/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Joseph Eagar. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/bmesh/operators/bmo_utils.c * \ingroup bmesh * * utility bmesh operators, e.g. transform, * translate, rotate, scale, etc. */ #include "MEM_guardedalloc.h" #include "DNA_meshdata_types.h" #include "BLI_math.h" #include "BLI_array.h" #include "BLI_heap.h" #include "BKE_customdata.h" #include "bmesh.h" #include "intern/bmesh_operators_private.h" /* own include */ void bmo_create_vert_exec(BMesh *bm, BMOperator *op) { float vec[3]; BMO_slot_vec_get(op->slots_in, "co", vec); BMO_elem_flag_enable(bm, BM_vert_create(bm, vec, NULL, 0), 1); BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "vert.out", BM_VERT, 1); } void bmo_transform_exec(BMesh *UNUSED(bm), BMOperator *op) { BMOIter iter; BMVert *v; float mat[4][4]; BMO_slot_mat4_get(op->slots_in, "matrix", mat); BMO_ITER (v, &iter, op->slots_in, "verts", BM_VERT) { mul_m4_v3(mat, v->co); } } void bmo_translate_exec(BMesh *bm, BMOperator *op) { float mat[4][4], vec[3]; BMO_slot_vec_get(op->slots_in, "vec", vec); unit_m4(mat); copy_v3_v3(mat[3], vec); BMO_op_callf(bm, op->flag, "transform matrix=%m4 verts=%s", mat, op, "verts"); } void bmo_scale_exec(BMesh *bm, BMOperator *op) { float mat[3][3], vec[3]; BMO_slot_vec_get(op->slots_in, "vec", vec); unit_m3(mat); mat[0][0] = vec[0]; mat[1][1] = vec[1]; mat[2][2] = vec[2]; BMO_op_callf(bm, op->flag, "transform matrix=%m3 verts=%s", mat, op, "verts"); } void bmo_rotate_exec(BMesh *bm, BMOperator *op) { float vec[3]; BMO_slot_vec_get(op->slots_in, "cent", vec); /* there has to be a proper matrix way to do this, but * this is how editmesh did it and I'm too tired to think * through the math right now. */ mul_v3_fl(vec, -1.0f); BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec); BMO_op_callf(bm, op->flag, "transform matrix=%s verts=%s", op, "matrix", op, "verts"); mul_v3_fl(vec, -1.0f); BMO_op_callf(bm, op->flag, "translate verts=%s vec=%v", op, "verts", vec); } void bmo_reverse_faces_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMFace *f; BMO_ITER (f, &siter, op->slots_in, "faces", BM_FACE) { BM_face_normal_flip(bm, f); } } void bmo_rotate_edges_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMEdge *e, *e2; const bool use_ccw = BMO_slot_bool_get(op->slots_in, "use_ccw"); const bool is_single = BMO_slot_buffer_count(op->slots_in, "edges") == 1; short check_flag = is_single ? BM_EDGEROT_CHECK_EXISTS : BM_EDGEROT_CHECK_EXISTS | BM_EDGEROT_CHECK_DEGENERATE; #define EDGE_OUT 1 #define FACE_TAINT 1 BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) { /** * this ends up being called twice, could add option to not to call check in * #BM_edge_rotate to get some extra speed */ if (BM_edge_rotate_check(e)) { BMFace *fa, *fb; if (BM_edge_face_pair(e, &fa, &fb)) { /* check we're untouched */ if (BMO_elem_flag_test(bm, fa, FACE_TAINT) == false && BMO_elem_flag_test(bm, fb, FACE_TAINT) == false) { if (!(e2 = BM_edge_rotate(bm, e, use_ccw, check_flag))) { #if 0 BMO_error_raise(bm, op, BMERR_INVALID_SELECTION, "Could not rotate edge"); return; #endif continue; } BMO_elem_flag_enable(bm, e2, EDGE_OUT); /* don't touch again */ BMO_elem_flag_enable(bm, fa, FACE_TAINT); BMO_elem_flag_enable(bm, fb, FACE_TAINT); } } } } BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "edges.out", BM_EDGE, EDGE_OUT); #undef EDGE_OUT #undef FACE_TAINT } #define SEL_FLAG 1 #define SEL_ORIG 2 static void bmo_region_extend_extend(BMesh *bm, BMOperator *op, const bool use_faces) { BMVert *v; BMEdge *e; BMIter