/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Joseph Eagar. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/bmesh/operators/bmo_utils.c * \ingroup bmesh * * utility bmesh operators, e.g. transform, * translate, rotate, scale, etc. */ #include "MEM_guardedalloc.h" #include "DNA_meshdata_types.h" #include "BLI_math.h" #include "BLI_array.h" #include "BLI_heap.h" #include "BKE_customdata.h" #include "bmesh.h" #include "intern/bmesh_operators_private.h" /* own include */ void bmo_create_vert_exec(BMesh *bm, BMOperator *op) { float vec[3]; BMO_slot_vec_get(op, "co", vec); BMO_elem_flag_enable(bm, BM_vert_create(bm, vec, NULL), 1); BMO_slot_buffer_from_enabled_flag(bm, op, "newvertout", BM_VERT, 1); } void bmo_transform_exec(BMesh *bm, BMOperator *op) { BMOIter iter; BMVert *v; float mat[4][4]; BMO_slot_mat4_get(op, "mat", mat); BMO_ITER (v, &iter, bm, op, "verts", BM_VERT) { mul_m4_v3(mat, v->co); } } void bmo_translate_exec(BMesh *bm, BMOperator *op) { float mat[4][4], vec[3]; BMO_slot_vec_get(op, "vec", vec); unit_m4(mat); copy_v3_v3(mat[3], vec); BMO_op_callf(bm, op->flag, "transform mat=%m4 verts=%s", mat, op, "verts"); } void bmo_scale_exec(BMesh *bm, BMOperator *op) { float mat[3][3], vec[3]; BMO_slot_vec_get(op, "vec", vec); unit_m3(mat); mat[0][0] = vec[0]; mat[1][1] = vec[1]; mat[2][2] = vec[2]; BMO_op_callf(bm, op->flag, "transform mat=%m3 verts=%s", mat, op, "verts"); } void bmo_rotate_exec(BMesh *bm, BMOperator *op) { float vec[3]; BMO_slot_vec_get(op, "cent", vec); /* there has to be a proper matrix way to do this, but * this is how editmesh did it and I'm too tired to think * through the math right now. */ mul_v3_fl(vec, -1.0f); BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec); BMO_op_callf(bm, op->flag, "transform mat=%s verts=%s", op, "mat", op, "verts"); mul_v3_fl(vec, -1.0f); BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec); } void bmo_reverse_faces_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMFace *f; BMO_ITER (f, &siter, bm, op, "faces", BM_FACE) { BM_face_normal_flip(bm, f); } } void bmo_rotate_edges_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMEdge *e, *e2; int ccw = BMO_slot_bool_get(op, "ccw"); int is_single = BMO_slot_buffer_count(bm, op, "edges") == 1; short check_flag = is_single ? BM_EDGEROT_CHECK_EXISTS : BM_EDGEROT_CHECK_EXISTS | BM_EDGEROT_CHECK_DEGENERATE; #define EDGE_OUT 1 #define FACE_TAINT 1 BMO_ITER (e, &siter, bm, op, "edges", BM_EDGE) { /** * this ends up being called twice, could add option to not to call check in * #BM_edge_rotate to get some extra speed */ if (BM_edge_rotate_check(e)) { BMFace *fa, *fb; if (BM_edge_face_pair(e, &fa, &fb)) { /* check we're untouched */ if (BMO_elem_flag_test(bm, fa, FACE_TAINT) == FALSE && BMO_elem_flag_test(bm, fb, FACE_TAINT) == FALSE) { if (!(e2 = BM_edge_rotate(bm, e, ccw, check_flag))) { #if 0 BMO_error_raise(bm, op, BMERR_INVALID_SELECTION, "Could not rotate edge"); return; #endif continue; } BMO_elem_flag_enable(bm, e2, EDGE_OUT); /* don't touch again */ BMO_elem_flag_enable(bm, fa, FACE_TAINT); BMO_elem_flag_enable(bm, fb, FACE_TAINT); } } } } BMO_slot_buffer_from_enabled_flag(bm, op, "edgeout", BM_EDGE, EDGE_OUT); #undef EDGE_OUT #undef FACE_TAINT } #define SEL_FLAG 1 #define SEL_ORIG 2 static void bmo_region_extend_extend(BMesh *bm, BMOperator *op, int usefaces) { BMVert *v; BMEdge *e; BMIter eiter; BMOIter siter; if (!usefaces) { BMO_ITER (v, &siter, bm, op, "geom", BM_VERT) { BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) if (!BMO_elem_flag_test(bm, e, SEL_ORIG)) break; } if (e) { BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) { BMO_elem_flag_enable(bm, e, SEL_FLAG); BMO_elem_flag_enable(bm, BM_edge_other_vert(e, v), SEL_FLAG); } } } } } else { BMIter liter, fiter; BMFace *f, *f2; BMLoop *l; BMO_ITER (f, &siter, bm, op, "geom", BM_FACE) { BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) { if (!BM_elem_flag_test(f2, BM_ELEM_HIDDEN)) { if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) { BMO_elem_flag_enable(bm, f2, SEL_FLAG); } } } } } } } static void bmo_region_extend_constrict(BMesh *bm, BMOperator *op, int usefaces) { BMVert *v; BMEdge *e; BMIter eiter; BMOIter siter; if (!usefaces) { BMO_ITER (v, &siter, bm, op, "geom", BM_VERT) { BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) if (!BMO_elem_flag_test(bm, e, SEL_ORIG)) break; } if (e) { BMO_elem_flag_enable(bm, v, SEL_FLAG); BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) { BMO_elem_flag_enable(bm, e, SEL_FLAG); } } } } } else { BMIter liter, fiter; BMFace *f, *f2; BMLoop *l; BMO_ITER (f, &siter, bm, op, "geom", BM_FACE) { BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) { if (!BM_elem_flag_test(f2, BM_ELEM_HIDDEN)) { if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) { BMO_elem_flag_enable(bm, f, SEL_FLAG); break; } } } } } } } void bmo_region_extend_exec(BMesh *bm, BMOperator *op) { int use_faces = BMO_slot_bool_get(op, "use_faces"); int constrict = BMO_slot_bool_get(op, "constrict"); BMO_slot_buffer_flag_enable(bm, op, "geom", BM_ALL, SEL_ORIG); if (constrict) bmo_region_extend_constrict(bm, op, use_faces); else bmo_region_extend_extend(bm, op, use_faces); BMO_slot_buffer_from_enabled_flag(bm, op, "geomout", BM_ALL, SEL_FLAG); } /********* righthand faces implementation ****** */ #define FACE_VIS 1 #define FACE_FLAG 2 #define FACE_MARK 4 #define FACE_FLIP 8 /* NOTE: these are the original recalc_face_normals comment in editmesh_mods.c, * copied here for reference. */ /* based at a select-connected to witness loose objects */ /* count per edge the amount of faces * find the ultimate left, front, upper face (not manhattan dist!!) * also evaluate both triangle cases in quad, since these can be non-flat * * put normal to the outside, and set the first direction flags in edges * * then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces * this is in fact the 'select connected' * * in case (selected) faces were not done: start over with 'find the ultimate ...' */ /* NOTE: this function uses recursion, which is a little unusual for a bmop * function, but acceptable I think. */ /* NOTE: BM_ELEM_TAG is used on faces to tell if they are flipped. */ void bmo_recalc_face_normals_exec(BMesh *bm, BMOperator *op) { BMIter liter, liter2; BMOIter siter; BMFace *f, *startf, **fstack = NULL; BLI_array_declare(fstack); BMLoop *l, *l2; float maxx, maxx_test, cent[3]; int i, i_max, flagflip = BMO_slot_bool_get(op, "do_flip"); startf = NULL; maxx = -1.0e10; BMO_slot_buffer_flag_enable(bm, op, "faces", BM_FACE, FACE_FLAG); /* find a starting face */ BMO_ITER (f, &siter, bm, op, "faces", BM_FACE) { /* clear dirty flag */ BM_elem_flag_disable(f, BM_ELEM_TAG); if (BMO_elem_flag_test(bm, f, FACE_VIS)) continue; if (!startf) startf = f; BM_face_calc_center_bounds(f, cent); if ((maxx_test = dot_v3v3(cent, cent)) > maxx) { maxx = maxx_test; startf = f; } } if (!startf) return; BM_face_calc_center_bounds(startf, cent); /* make sure the starting face has the correct winding */ if (dot_v3v3(cent, startf->no) < 0.0f) { BM_face_normal_flip(bm, startf); BMO_elem_flag_toggle(bm, startf, FACE_FLIP); if (flagflip) BM_elem_flag_toggle(startf, BM_ELEM_TAG); } /* now that we've found our starting face, make all connected faces * have the same winding. this is done recursively, using a manual * stack (if we use simple function recursion, we'd end up overloading * the stack on large meshes). */ BLI_array_grow_one(fstack); fstack[0] = startf; BMO_elem_flag_enable(bm, startf, FACE_VIS); i = 0; i_max = 1; while (i >= 0) { f = fstack[i]; i--; BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_ITER_ELEM (l2, &liter2, l, BM_LOOPS_OF_LOOP) { if (!BMO_elem_flag_test(bm, l2->f, FACE_FLAG) || l2 == l) continue; if (!BMO_elem_flag_test(bm, l2->f, FACE_VIS)) { BMO_elem_flag_enable(bm, l2->f, FACE_VIS); i++; if (l2->v == l->v) { BM_face_normal_flip(bm, l2->f); BMO_elem_flag_toggle(bm, l2->f, FACE_FLIP); if (flagflip) BM_elem_flag_toggle(l2->f, BM_ELEM_TAG); } else if (BM_elem_flag_test(l2->f, BM_ELEM_TAG) || BM_elem_flag_test(l->f, BM_ELEM_TAG)) { if (flagflip) { BM_elem_flag_disable(l->f, BM_ELEM_TAG); BM_elem_flag_disable(l2->f, BM_ELEM_TAG); } } if (i == i_max) { BLI_array_grow_one(fstack); i_max++; } fstack[i] = l2->f; } } } } BLI_array_free(fstack); /* check if we have faces yet to do. if so, recurse */ BMO_ITER (f, &siter, bm, op, "faces", BM_FACE) { if (!BMO_elem_flag_test(bm, f, FACE_VIS)) { bmo_recalc_face_normals_exec(bm, op); break; } } } void bmo_smooth_vert_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMIter iter; BMVert *v; BMEdge *e; BLI_array_declare(cos); float (*cos)[3] = NULL; float *co, *co2, clipdist = BMO_slot_float_get(op, "clipdist"); int i, j, clipx, clipy, clipz; int xaxis, yaxis, zaxis; clipx = BMO_slot_bool_get(op, "mirror_clip_x"); clipy = BMO_slot_bool_get(op, "mirror_clip_y"); clipz = BMO_slot_bool_get(op, "mirror_clip_z"); xaxis = BMO_slot_bool_get(op, "use_axis_x"); yaxis = BMO_slot_bool_get(op, "use_axis_y"); zaxis = BMO_slot_bool_get(op, "use_axis_z"); i = 0; BMO_ITER (v, &siter, bm, op, "verts", BM_VERT) { BLI_array_grow_one(cos); co = cos[i]; j = 0; BM_ITER_ELEM (e, &iter, v, BM_EDGES_OF_VERT) { co2 = BM_edge_other_vert(e, v)->co; add_v3_v3v3(co, co, co2); j += 1; } if (!j) { copy_v3_v3(co, v->co); i++; continue; } mul_v3_fl(co, 1.0f / (float)j); mid_v3_v3v3(co, co, v->co); if (clipx && fabsf(v->co[0]) <= clipdist) co[0] = 0.0f; if (clipy && fabsf(v->co[1]) <= clipdist) co[1] = 0.0f; if (clipz && fabsf(v->co[2]) <= clipdist) co[2] = 0.0f; i++; } i = 0; BMO_ITER (v, &siter, bm, op, "verts", BM_VERT) { if (xaxis) v->co[0] = cos[i][0]; if (yaxis) v->co[1] = cos[i][1]; if (zaxis) v->co[2] = cos[i][2]; i++; } BLI_array_free(cos); } /* * compute the fake surface of an ngon * This is done by decomposing the ngon into triangles who share the centroid of the ngon * while this method is far from being exact, it should guarantee an invariance. * * NOTE: This should probably go to bmesh_polygon.c */ static float ngon_fake_area(BMFace *f) { BMIter liter; BMLoop *l; int num_verts = 0; float v[3], sv[3], c[3]; float area = 0.0f; BM_face_calc_center_mean(f, c); BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { if (num_verts == 0) { copy_v3_v3(v, l->v->co); copy_v3_v3(sv, l->v->co); num_verts++; } else { area += area_tri_v3(v, c, l->v->co); copy_v3_v3(v, l->v->co); num_verts++; } } area += area_tri_v3(v, c, sv); return area; } /* * extra face data (computed data) */ typedef struct SimSel_FaceExt { BMFace *f; /* the face */ float c[3]; /* center */ union { float area; /* area */ float perim; /* perimeter */ float d; /* 4th component of plane (the first three being the normal) */ struct Image *t; /* image pointer */ }; } SimSel_FaceExt; /* * Select similar faces, the choices are in the enum in source/blender/bmesh/bmesh_operators.h * We select either similar faces based on material, image, area, perimeter, normal, or the coplanar faces */ void bmo_similar_faces_exec(BMesh *bm, BMOperator *op) { BMIter fm_iter; BMFace *fs, *fm; BMOIter fs_iter; int num_sels = 0, num_total = 0, i = 0, idx = 0; float angle = 0.0f; SimSel_FaceExt *f_ext = NULL; int *indices = NULL; float t_no[3]; /* temporary normal */ int type = BMO_slot_int_get(op, "type"); const float thresh = BMO_slot_float_get(op, "thresh"); const float thresh_radians = thresh * (float)M_PI; num_total = BM_mesh_elem_count(bm, BM_FACE); /* * The first thing to do is to iterate through all the the selected items and mark them since * they will be in the selection anyway. * This will increase performance, (especially when the number of originally selected faces is high) * so the overall complexity will be less than $O(mn)$ where is the total number of selected faces, * and n is the total number of faces */ BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) { if (!BMO_elem_flag_test(bm, fs, FACE_MARK)) { /* is this really needed ? */ BMO_elem_flag_enable(bm, fs, FACE_MARK); num_sels++; } } /* allocate memory for the selected faces indices and for all temporary faces */ indices = (int *)MEM_callocN(sizeof(int) * num_sels, "face indices util.c"); f_ext = (SimSel_FaceExt *)MEM_callocN(sizeof(SimSel_FaceExt) * num_total, "f_ext util.c"); /* loop through all the faces and fill the faces/indices structure */ BM_ITER_MESH (fm, &fm_iter, bm, BM_FACES_OF_MESH) { f_ext[i].f = fm; if (BMO_elem_flag_test(bm, fm, FACE_MARK)) { indices[idx] = i; idx++; } i++; } /* * Save us some computation burden: In case of perimeter/area/coplanar selection we compute * only once. */ if (type == SIMFACE_PERIMETER || type == SIMFACE_AREA || type == SIMFACE_COPLANAR || type == SIMFACE_IMAGE) { for (i = 0; i < num_total; i++) { switch (type) { case SIMFACE_PERIMETER: /* set the perimeter */ f_ext[i].perim = BM_face_calc_perimeter(f_ext[i].f); break; case SIMFACE_COPLANAR: /* compute the center of the polygon */ BM_face_calc_center_mean(f_ext[i].f, f_ext[i].c); /* normalize the polygon normal */ copy_v3_v3(t_no, f_ext[i].f->no); normalize_v3(t_no); /* compute the plane distance */ f_ext[i].d = dot_v3v3(t_no, f_ext[i].c); break; case SIMFACE_AREA: f_ext[i].area = ngon_fake_area(f_ext[i].f); break; case SIMFACE_IMAGE: f_ext[i].t = NULL; if (CustomData_has_layer(&(bm->pdata), CD_MTEXPOLY)) { MTexPoly *mtpoly = CustomData_bmesh_get(&bm->pdata, f_ext[i].f->head.data, CD_MTEXPOLY); f_ext[i].t = mtpoly->tpage; } break; } } } /* now select the rest (if any) */ for (i = 0; i < num_total; i++) { fm = f_ext[i].f; if (!BMO_elem_flag_test(bm, fm, FACE_MARK) && !BM_elem_flag_test(fm, BM_ELEM_HIDDEN)) { int cont = TRUE; for (idx = 0; idx < num_sels && cont == TRUE; idx++) { fs = f_ext[indices[idx]].f; switch (type) { case SIMFACE_MATERIAL: if (fm->mat_nr == fs->mat_nr) { BMO_elem_flag_enable(bm, fm, FACE_MARK); cont = FALSE; } break; case SIMFACE_IMAGE: if (f_ext[i].t == f_ext[indices[idx]].t) { BMO_elem_flag_enable(bm, fm, FACE_MARK); cont = FALSE; } break; case SIMFACE_NORMAL: angle = angle_normalized_v3v3(fs->no, fm->no); /* if the angle between the normals -> 0 */ if (angle <= thresh_radians) { BMO_elem_flag_enable(bm, fm, FACE_MARK); cont = FALSE; } break; case SIMFACE_COPLANAR: angle = angle_normalized_v3v3(fs->no, fm->no); /* angle -> 0 */ if (angle <= thresh_radians) { /* and dot product difference -> 0 */ if (fabsf(f_ext[i].d - f_ext[indices[idx]].d) <= thresh) { BMO_elem_flag_enable(bm, fm, FACE_MARK); cont = FALSE; } } break; case SIMFACE_AREA: if (fabsf(f_ext[i].area - f_ext[indices[idx]].area) <= thresh) { BMO_elem_flag_enable(bm, fm, FACE_MARK); cont = FALSE; } break; case SIMFACE_PERIMETER: if (fabsf(f_ext[i].perim - f_ext[indices[idx]].perim) <= thresh) { BMO_elem_flag_enable(bm, fm, FACE_MARK); cont = FALSE; } break; } } } } MEM_freeN(f_ext); MEM_freeN(indices); /* transfer all marked faces to the output slot */ BMO_slot_buffer_from_enabled_flag(bm, op, "faceout", BM_FACE, FACE_MARK); } /**************************************************************************** * * Similar Edges **************************************************************************** */ #define EDGE_MARK 1 /* * extra edge information */ typedef struct SimSel_EdgeExt { BMEdge *e; union { float dir[3]; float angle; /* angle between the face */ }; union { float length; /* edge length */ int faces; /* faces count */ }; } SimSel_EdgeExt; /* * select similar