ const bool use_pairs = BMO_slot_bool_get(op->slots_in, "use_pairs"); const bool use_merge = BMO_slot_bool_get(op->slots_in, "use_merge"); const float merge_factor = BMO_slot_float_get(op->slots_in, "merge_factor"); const bool use_cyclic = BMO_slot_bool_get(op->slots_in, "use_cyclic") && (use_merge == false); const int twist_offset = BMO_slot_int_get(op->slots_in, "twist_offset"); int count; bool changed = false; BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, EDGE_MARK); count = BM_mesh_edgeloops_find(bm, &eloops, bm_edge_test_cb, bm); BM_mesh_edgeloops_calc_center(bm, &eloops); if (count < 2) { BMO_error_raise(bm, op, BMO_ERROR_CANCEL, "Select at least two edge loops"); goto cleanup; } if (use_pairs && (count % 2)) { BMO_error_raise(bm, op, BMO_ERROR_CANCEL, "Select an even number of loops to bridge pairs"); goto cleanup; } if (use_merge) { bool match = true; const int eloop_len = BM_edgeloop_length_get(eloops.first); for (el_store = eloops.first; el_store; el_store = el_store->next) { if (eloop_len != BM_edgeloop_length_get((struct BMEdgeLoopStore *)el_store)) { match = false; break; } } if (!match) { BMO_error_raise(bm, op, BMO_ERROR_CANCEL, "Selected loops must have equal edge counts"); goto cleanup; } } if (count > 2) { if (use_pairs) { BM_mesh_edgeloops_calc_normal(bm, &eloops); } BM_mesh_edgeloops_calc_order(bm, &eloops, use_pairs); } for (el_store = eloops.first; el_store; el_store = el_store->next) { LinkData *el_store_next = el_store->next; if (el_store_next == NULL) { if (use_cyclic && (count > 2)) { el_store_next = eloops.first; } else { break; } } bridge_loop_pair(bm, (struct BMEdgeLoopStore *)el_store, (struct BMEdgeLoopStore *)el_store_next, use_merge, merge_factor, twist_offset); if (use_pairs) { el_store = el_store->next; } changed = true; } cleanup: BM_mesh_edgeloops_free(&eloops); if (changed) { if (use_merge == false) { BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "faces.out", BM_FACE, FACE_OUT); BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "edges.out", BM_EDGE, EDGE_OUT); } } }