eiter; BMOIter siter; if (!use_faces) { BMO_ITER (v, &siter, op->slots_in, "geom", BM_VERT) { BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) if (!BMO_elem_flag_test(bm, e, SEL_ORIG)) break; } if (e) { BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) { BMO_elem_flag_enable(bm, e, SEL_FLAG); BMO_elem_flag_enable(bm, BM_edge_other_vert(e, v), SEL_FLAG); } } } } } else { BMIter liter, fiter; BMFace *f, *f2; BMLoop *l; BMO_ITER (f, &siter, op->slots_in, "geom", BM_FACE) { BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) { if (!BM_elem_flag_test(f2, BM_ELEM_HIDDEN)) { if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) { BMO_elem_flag_enable(bm, f2, SEL_FLAG); } } } } } } } static void bmo_region_extend_constrict(BMesh *bm, BMOperator *op, const bool use_faces) { BMVert *v; BMEdge *e; BMIter eiter; BMOIter siter; if (!use_faces) { BMO_ITER (v, &siter, op->slots_in, "geom", BM_VERT) { BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) if (!BMO_elem_flag_test(bm, e, SEL_ORIG)) break; } if (e) { BMO_elem_flag_enable(bm, v, SEL_FLAG); BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) { if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) { BMO_elem_flag_enable(bm, e, SEL_FLAG); } } } } } else { BMIter liter, fiter; BMFace *f, *f2; BMLoop *l; BMO_ITER (f, &siter, op->slots_in, "geom", BM_FACE) { BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_ITER_ELEM (f2, &fiter, l->e, BM_FACES_OF_EDGE) { if (!BM_elem_flag_test(f2, BM_ELEM_HIDDEN)) { if (!BMO_elem_flag_test(bm, f2, SEL_ORIG)) { BMO_elem_flag_enable(bm, f, SEL_FLAG); break; } } } } } } } void bmo_region_extend_exec(BMesh *bm, BMOperator *op) { const bool use_faces = BMO_slot_bool_get(op->slots_in, "use_faces"); const bool constrict = BMO_slot_bool_get(op->slots_in, "use_constrict"); BMO_slot_buffer_flag_enable(bm, op->slots_in, "geom", BM_ALL_NOLOOP, SEL_ORIG); if (constrict) bmo_region_extend_constrict(bm, op, use_faces); else bmo_region_extend_extend(bm, op, use_faces); BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "geom.out", BM_ALL_NOLOOP, SEL_FLAG); } /********* righthand faces implementation ****** */ #define FACE_VIS 1 #define FACE_FLAG 2 // #define FACE_MARK 4 /* UNUSED */ #define FACE_FLIP 8 /* NOTE: these are the original recalc_face_normals comment in editmesh_mods.c, * copied here for reference. */ /* based at a select-connected to witness loose objects */ /* count per edge the amount of faces * find the ultimate left, front, upper face (not manhattan dist!!) * also evaluate both triangle cases in quad, since these can be non-flat * * put normal to the outside, and set the first direction flags in edges * * then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces * this is in fact the 'select connected' * * in case (selected) faces were not done: start over with 'find the ultimate ...' */ /* NOTE: this function uses recursion, which is a little unusual for a bmop * function, but acceptable I think. */ /* NOTE: BM_ELEM_TAG is used on faces to tell if they are flipped. */ void bmo_recalc_face_normals_exec(BMesh *bm, BMOperator *op) { BMIter liter, liter2; BMOIter siter; BMFace *f, *startf, **fstack = NULL; BLI_array_declare(fstack); BMLoop *l, *l2; float maxx, maxx_test, cent[3]; int i, i_max; const bool use_flip = BMO_slot_bool_get(op->slots_in, "use_flip"); startf = NULL; maxx = -1.0e10; BMO_slot_buffer_flag_enable(bm, op->slots_in, "faces", BM_FACE, FACE_FLAG); /* find a starting face */ BMO_ITER (f, &siter, op->slots_in, "faces", BM_FACE) { /* clear dirty flag */ BM_elem_flag_disable(f, BM_ELEM_TAG); if (BMO_elem_flag_test(bm, f, FACE_VIS)) continue; if (!startf) startf = f; BM_face_calc_center_bounds(f, cent); if ((maxx_test = dot_v3v3(cent, cent)) > maxx) { maxx = maxx_test; startf = f; } } if (!startf) return; BM_face_calc_center_bounds(startf, cent); /* make sure the starting face has the correct winding */ if (dot_v3v3(cent, startf->no) < 0.0f) { BM_face_normal_flip(bm, startf); BMO_elem_flag_toggle(bm, startf, FACE_FLIP); if (use_flip) BM_elem_flag_toggle(startf, BM_ELEM_TAG); } /* now that we've found our starting face, make all connected faces * have the same winding. this is done recursively, using a manual * stack (if we use simple function recursion, we'd end up overloading * the stack on large meshes). */ BLI_array_grow_one(fstack); fstack[0] = startf; BMO_elem_flag_enable(bm, startf, FACE_VIS); i = 0; i_max = 1; while (i >= 0) { f = fstack[i]; i--; BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_ITER_ELEM (l2, &liter2, l, BM_LOOPS_OF_LOOP) { if (!BMO_elem_flag_test(bm, l2->f, FACE_FLAG) || l2 == l) continue; if (!BMO_elem_flag_test(bm, l2->f, FACE_VIS)) { BMO_elem_flag_enable(bm, l2->f, FACE_VIS); i++; if (l2->v == l->v) { BM_face_normal_flip(bm, l2->f); BMO_elem_flag_toggle(bm, l2->f, FACE_FLIP); if (use_flip) BM_elem_flag_toggle(l2->f, BM_ELEM_TAG); } else if (BM_elem_flag_test(l2->f, BM_ELEM_TAG) || BM_elem_flag_test(l->f, BM_ELEM_TAG)) { if (use_flip) { BM_elem_flag_disable(l->f, BM_ELEM_TAG); BM_elem_flag_disable(l2->f, BM_ELEM_TAG); } } if (i == i_max) { BLI_array_grow_one(fstack); i_max++; } fstack[i] = l2->f; } } } } BLI_array_free(fstack); /* check if we have faces yet to do. if so, recurse */ BMO_ITER (f, &siter, op->slots_in, "faces", BM_FACE) { if (!BMO_elem_flag_test(bm, f, FACE_VIS)) { bmo_recalc_face_normals_exec(bm, op); break; } } } void bmo_smooth_vert_exec(BMesh *UNUSED(bm), BMOperator *op) { BMOIter siter; BMIter iter; BMVert *v; BMEdge *e; BLI_array_declare(cos); float (*cos)[3] = NULL; float *co, *co2, clip_dist = BMO_slot_float_get(op->slots_in, "clip_dist"); int i, j, clipx, clipy, clipz; int xaxis, yaxis, zaxis; clipx = BMO_slot_bool_get(op->slots_in, "mirror_clip_x"); clipy = BMO_slot_bool_get(op->slots_in, "mirror_clip_y"); clipz = BMO_slot_bool_get(op->slots_in, "mirror_clip_z"); xaxis = BMO_slot_bool_get(op->slots_in, "use_axis_x"); yaxis = BMO_slot_bool_get(op->slots_in, "use_axis_y"); zaxis = BMO_slot_bool_get(op->slots_in, "use_axis_z"); i = 0; BMO_ITER (v, &siter, op->slots_in, "verts", BM_VERT) { BLI_array_grow_one(cos); co = cos[i]; zero_v3(co); j = 0; BM_ITER_ELEM (e, &iter, v, BM_EDGES_OF_VERT) { co2 = BM_edge_other_vert(e, v)->co; add_v3_v3v3(co, co, co2); j += 1; } if (!j) { copy_v3_v3(co, v->co); i++; continue; } mul_v3_fl(co, 1.0f / (float)j); mid_v3_v3v3(co, co, v->co); if (clipx && fabsf(v->co[0]) <= clip_dist) co[0] = 0.0f; if (clipy && fabsf(v->co[1]) <= clip_dist) co[1] = 0.0f; if (clipz && fabsf(v->co[2]) <= clip_dist) co[2] = 0.0f; i++; } i = 0; BMO_ITER (v, &siter, op->slots_in, "verts", BM_VERT) { if (xaxis) v->co[0] = cos[i][0]; if (yaxis) v->co[1] = cos[i][1]; if (zaxis) v->co[2] = cos[i][2]; i++; } BLI_array_free(cos); } /**************************************************************************** * * Cycle UVs for a face **************************************************************************** */ void bmo_rotate_uvs_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ const bool use_ccw = BMO_slot_bool_get(op->slots_in, "use_ccw"); BMO_ITER (fs, &fs_iter, op->slots_in, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPUV)) { if (use_ccw == false) { /* same loops direction */ BMLoop *lf; /* current face loops */ MLoopUV *f_luv; /* first face loop uv */ float p_uv[2]; /* previous uvs */ float t_uv[2]; /* tmp uvs */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* current loop uv is the previous loop uv */ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); if (n == 0) { f_luv = luv; copy_v2_v2(p_uv, luv->uv); } else { copy_v2_v2(t_uv, luv->uv); copy_v2_v2(luv->uv, p_uv); copy_v2_v2(p_uv, t_uv); } n++; } copy_v2_v2(f_luv->uv, p_uv); } else { /* counter loop direction */ BMLoop *lf; /* current face loops */ MLoopUV *p_luv; /* previous loop uv */ MLoopUV *luv; float t_uv[2]; /* current uvs */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* previous loop uv is the current loop uv */ luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); if (n == 0) { p_luv = luv; copy_v2_v2(t_uv, luv->uv); } else { copy_v2_v2(p_luv->uv, luv->uv); p_luv = luv; } n++; } copy_v2_v2(luv->uv, t_uv); } } } } /**************************************************************************** * * Reverse UVs for a face **************************************************************************** */ void bmo_reverse_uvs_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ BLI_array_declare(uvs); float (*uvs)[2] = NULL; BMO_ITER (fs, &fs_iter, op->slots_in, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPUV)) { BMLoop *lf; /* current face loops */ int i; BLI_array_empty(uvs); BLI_array_grow_items(uvs, fs->len); BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); /* current loop uv is the previous loop uv */ copy_v2_v2(uvs[i], luv->uv); } /* now that we have the uvs in the array, reverse! */ BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { /* current loop uv is the previous loop uv */ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); copy_v2_v2(luv->uv, uvs[(fs->len - i - 1)]); } } } BLI_array_free(uvs); } /**************************************************************************** * * Cycle colors for a face **************************************************************************** */ void bmo_rotate_colors_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ const bool use_ccw = BMO_slot_bool_get(op->slots_in, "use_ccw"); BMO_ITER (fs, &fs_iter, op->slots_in, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL)) { if (use_ccw == false) { /* same loops direction */ BMLoop *lf; /* current face loops */ MLoopCol *f_lcol; /* first face loop color */ MLoopCol p_col; /* previous color */ MLoopCol t_col; /* tmp color */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* current loop color is the previous loop color */ MLoopCol *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); if (n == 0) { f_lcol = luv; p_col = *luv; } else { t_col = *luv; *luv = p_col; p_col = t_col; } n++; } *f_lcol = p_col; } else { /* counter loop direction */ BMLoop *lf; /* current face loops */ MLoopCol *p_lcol; /* previous loop color */ MLoopCol *lcol; MLoopCol t_col; /* current color */ int n = 0; BM_ITER_ELEM (lf, &l_iter, fs, BM_LOOPS_OF_FACE) { /* previous loop color is the current loop color */ lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); if (n == 0) { p_lcol = lcol; t_col = *lcol; } else { *p_lcol = *lcol; p_lcol = lcol; } n++; } *lcol = t_col; } } } } /*************************************************************************** * * Reverse colors for a face *************************************************************************** */ void bmo_reverse_colors_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ BLI_array_declare(cols); MLoopCol *cols = NULL; BMO_ITER (fs, &fs_iter, op->slots_in, "faces", BM_FACE) { if (CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL)) { BMLoop *lf; /* current face loops */ int i; BLI_array_empty(cols); BLI_array_grow_items(cols, fs->len); BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { cols[i] = *((MLoopCol *)CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL)); } /* now that we have the uvs in the array, reverse! */ BM_ITER_ELEM_INDEX (lf, &l_iter, fs, BM_LOOPS_OF_FACE, i) { /* current loop uv is the previous loop color */ MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); *lcol = cols[(fs->len - i - 1)]; } } } BLI_array_free(cols); } /*************************************************************************** * * shortest vertex path select *************************************************************************** */ typedef struct ElemNode { BMVert *v; /* vertex */ BMVert *parent; /* node parent id */ float weight; /* node weight */ HeapNode *hn; /* heap node */ } ElemNode; #define VERT_MARK 1 void bmo_shortest_path_exec(BMesh *bm, BMOperator *op) { BMIter v_iter; /* mesh verts iterator */ BMVert *sv, *ev; /* starting vertex, ending vertex */ BMVert *v; /* mesh vertex */ Heap *h = NULL; ElemNode *vert_list = NULL; int num_total = 0 /*, num_sels = 0 */, i = 0; const int type = BMO_slot_int_get(op->slots_in, "type"); sv = BMO_slot_buffer_get_single(BMO_slot_get(op->slots_in, "vert_start")); ev = BMO_slot_buffer_get_single(BMO_slot_get(op->slots_in, "vert_end")); num_total = BM_mesh_elem_count(bm, BM_VERT); /* allocate memory for the nodes */ vert_list = (ElemNode *)MEM_mallocN(sizeof(ElemNode) * num_total, "vertex nodes"); /* iterate through all the mesh vertices */ /* loop through all the vertices and fill the vertices/indices structure */ i = 0; BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) { vert_list[i].v = v; vert_list[i].parent = NULL; vert_list[i].weight = FLT_MAX; BM_elem_index_set(v, i); /* set_inline */ i++; } bm->elem_index_dirty &= ~BM_VERT; /* * we now have everything we need, start Dijkstra path finding algorithm */ /* set the distance/weight of the start vertex to 0 */ vert_list[BM_elem_index_get(sv)].weight = 0.0f; h = BLI_heap_new(); for (i = 0; i < num_total; i++) { vert_list[i].hn = BLI_heap_insert(h, vert_list[i].weight, vert_list[i].v); } while (!BLI_heap_is_empty(h)) { BMEdge *e; BMIter e_i; float v_weight; /* take the vertex with the lowest weight out of the heap */ BMVert *v = (BMVert *)BLI_heap_popmin(h); if (vert_list[BM_elem_index_get(v)].weight == FLT_MAX) /* this means that there is no path */ break; v_weight = vert_list[BM_elem_index_get(v)].weight; BM_ITER_ELEM (e, &e_i, v, BM_EDGES_OF_VERT) { BMVert *u; float e_weight = v_weight; if (type == VPATH_SELECT_EDGE_LENGTH) e_weight += len_v3v3(e->v1->co, e->v2->co); else e_weight += 1.0f; u = (e->v1 == v) ? e->v2 : e->v1; if (e_weight < vert_list[BM_elem_index_get(u)].weight) { /* is this path shorter ? */ /* add it if so */ vert_list[BM_elem_index_get(u)].parent = v; vert_list[BM_elem_index_get(u)].weight = e_weight; /* we should do a heap update node function!!! :-/ */ BLI_heap_remove(h, vert_list[BM_elem_index_get(u)].hn); BLI_heap_insert(h, e_weight, u); } } } /* now we trace the path (if it exists) */ v = ev; while (vert_list[BM_elem_index_get(v)].parent != NULL) { BMO_elem_flag_enable(bm, v, VERT_MARK); v = vert_list[BM_elem_index_get(v)].parent; } BLI_heap_free(h, NULL); MEM_freeN(vert_list); BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "verts.out", BM_VERT, VERT_MARK); }