edges: the choices are in the enum in source/blender/bmesh/bmesh_operators.h * choices are length, direction, face, ... */ void bmo_similar_edges_exec(BMesh *bm, BMOperator *op) { BMOIter es_iter; /* selected edges iterator */ BMIter e_iter; /* mesh edges iterator */ BMEdge *es; /* selected edge */ BMEdge *e; /* mesh edge */ int idx = 0, i = 0 /* , f = 0 */; int *indices = NULL; SimSel_EdgeExt *e_ext = NULL; // float *angles = NULL; float angle; int num_sels = 0, num_total = 0; int type = BMO_slot_int_get(op, "type"); const float thresh = BMO_slot_float_get(op, "thresh"); /* sanity checks that the data we need is available */ switch (type) { case SIMEDGE_CREASE: if (!CustomData_has_layer(&bm->edata, CD_CREASE)) { return; } break; case SIMEDGE_BEVEL: if (!CustomData_has_layer(&bm->edata, CD_BWEIGHT)) { return; } break; } num_total = BM_mesh_elem_count(bm, BM_EDGE); /* iterate through all selected edges and mark them */ BMO_ITER (es, &es_iter, bm, op, "edges", BM_EDGE) { BMO_elem_flag_enable(bm, es, EDGE_MARK); num_sels++; } /* allocate memory for the selected edges indices and for all temporary edges */ indices = (int *)MEM_callocN(sizeof(int) * num_sels, __func__); e_ext = (SimSel_EdgeExt *)MEM_callocN(sizeof(SimSel_EdgeExt) * num_total, __func__); /* loop through all the edges and fill the edges/indices structure */ BM_ITER_MESH (e, &e_iter, bm, BM_EDGES_OF_MESH) { e_ext[i].e = e; if (BMO_elem_flag_test(bm, e, EDGE_MARK)) { indices[idx] = i; idx++; } i++; } /* save us some computation time by doing heavy computation once */ if (type == SIMEDGE_LENGTH || type == SIMEDGE_FACE || type == SIMEDGE_DIR || type == SIMEDGE_FACE_ANGLE) { for (i = 0; i < num_total; i++) { switch (type) { case SIMEDGE_LENGTH: /* compute the length of the edge */ e_ext[i].length = len_v3v3(e_ext[i].e->v1->co, e_ext[i].e->v2->co); break; case SIMEDGE_DIR: /* compute the direction */ sub_v3_v3v3(e_ext[i].dir, e_ext[i].e->v1->co, e_ext[i].e->v2->co); normalize_v3(e_ext[i].dir); break; case SIMEDGE_FACE: /* count the faces around the edge */ e_ext[i].faces = BM_edge_face_count(e_ext[i].e); break; case SIMEDGE_FACE_ANGLE: e_ext[i].faces = BM_edge_face_count(e_ext[i].e); if (e_ext[i].faces == 2) e_ext[i].angle = BM_edge_calc_face_angle(e_ext[i].e); break; } } } /* select the edges if any */ for (i = 0; i < num_total; i++) { e = e_ext[i].e; if (!BMO_elem_flag_test(bm, e, EDGE_MARK) && !BM_elem_flag_test(e, BM_ELEM_HIDDEN)) { int cont = TRUE; for (idx = 0; idx < num_sels && cont == TRUE; idx++) { es = e_ext[indices[idx]].e; switch (type) { case SIMEDGE_LENGTH: if (fabsf(e_ext[i].length - e_ext[indices[idx]].length) <= thresh) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } break; case SIMEDGE_DIR: /* compute the angle between the two edges */ angle = angle_normalized_v3v3(e_ext[i].dir, e_ext[indices[idx]].dir); if (angle > (float)(M_PI / 2.0)) /* use the smallest angle between the edges */ angle = fabsf(angle - (float)M_PI); if (angle / (float)(M_PI / 2.0) <= thresh) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } break; case SIMEDGE_FACE: if (e_ext[i].faces == e_ext[indices[idx]].faces) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } break; case SIMEDGE_FACE_ANGLE: if (e_ext[i].faces == 2) { if (e_ext[indices[idx]].faces == 2) { if (fabsf(e_ext[i].angle - e_ext[indices[idx]].angle) <= thresh) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } } } else { cont = FALSE; } break; case SIMEDGE_CREASE: { float *c1, *c2; c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_CREASE); c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_CREASE); if (fabsf(*c1 - *c2) <= thresh) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } } break; case SIMEDGE_BEVEL: { float *c1, *c2; c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_BWEIGHT); c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_BWEIGHT); if (fabsf(*c1 - *c2) <= thresh) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } } break; case SIMEDGE_SEAM: if (BM_elem_flag_test(e, BM_ELEM_SEAM) == BM_elem_flag_test(es, BM_ELEM_SEAM)) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } break; case SIMEDGE_SHARP: if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) == BM_elem_flag_test(es, BM_ELEM_SMOOTH)) { BMO_elem_flag_enable(bm, e, EDGE_MARK); cont = FALSE; } break; } } } } MEM_freeN(e_ext); MEM_freeN(indices); /* transfer all marked edges to the output slot */ BMO_slot_buffer_from_enabled_flag(bm, op, "edgeout", BM_EDGE, EDGE_MARK); } /**************************************************************************** * * Similar Vertices **************************************************************************** */ #define VERT_MARK 1 typedef struct SimSel_VertExt { BMVert *v; union { int num_faces; /* adjacent faces */ int num_edges; /* adjacent edges */ MDeformVert *dvert; /* deform vertex */ }; } SimSel_VertExt; /* * select similar vertices: the choices are in the enum in source/blender/bmesh/bmesh_operators.h * choices are normal, face, vertex group... */ void bmo_similar_verts_exec(BMesh *bm, BMOperator *op) { BMOIter vs_iter; /* selected verts iterator */ BMIter v_iter; /* mesh verts iterator */ BMVert *vs; /* selected vertex */ BMVert *v; /* mesh vertex */ SimSel_VertExt *v_ext = NULL; int *indices = NULL; int num_total = 0, num_sels = 0, i = 0, idx = 0; int type = BMO_slot_int_get(op, "type"); const float thresh = BMO_slot_float_get(op, "thresh"); const float thresh_radians = thresh * (float)M_PI; num_total = BM_mesh_elem_count(bm, BM_VERT); /* iterate through all selected edges and mark them */ BMO_ITER (vs, &vs_iter, bm, op, "verts", BM_VERT) { BMO_elem_flag_enable(bm, vs, VERT_MARK); num_sels++; } /* allocate memory for the selected vertices indices and for all temporary vertices */ indices = (int *)MEM_mallocN(sizeof(int) * num_sels, "vertex indices"); v_ext = (SimSel_VertExt *)MEM_mallocN(sizeof(SimSel_VertExt) * num_total, "vertex extra"); /* loop through all the vertices and fill the vertices/indices structure */ BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) { v_ext[i].v = v; if (BMO_elem_flag_test(bm, v, VERT_MARK)) { indices[idx] = i; idx++; } switch (type) { case SIMVERT_FACE: /* calling BM_vert_face_count every time is time consumming, so call it only once per vertex */ v_ext[i].num_faces = BM_vert_face_count(v); break; case SIMVERT_VGROUP: if (CustomData_has_layer(&(bm->vdata), CD_MDEFORMVERT)) { v_ext[i].dvert = CustomData_bmesh_get(&bm->vdata, v_ext[i].v->head.data, CD_MDEFORMVERT); } else { v_ext[i].dvert = NULL; } break; case SIMVERT_EDGE: v_ext[i].num_edges = BM_vert_edge_count(v); break; } i++; } /* select the vertices if any */ for (i = 0; i < num_total; i++) { v = v_ext[i].v; if (!BMO_elem_flag_test(bm, v, VERT_MARK) && !BM_elem_flag_test(v, BM_ELEM_HIDDEN)) { int cont = TRUE; for (idx = 0; idx < num_sels && cont == TRUE; idx++) { vs = v_ext[indices[idx]].v; switch (type) { case SIMVERT_NORMAL: /* compare the angle between the normals */ if (angle_normalized_v3v3(v->no, vs->no) <= thresh_radians) { BMO_elem_flag_enable(bm, v, VERT_MARK); cont = FALSE; } break; case SIMVERT_FACE: /* number of adjacent faces */ if (v_ext[i].num_faces == v_ext[indices[idx]].num_faces) { BMO_elem_flag_enable(bm, v, VERT_MARK); cont = FALSE; } break; case SIMVERT_VGROUP: if (v_ext[i].dvert != NULL && v_ext[indices[idx]].dvert != NULL) { int v1, v2; for (v1 = 0; v1 < v_ext[i].dvert->totweight && cont == 1; v1++) { for (v2 = 0; v2 < v_ext[indices[idx]].dvert->totweight; v2++) { if (v_ext[i].dvert->dw[v1].def_nr == v_ext[indices[idx]].dvert->dw[v2].def_nr) { BMO_elem_flag_enable(bm, v, VERT_MARK); cont = FALSE; break; } } } } break; case SIMVERT_EDGE: /* number of adjacent edges */ if (v_ext[i].num_edges == v_ext[indices[idx]].num_edges) { BMO_elem_flag_enable(bm, v, VERT_MARK); cont = FALSE; } break; } } } } MEM_freeN(indices); MEM_freeN(v_ext); BMO_slot_buffer_from_enabled_flag(bm, op, "vertout", BM_VERT, VERT_MARK); } /**************************************************************************** * * Cycle UVs for a face **************************************************************************** */ void bmo_rotate_uvs_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ // int n; int dir = BMO_slot_int_get(op, "dir"); BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPUV)) { if (dir == DIRECTION_CW) { /* same loops direction */ BMLoop *lf; /* current face loops */ MLoopUV *f_luv; /* first face loop uv */ float p_uv[2]; /* previous uvs */ float t_uv[2]; /* tmp uvs */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* current loop uv is the previous loop uv */ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); if (n == 0) { f_luv = luv; copy_v2_v2(p_uv, luv->uv); } else { copy_v2_v2(t_uv, luv->uv); copy_v2_v2(luv->uv, p_uv); copy_v2_v2(p_uv, t_uv); } n++; } copy_v2_v2(f_luv->uv, p_uv); } else if (dir == DIRECTION_CCW) { /* counter loop direction */ BMLoop *lf; /* current face loops */ MLoopUV *p_luv; /* previous loop uv */ MLoopUV *luv; float t_uv[2]; /* current uvs */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* previous loop uv is the current loop uv */ luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); if (n == 0) { p_luv = luv; copy_v2_v2(t_uv, luv->uv); } else { copy_v2_v2(p_luv->uv, luv->uv); p_luv = luv; } n++; } copy_v2_v2(luv->uv, t_uv); } } } } /**************************************************************************** * * Reverse UVs for a face **************************************************************************** */ void bmo_reverse_uvs_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ BLI_array_declare(uvs); float (*uvs)[2] = NULL; BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPUV)) { BMLoop *lf; /* current face loops */ int i; BLI_array_empty(uvs); BLI_array_grow_items(uvs, fs->len); BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); /* current loop uv is the previous loop uv */ copy_v2_v2(uvs[i], luv->uv); } /* now that we have the uvs in the array, reverse! */ i = 0; BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { /* current loop uv is the previous loop uv */ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); copy_v2_v2(luv->uv, uvs[(fs->len - i - 1)]); } } } BLI_array_free(uvs); } /**************************************************************************** * * Cycle colors for a face **************************************************************************** */ void bmo_rotate_colors_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ // int n; int dir = BMO_slot_int_get(op, "dir"); BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL)) { if (dir == DIRECTION_CW) { /* same loops direction */ BMLoop *lf; /* current face loops */ MLoopCol *f_lcol; /* first face loop color */ MLoopCol p_col; /* previous color */ MLoopCol t_col; /* tmp color */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* current loop color is the previous loop color */ MLoopCol *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); if (n == 0) { f_lcol = luv; p_col = *luv; } else { t_col = *luv; *luv = p_col; p_col = t_col; } n++; } *f_lcol = p_col; } else if (dir == DIRECTION_CCW) { /* counter loop direction */ BMLoop *lf; /* current face loops */ MLoopCol *p_lcol; /* previous loop color */ MLoopCol *lcol; MLoopCol t_col; /* current color */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* previous loop color is the current loop color */ lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); if (n == 0) { p_lcol = lcol; t_col = *lcol; } else { *p_lcol = *lcol; p_lcol = lcol; } n++; } *lcol = t_col; } } } } /*************************************************************************** * * Reverse colors for a face *************************************************************************** */ void bmo_reverse_colors_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ BLI_array_declare(cols); MLoopCol *cols = NULL; BMO_ITER (fs, &fs_iter, bm, op, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL)) { BMLoop *lf; /* current face loops */ int i; BLI_array_empty(cols); BLI_array_grow_items(cols, fs->len); BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { cols[i] = *((MLoopCol *)CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL)); } /* now that we have the uvs in the array, reverse! */ BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { /* current loop uv is the previous loop color */ MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); *lcol = cols[(fs->len - i - 1)]; } } } BLI_array_free(cols); } /*************************************************************************** * * shortest vertex path select *************************************************************************** */ typedef struct ElemNode { BMVert *v; /* vertex */ BMVert *parent; /* node parent id */ float weight; /* node weight */ HeapNode *hn; /* heap node */ } ElemNode; void bmo_shortest_path_exec(BMesh *bm, BMOperator *op) { BMOIter vs_iter /* , vs2_iter */; /* selected verts iterator */ BMIter v_iter; /* mesh verts iterator */ BMVert *vs, *sv, *ev; /* starting vertex, ending vertex */ BMVert *v; /* mesh vertex */ Heap *h = NULL; ElemNode *vert_list = NULL; int num_total = 0 /*, num_sels = 0 */, i = 0; int type = BMO_slot_int_get(op, "type"); BMO_ITER (vs, &vs_iter, bm, op, "startv", BM_VERT) { sv = vs; } BMO_ITER (vs, &vs_iter, bm, op, "endv", BM_VERT) { ev = vs; } num_total = BM_mesh_elem_count(bm, BM_VERT); /* allocate memory for the nodes */ vert_list = (ElemNode *)MEM_mallocN(sizeof(ElemNode) * num_total, "vertex nodes"); /* iterate through all the mesh vertices */ /* loop through all the vertices and fill the vertices/indices structure */ i = 0; BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) { vert_list[i].v = v; vert_list[i].parent = NULL; vert_list[i].weight = FLT_MAX; BM_elem_index_set(v, i); /* set_inline */ i++; } bm->elem_index_dirty &= ~BM_VERT; /* * we now have everything we need, start Dijkstra path finding algorithm */ /* set the distance/weight of the start vertex to 0 */ vert_list[BM_elem_index_get(sv)].weight = 0.0f; h = BLI_heap_new(); for (i = 0; i < num_total; i++) { vert_list[i].hn = BLI_heap_insert(h, vert_list[i].weight, vert_list[i].v); } while (!BLI_heap_empty(h)) { BMEdge *e; BMIter e_i; float v_weight; /* take the vertex with the lowest weight out of the heap */ BMVert *v = (BMVert *)BLI_heap_popmin(h); if (vert_list[BM_elem_index_get(v)].weight == FLT_MAX) /* this means that there is no path */ break; v_weight = vert_list[BM_elem_index_get(v)].weight; BM_ITER_ELEM (e, &e_i, v, BM_EDGES_OF_VERT) { BMVert *u; float e_weight = v_weight; if (type == VPATH_SELECT_EDGE_LENGTH) e_weight += len_v3v3(e->v1->co, e->v2->co); else e_weight += 1.0f; u = (e->v1 == v) ? e->v2 : e->v1; if (e_weight < vert_list[BM_elem_index_get(u)].weight) { /* is this path shorter ? */ /* add it if so */ vert_list[BM_elem_index_get(u)].parent = v; vert_list[BM_elem_index_get(u)].weight = e_weight; /* we should do a heap update node function!!! :-/ */ BLI_heap_remove(h, vert_list[BM_elem_index_get(u)].hn); BLI_heap_insert(h, e_weight, u); } } } /* now we trace the path (if it exists) */ v = ev; while (vert_list[BM_elem_index_get(v)].parent != NULL) { BMO_elem_flag_enable(bm, v, VERT_MARK); v = vert_list[BM_elem_index_get(v)].parent; } BLI_heap_free(h, NULL); MEM_freeN(vert_list); BMO_slot_buffer_from_enabled_flag(bm, op, "vertout", BM_VERT, VERT_MARK); }